an early of the section of the secti

s. I summar of selfon no laborate to re-

Control of a Tea Or T water to a special to the first

SUR LE PROLONGEMENT D'UNE MESURE

pa

PETRU PETRIȘOR à Cluj

1. Introduction. Dans cette note on recherche les diférentes propriétés des opérateurs τ_e et τ_e' , des propriétés qui découlent d'un théorème de prolongement de la partie absolument continue par rapport au σ -anneau $\tau_e(\alpha, \beta)$ de la mesure extérieure attachée à la variation d'une mesure $\mu: \beta \to \mathbf{R}_+$ positive et finie définie sur le σ -anneau β de parties d'un ensemble X.

Pour obtenir les propriétés mentionnées on démontre d'abord que la mesure $\beta_{\overline{\mu}^*} \ll \tau(\mathfrak{A}, \mathfrak{B})$ est une mesure Radon dans le sens étudié par JEAN-PIERRE HENRY [1] et puis en employant une relation d'ordre définie sur la famille (\mathfrak{L}, μ) où \mathfrak{L} est un σ -anneau sur lequel est définie la mesure Radon μ et un résultat de [1] on obtient le prolongement de la mesure $\beta_{\overline{\mu}^*}|\tau(\mathfrak{A}, \mathfrak{B})$ au σ -anneau $\tau_*(\mathfrak{A}, \mathfrak{B})$. En employant la définition de l'opérateur τ_* et en tenant compte du fait que $\beta_{\overline{\mu}^*} \ll \tau(\mathfrak{A}, \mathfrak{B})$ $(\beta_{\overline{\mu}^*}$ est absolument continue par rapport au σ -anneau $\tau(\mathfrak{A}, \mathfrak{B})$) on démontre que ce prolongement est une mesure complète.

2. Définitions et notations. Soit X une ensemble arbitraire et $\mathfrak{L}(X)$ la famille de ses parties. On note avec $\mathfrak{L}^2(X)$ la classe des parties de la famille $\mathfrak{L}(X)$. On définit sur la classe $\mathfrak{L}^2(X)$ les opérateurs τ , et τ ayant des valeurs dans la même classe par:

$$\tau_{\epsilon}(\mathfrak{A}, \mathfrak{B}) = \{Y : Y \subset X, \underset{A \in \mathfrak{A}, A \neq \emptyset}{\exists} Y \cap A \in \mathfrak{B}\}$$

$$\tau(\mathfrak{A},\mathfrak{B}) = \{Y : Y \subset X, \bigvee_{A \in \mathfrak{A}} Y \cap A \in \mathfrak{B}\}$$

pour toute famille α et α de parties de l'ensemble X. Si $\alpha = \alpha$ alors on notera $\tau_{\epsilon}(\alpha, \alpha)$ avec $\tau_{\epsilon}(\alpha)$ et $\tau(\alpha, \alpha)$ avec $\tau(\alpha)$.

PETRU PETRIŞOR

·On définit également l'opérateur τ', par:

$$\tau'_{\bullet}(\alpha, \mathfrak{B}) = \{Y : Y \subset X, \quad \exists_{A \in \alpha, A \neq \emptyset} \theta \neq Y \cap A \subseteq \mathfrak{B}\}.$$

Définition 1. Soit & une famille de parties de l'ensemble X Par la fermeture borélienne de la famille & on entend la famille:

$$\bar{\mathcal{A}} = \left\{ Y : Y \subset X \underset{(A_n, n \in N) \subset \mathcal{A}}{\exists} Y \subset \bigcup_{n=1}^{\infty} A_n \right\}.$$

Définition 2. Par l'opérateur \(\tau_e\) on entend l'opérateur défini par l'égalité:

$$\overline{\tau}(\mathfrak{A}, \mathfrak{B}) = \overline{\tau_{\epsilon}(\mathfrak{A}, \mathfrak{B})}$$

pour toutes les familles & et & de parties de l'ensemble X.

Définition 3. Soit & une famille de parties de l'ensemble X. Par application canonique attachée à la famille & on entend l'application $T_{\mathfrak{A}}: \mathfrak{A}(X) \to \mathfrak{A}(X)$ définie par :

$$T_{\mathfrak{A}}(B) = \bigcap \{A : A \in \mathfrak{A}, A \supset B\}$$

pour tout sous-ensemble $B \subset X$.

Définition 4. Soit & une famille de parties de l'ensemble X et $A \in \mathcal{C}$ et $\Omega_A = \{Y : Y \subset X, Y \cap A \neq \emptyset\}$. La famille $\mathfrak{B} c = \{\Omega_A : A \in \mathcal{C}\}$ est nommée famille totale engendrée par la famille &.

3. Propriétés des opérateurs τ_e , τ_e' , $\overline{\tau}_e$.

Proposition 1. Si & est une famille non-vide de parties de l'ensemble X, alors pour toute famille & de parties de l'ensemble X qui contient θ , la famille $\tau_*(a, b)$ contient l'ensemble vide.

Démonstration. Puisque $\alpha \neq \theta$ il en résulte qu'il existe l'ensemble $A \in \alpha$ non-vide. De $A \cap \theta = \theta \in \mathcal{B}$ il résulte de la définition de l'opératheur τ_e que $\theta \in \tau_e(\alpha, \alpha)$.

Proposition 2. Si les familles & et & de parties de l'ensemble X .sont des σ -anneaux, alors la famille $\tau_e(\mathfrak{A},\mathfrak{B})$ est un σ -anneau.

Démonstration. Soit $(Y_n : n \in N)$ une famille dénombrable d'ensembles

 $Y_n \in \tau_c(\mathfrak{A}, \mathfrak{B})$. De la définition de l'opérateur τ_c il résulte qu'il existe l'ensemble $A_m \in \mathfrak{A}$ tel que $Y_n \cap A_m \in \mathfrak{B}$. De la relation:

$$\left(\bigcup_{n=1}^{\infty} Y_n\right) \cap \left(\bigcup_{m=1}^{\infty} A_m\right) = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \left(A_m \cap Y_n\right)$$

et du fait que & est un σ-anneau on déduit:

2

$$\left(\bigcup_{n=1}^{\infty} Y_{n}\right) \cap \left(\bigcup_{m=1}^{\infty} A_{m}\right) \in \mathfrak{B}.$$

La famille & étant un σ-anneau et A, appartenant à cette famille il résulte que: U $A_m \in \mathcal{A}$ et de la définition de l'opérateur τ , on obtient:

$$\bigcup_{n=1}^{\infty} Y_n \in \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B})$$

et donc τ (A, B) est un σ-anneau.

Proposition 3. Si $\alpha \neq \theta$ et α sont des familles de parties de l'ensemble X et & C & alors & C T, (A, B).

Démonstration. Soit $A \in \mathcal{A}$. De $A \cap A = A \in \mathcal{A} \subset \mathcal{B}$ il résulte $A \in \tau_{\epsilon}(\mathcal{A}, \mathcal{B})$.

Proposition 4. Si $\alpha \neq \theta$ et α sont des familles de parties de l'ensemble X telles que $\mathfrak{A} \subset \mathfrak{B}$ alors $X \in \tau_{\bullet}(\mathfrak{A}, \mathfrak{B})$.

Démonstration. La famille α étant non-vide il existe l'ensemble $A \neq \theta$, $A \in \mathfrak{A}$. De $A \cap X = A \in \mathfrak{A} \subset \mathfrak{A}$ il résulte $X \in \tau_{\epsilon}(\mathfrak{A}, \mathfrak{A})$.

Proposition 5. Si $\alpha \neq \theta$ et α sont des familles de parties de l'ensemble X telles que pour deux ensembles arbitraires A et $B \in \mathfrak{A}$ on ait $A \cap B \in \mathfrak{B}$, alors $\mathfrak{A} \subset \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B})$.

Démonstration. Soit $A \in \mathfrak{A}$. Par hypothèse $A = A \cap A \in \mathfrak{B}$ et de la définition de l'opérateur τ_{ϵ} on obtient que $A \in \tau_{\epsilon}(\alpha, \beta)$.

Proposition 6. Pour toutes les familles $\alpha \neq \theta$, $\beta \neq \theta$ de parties de l'ensemble X on $a_*^* \mathfrak{A} \cap \mathfrak{B} \neq \emptyset$ si et seulement si $X \in \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B})$.

Démonstration. Si $X \in \tau_{\epsilon}(\alpha, \mathcal{B})$, alors il existe l'ensemble $A \in \alpha$, $A \subset X$, $A \neq \emptyset$ tel que $A \cap X \in \mathcal{B}$ et donc $A \in \mathcal{B}$ c'est-à-dire $\mathcal{C} \cap \mathcal{B} \neq \emptyset$ Si $\emptyset \cap \mathcal{C} \cap \mathcal{C} \cap \mathcal{C}$ et donc $A \in \mathcal{C} \cap \mathcal{C}$ il résulte Si $\alpha \cap \mathfrak{B} \neq \emptyset$ et $A \in \alpha \cap \mathfrak{B}$ alors $X \cap A = A \in \mathfrak{B}$ et de $A \in \alpha$ il résulte $X \in \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B}).$

THÉORÈME 1. Si α , β , J sont des σ -anneaux de parties de l'ensemble X, $\mathfrak{B} \subset J' \subset \mathfrak{B}$ et $J \subset \mathfrak{L}(X)$ est une famille quelconque alors:

$$\tau_{\epsilon}(\overline{\alpha}, \mathfrak{B}) \subseteq \tau_{\epsilon}[\tau_{\epsilon}(\tau_{\epsilon}(J', J), J'), J'].$$

Démonstration. Soit $Y \in \tau_{\epsilon}(\overline{\alpha}, \mathfrak{B})$. De la définition de l'opérateur τ_{ϵ} il résulte qu'il existe l'ensemble $A \in \overline{\alpha}$, $A \neq \emptyset$ tel que $Y \cap A \in \mathfrak{B}$ et de la définition de la famille $\overline{\alpha}$ on en déduit l'existence d'une famille dénombrable $(A_n : n \in N)$ d'ensembles $A_n \in \mathfrak{A}$ telle que $A \subset \bigcup_{n=1}^{\infty} A_n$. Donc $A = \bigcup_{n=1}^{\infty} (A \cap A_n)$. De $A_n \in \mathfrak{A}$ on déduit l'existence de l'ensemble $Y_m \in \tau_{\epsilon}(\overline{\alpha}, \mathfrak{B})$ tel que $A_n \cap Y_m \in \mathfrak{B}$ et \mathfrak{B} étant un σ -anneau il résulte que :

$$\bigcup_{m,\,n=1}^{\infty} (A_n \cap Y_m) \in \mathfrak{B}.$$

Donc $\left(\bigcup_{n=1}^{\infty} A_n\right) \cap \left(\bigcup_{m=1}^{\infty} Y_m\right) \in \mathfrak{B}$. Mais $\left(\bigcup_{n=1}^{\infty} A_n\right) \cap \left(\bigcup_{n=1}^{\infty} Y_m\right) \subseteq \bigcup_{n=1}^{\infty} A_n$ et $A_n \in \overline{\mathfrak{C}}$ c'est-à-dire

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap \left(\bigcup_{m=1}^{\infty} Y_m\right) \in \overline{\mathcal{A}}.$$

Puisque $A \in \overline{\mathfrak{A}}$ il en résulte que :

$$A \cap \left(\bigcup_{n=1}^{\infty} A_n\right) \cap \left(\bigcup_{n=1}^{\infty} Y_n\right) \in \overline{\mathcal{A}}$$

et de là $A \cap \left(\bigcup_{n=1}^{\infty} Y_n\right) \in \overline{\mathcal{A}}$ ce qui montre qu'il existe l'ensemble $Z \in \tau_c(\overline{\mathcal{A}}, \mathcal{B})$ tel que:

 $\left(\bigcup_{n=1}^{\infty} Y_n\right) \cap A \cap Z \in \mathfrak{B}.$

L'ensemble $Y \cap A$ appartient au σ -anneau $\mathfrak A$ et donc : $\left(\bigcup_{n=1}^{\infty} Y_n\right) \cap A \cap Z \cap Y \cap A \in \mathfrak A$ c'est-à-dire l'ensemble $\left(\bigcup_{n=1}^{\infty} Y_n\right) \cap A \cap Z \cap Y \in \mathfrak A$. Cette relation peut être écrite sous la forme :

$$(1) Y \cap \left[\left(\bigcup_{n=1}^{\infty} Y_n \right) \cap A \cap Z \right] \in \mathfrak{A} \subset J'$$

tenant compte de l'hypothèse du théorème.

Puisque
$$\left(\bigcup_{n=1}^{\infty} Y_{n}\right) \cap A \cap Z \subseteq \bigcup_{n=1}^{\infty} Y_{n}$$
 et $Y_{n} \in \tau_{\epsilon}(\overline{\mathfrak{A}}, \mathfrak{B})$ il résulte que :
$$\left(\bigcup_{n=1}^{\infty} Y_{n}\right) \cap A \cap Z \in \overline{\tau_{\epsilon}}(\overline{\mathfrak{A}}, \mathfrak{B}).$$

Soit $\mu: \mathfrak{B} \to \mathbf{R}_+$ une mesure positive et finie. La mesure extérieure μ^* est définie sur le σ -anneau $\overline{\mathfrak{B}}$. On note avec β_{μ^*} la partie absolument continue pour la mesure μ^* par rapport au σ -anneau J' et l'on écrit : $\beta_{\mu^*} \ll J'$. De la définition de la mesure β_{μ^*} on a l'égalite :

$$\beta_{\mu^*}\left(Y\cap\left[\left(\bigcup_{n=1}^{\infty}Y_n\right)\cap\ A\ \cap\ Z\right]\right)=0$$

et il en résulte qu'il existe l'ensemble $S \in J'$ tel que :

$$\mu^* \left[Y \cap \left(\bigcup_{n=1}^{\infty} Y_n \right) \cap A \cap Z \cap (\sim S) \right] = 0.$$

Il existe l'ensemble $F \in \mathcal{B}$ tel que:

$$Y \cap \left(\bigcup_{n=1}^{\infty} Y_n\right) \cap A \cap Z \cap (\sim S) \subset F, \ \mu(F) = 0.$$

La mesure µ étant complète on en déduit:

$$Y \cap \left(\bigcup_{i=1}^{\infty} Y_{i} \right) \cap A \cap Z \cap \left(\sim S \right) \in \mathcal{B}$$

et donc:

$$(Y-S)\cap \left[\left(\bigcup_{n=1}^{\infty}Y_{n}\right)\cap\ A\cap Z\right]\in \mathfrak{A}\subset J'.$$

De $S \in J'$ et $(Y - S) \cap S = \theta \in J$ il résulte que $Y - S \in \tau_{\epsilon}(J', J)$ et donc :

$$\left(\bigcup_{n=1}^{\infty} Y_{n}\right) \cap A \cap Z \in \tau_{e}(\tau_{e}(J', J), J').$$

De cette relation et de (1) on conclut:

$$Y \in \tau \left[\tau_{\epsilon}(\tau_{\epsilon}(J',J),J'),J'\right]$$

c'est-à-dire:

$$\tau(\bar{\alpha}, \mathcal{B}) \subseteq \tau_{\epsilon}[\tau_{\epsilon}(\tau_{\epsilon}(J', J), J'), J']$$

et le théorème est démontré.

THÉORÈME 2. Pour toutes les familles & et & de parties de l'ensemble X on a:

$$\overline{\tau}(\mathfrak{A},\,\mathfrak{B})\subseteq\tau_{\bullet}(\mathfrak{A},\,\mathfrak{B}) \iff \tau_{\bullet}(\mathfrak{A},\,\mathfrak{B})\supset\mathfrak{A}(\sim\bigcup_{A\in\tau(\mathfrak{A},\,\mathfrak{B})}.\sim A).$$

 $D\'{e}monstration. \ \ \bar{\tau}(\alpha, \beta) \subset \tau_e(\alpha, \beta) \Leftrightarrow \underbrace{\exists}_{Y \in \tau_e(\alpha, \beta), A \in \tau(\alpha, \beta)} \ \ Y \not\subset A \Leftrightarrow \underbrace{\exists}_{Y \in \tau_e(\alpha, \beta), A \in \tau(\alpha, \beta)}$ $\bigcap_{A \in \tau(\mathfrak{A}, \mathfrak{B})} \sim (\sim A) \not\supset Y \Leftrightarrow \underbrace{\exists}_{Y \in \tau_{e}(\mathfrak{A}, \mathfrak{B})} \sim (\bigcup_{A \in \tau(\mathfrak{A}, \mathfrak{B})} \sim A) \not\supset Y \Leftrightarrow Y \notin \mathfrak{A} (\sim [\bigcup_{A \in \tau(\mathfrak{A}, \mathfrak{B})} \sim A]) \Leftrightarrow$ $\Leftrightarrow \mathfrak{D} (\sim [\bigcup_{A \in \tau(\mathfrak{A}, \mathfrak{B})} \sim A]) \subset \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B}).$

THÉORÈME 3. Soit $\mathfrak B$ un σ -anneau de parties de X, $\mu:\mathfrak B\to \mathbf R_+$ une mesure positive et finie définie sur B et A un o-anneau de parties de l'ensemble X tel que:

$$\mathfrak{Z}\left(\sim\left[\bigcup_{A\in\tau(\mathfrak{A},\mathfrak{B})}\sim A\right]\right)\subset\tau_{\mathfrak{o}}(\mathfrak{A},\mathfrak{B})$$

alors il existe une mesure $m: \tau_e(\mathfrak{A}, \mathfrak{B}) \to \mathbf{R}_+$ positive et finie qui prolonge

la mesure $\beta_{\mu^*} \ll \tau(\mathfrak{A}, \mathfrak{B})$. Démonstration. La mesure µ étant définie sur B il en résulte que µ est définie sur $\tau(\alpha, \beta)$. La famille $\tau(\alpha, \beta)$ est un σ -anneau contenu dans $\overline{\tau}(\mathfrak{A},\mathfrak{B})$ et $\overline{\mu}^*$ est définie sur le σ -anneau $\overline{\tau}(\mathfrak{A},\mathfrak{B})$ et donc la mesure $\overline{\beta}_{\overline{\mu}^*}$ est définie sur le σ -anneau $\overline{\tau}(\mathfrak{A}, \mathfrak{B})$.

Soient A et B deux ensembles qui appartiennent au σ -anneau $\tau(\mathfrak{C}, \mathfrak{B})$. De la définition de la variation d'une mesure on peut écrire:

$$\overline{\beta}_{\overline{\mu}*}(A \cup B) + \overline{\beta}_{\overline{\mu}*}(A \cup B) \geqslant \overline{\beta}_{\overline{\mu}*}(A \cup B) \geqslant \overline{\beta}_{\overline{\mu}*}(A) + \overline{\beta}_{\overline{\mu}*}(B)$$

et à l'aide de la relation $\beta_{\overline{\mu}*} \ll \tau(\mathfrak{A},\,\mathfrak{A})$ on trouve :

 $\overline{\beta}_{\overline{\mu}^*}(A \cup B) + \overline{\beta}_{\overline{\mu}^*}(A \cap B) = \overline{\beta}_{\overline{\mu}^*}(A \cup B) \leq \beta_{\overline{\mu}^*}(A) + \beta_{\overline{\mu}^*}(B) = \overline{\beta}_{\overline{\mu}^*}(A) + \overline{\beta}_{\overline{\mu}^*}(B)$ et donc:

(2)
$$\bigvee_{A,B\in\tau(\mathfrak{A},\mathfrak{B})}\overline{\beta}_{\overline{\mu}*}(A\cup B) + \overline{\beta}_{\overline{\mu}*}(A\cap B) = \overline{\beta}_{\overline{\mu}*}(A) + \overline{\beta}_{\overline{\mu}*}(B).$$

La relation (2) démontre que la mesure $\overline{\beta}_{\overline{\mu}*}:\overline{\tau_{\epsilon}(\alpha,\beta)}\to \mathbf{R}_{+}$ est une mesure Radon dans le sens de JEAN-PIERRE HENRY [1].

L'application canonique: $T_{\tau(\mathfrak{A},\mathfrak{B})}: \mathfrak{T}(x) \to \mathfrak{T}(x)$ définie par:

$$T_{\tau(\mathfrak{A},\mathfrak{B})}(P) = \bigcap \{B \colon B \in \tau(\mathfrak{A},\mathfrak{B}), B \supset P\}$$

définit une topologie γ sur X telle que $\tau(\mathfrak{A}, \mathfrak{B})$ est la famille des ensembles γ -fermés [2]. De la définition 1 γ -fermés [2]. De la définition des opérateurs τ et τ_{ϵ} on trouve : $\tau(\mathcal{A}, \mathcal{B})$

 $C_{\tau,(\alpha,\beta)}$ et de la définition de la mesure $\bar{\beta}_{\bar{\mu}^*}$ il résulte que $\nu = \bar{\beta}_{\bar{\mu}^*} | \tau(\alpha,\beta)$ $C_{\tau_{\nu}}^{\tau_{\nu}}(\alpha, \beta)$ definie sur le σ -anneau $\tau(\alpha, \beta)$. La mesure ν étant définie sur est une mesure ν étant définie sur est une vetant dennie sur mo-anneau qui contient la famille des ensembles γ-fermés de [1] on déduit. m σ-ame de l'1 on deduit.
que v peut être prolongée à une mesure v, définie sur le σ-anneau L qui que vertient le o-anneau des ensembles boréliens &. Mais & est le plus petit contient à la relation \subseteq) σ-anneau qui contient la famille $\tau(\alpha, \beta)$, et donc :

$$\tau(\mathfrak{A}, \mathfrak{B}) \subset \mathfrak{L} \subset \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B}).$$

La mesure v, est définie sur le σ-anneau L qui contient la famille des ensembles γ-fermés et donc v₁ peut être prolongée à une mesure v₂ définie sur le 6-anneau L1 qui contient le σ-anneau & des ensembles boréliens. Le plus petit o-anneau qui contient la famille des ensembles fermés est & et donc $\mathfrak{L}_1 \subset \mathfrak{L}_1 \subset \tau_{\epsilon}(\mathfrak{A}, \mathfrak{H})$. Ainsi on peut construire la famille $\{\mathfrak{L}_l : l \in \Gamma\}$ des σ -anneaux qui contiennent le σ -anneau ϑ et une famille $\{v_l: l \in \Gamma\}$ de mesure telle que $v_{l+1}: \mathfrak{L}_{l+1} \to \mathbf{R}_+$ est une mesure définie sur \mathfrak{L}_{l+1} qui prosonge v_l . Sur la famille $\{(\mathfrak{L}_l, \mathbf{v}_l) : l \in \Gamma\}$ on définit la relation d'ordre:

$$(\mathfrak{L}_l, \, \mathsf{v}_l) < (\mathfrak{L}_q, \, \mathsf{v}_q) \Leftrightarrow \mathfrak{L}_l \subset \mathfrak{L}_q \ \, \text{et} \, \, \mathsf{v}_q | \mathfrak{L}_l = \mathsf{v}_l$$

En appliquant à la famille $\Omega = \{(\mathfrak{L}_l, \mathsf{v}_l) : l \in \Gamma, <\}$ le lemme de Zorn on trouve l'élément maximal (£, m) de la famille considérée. Si $\tau(\mathfrak{A}, \mathfrak{B}) \subset \mathfrak{L} \subset \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B})$, alors en employant un raisonnement analogue à celui ci-dessus on déduit l'existence de la paire $(\mathfrak{L}', \mu') \in \Omega$ telle que:

$$\mathfrak{L} \subset \mathfrak{L}' \subset \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B})$$

et $\mu' | \mathfrak{L} = m$, c'est-à-dire $(\mathfrak{L}, m) < (\mathfrak{L}', \mu')$ ce qui contredit le fait que (\mathfrak{L}, m) est un élément maximal de la famille Ω . Donc $\mathfrak{L} = \tau_{\epsilon}(\mathfrak{A}, \mathfrak{B})$ et m est une mesure définie sur $\tau_{\epsilon}(\mathfrak{A},\mathfrak{B})$ qui prolonge la mesure $\nu=\overline{\beta}_{\overline{\mu}*}|\tau(\mathfrak{A},\mathfrak{B}).$

THÉORÈME 4. Soit $\mathfrak A$ un σ -anneau de parties de l'ensemble X et $\mu:\mathfrak A {\rightarrow} \mathbf R_+$ une mesure positive et finie définie sur A, alors on a:

$$\tau_{\epsilon}(\mathfrak{M}_{\mu}(\mathfrak{A})) = \mathfrak{M}_{\mu}(\mathfrak{A}).$$

Démonstration. De la définition de l'opérateur 7, on trouve:

$$\tau(\mathfrak{A})=\mathfrak{M}_{\mu}(\mathfrak{A})\subset\tau_{\epsilon}(\mathfrak{M}_{\mu}(\mathfrak{A})).$$

Soit $Y \in \tau_{\epsilon}(\mathfrak{M}_{\mu}(\mathfrak{A}))$ et donc on a :

$$\tau_{e}(\mathfrak{M}_{\mu}(\mathfrak{C})) \text{ et donc on } \mathfrak{C}$$

$$Y \in \tau_{e}(\mathfrak{M}_{\mu}(\mathfrak{C})) = \tau_{e}(\tau(\mathfrak{C})) \subseteq \tau_{e}(\tau_{e}(\mathfrak{C})) = \tau_{e}^{2}(\mathfrak{C}) = \tau_{e}(\mathfrak{C})$$

$$Y \in \tau_{e}(\mathfrak{M}_{\mu}(\mathfrak{C})) \subset \tau_{e}(\mathfrak{C})$$

et donc $\tau_{\epsilon}(\mathfrak{M}_{\mu}(\mathfrak{A})) \subseteq \tau_{\epsilon}(\mathfrak{A})$. Des inclusions $\mathfrak{A} \subset \tau_{\epsilon}(\mathfrak{M}_{\mu}(\mathfrak{A})) \subset \tau_{\epsilon}(\mathfrak{A})$ et de la définition des des déduit définition du σ-anneau des ensembles μ-mesurables on déduit

$$\mathfrak{M}_{\mu}(\tau_{\mathfrak{e}}(\mathfrak{A})) \subseteq \mathfrak{M}_{\mu}(\mathfrak{A})$$

353

et de là que si $Z \in \tau_{\epsilon}(\mathfrak{M}_{\mu}(\mathfrak{A}))$ alors $Z \in \mathfrak{M}_{\mu}(\mathfrak{A})$ c'est-à-dire: $\tau_{\epsilon}(\mathfrak{M}_{\mu}(\mathfrak{A}))\subseteq\mathfrak{M}_{\mu}(\mathfrak{A})$

et le théorème est démontré.

THÉORÈME 5. Pour toutes les familles & et & de parties de l'ensemble X on a:

$$\tau'_{\epsilon}[\bar{\tau}_{\epsilon}(\mathfrak{A},\mathfrak{B})] = \tau'_{\epsilon}[\tau_{\epsilon}(\mathfrak{A},\mathfrak{B})].$$

Démonstration. La mesure µ étant définie sur le σ-anneau, A il résulte que le prolongement m de la mesure $\beta_{\overline{\mu}^*}|\tau(\mathfrak{A},\mathfrak{B})$ où $\beta_{\overline{\mu}^*}\ll \tau(\mathfrak{A},\mathfrak{B})$, est que le prolongement m de la définition de la famille $\bar{\tau}_{\epsilon}(\mathcal{C}, \mathcal{B})$. De la définition de la famille $\bar{\tau}_{\epsilon}(\mathcal{C}, \mathcal{B})$ denm sur le d'anneur $Y \subseteq \tau_{\epsilon}(C, B)$ il existe un ensemble B tel que $Y \subset B$, il résulte que pour tout $Y \subseteq \tau_{\epsilon}(C, B)$ il existe un ensemble B tel que $Y \subset B$, $m^*(B) = m^*(Y)$. Soit $Y \in \tau'_{\epsilon}[\overline{\tau}_{\epsilon}(\mathfrak{C},\mathfrak{B})]$. De la définition de l'opérateur τ'_{ℓ} il résulte l'existence de l'ensemble $\Omega \in \overline{\tau}(\mathfrak{A}, \mathfrak{B})$ tel que $\theta \neq Y \cap \Omega \in \mathfrak{A}$ De l'observation précédente on déduit l'existence de l'ensemble $B \boxminus \tau_{\epsilon}(\mathfrak{A}, \mathfrak{A})$ tel que $B \supset Y$ et donc $Y \cap B \neq \emptyset$, ce qui montre que $Y \in \tau'_{\epsilon}[\tau_{\epsilon}(a, \emptyset)]$ c'est-à-dire qu'on a l'inclusion:

$$\tau'_{\epsilon}[\overline{\tau}_{\epsilon}(\mathfrak{A}, \mathfrak{B})] \subseteq \tau'_{\epsilon}[\tau_{\epsilon}(\mathfrak{A}, \mathfrak{B})].$$

De l'inclusion $\tau_{\epsilon}(\mathfrak{A},\mathfrak{B})\subseteq\bar{\tau}_{\epsilon}(\mathfrak{A},\mathfrak{B})$ et de la définition de l'opérateur : on trouve:

$$\tau_{e}^{\prime}[\tau_{e}(\mathfrak{A},\,\mathfrak{B})] \subseteq \tau_{e}^{\prime}[\overline{\tau}_{e}(\mathfrak{A},\,\mathfrak{B})]$$

et de là on déduit:

$$\tau'_{e}[\bar{\tau}_{e}(\mathfrak{A},\mathfrak{B})] = \tau'_{e}[\tau(\mathfrak{A},\mathfrak{B})].$$

THÉORÈME 6. Pour toute famille & de parties de l'ensemble X on a

$$\bar{\tau}_{\varepsilon}^{2}(\mathfrak{A}, \mathfrak{B}^{C}) = \tau_{\varepsilon}^{2}(\mathfrak{A}, \mathfrak{B}^{C}).$$

Démonstration. Soit $Y \in \overline{\tau}_{\epsilon}(\Omega)$. De la définition de l'opérateur $\overline{\tau}_{\epsilon}$ on the limit of the limit déduit l'existence de la famille dénombrable $(B_n : n \in N)$ d'ensembles $B_n \in \tau_c(\bar{a})$ et de la définition de l'opérateur τ_c il résulte qu'il existe l'elsemble $A_m \in \overline{\mathfrak{A}}$ tel que $B_n \cap A_m \in \overline{\mathfrak{A}}$. L'ensemble $\Omega = \bigcup_{n=1}^{\infty} (B_n \cap A_n)$ appartient à la famille $\overline{\alpha}$ puisque $\overline{\alpha}$ est un σ -anneau. Mais $\overline{\alpha}$ est une famille héréditaire et de $Y \cap \Omega \subset \Omega$ il résulte que $Y \cap \Omega \subset \overline{\alpha}$ et donc $Y \in \mathcal{A}^{(d)}$ c'est-à-dire on α : c'est-à-dire on a:

$$(3) \overline{\tau_{\epsilon}(\overline{\alpha})} \subseteq \tau_{\epsilon}(\overline{\alpha}).$$

De $\alpha \subset \overline{\alpha}$ il résulte $\tau_{\epsilon}(\alpha) \subset \tau_{\epsilon}(\overline{\alpha})$ et donc $\overline{\tau}(\alpha) \subseteq \overline{\tau_{\epsilon}(\overline{\alpha})}$ et en employant la relation (3) on trouve :

$$\bar{\tau}_{\epsilon}(\alpha) \subseteq \tau_{\epsilon}(\bar{\alpha})$$

c'est-à-dire :

$$\overline{\tau_{\epsilon}(\bar{\mathfrak{A}})} = \overline{\tau}_{\epsilon}(\mathfrak{A}) \subseteq \tau_{\epsilon}(\overline{\mathfrak{A}}).$$

De la manière dont on a choisi la famille & et du théorème 5 on déduit :

$$\tau_{\epsilon}[\bar{\tau}(\mathfrak{A},\,\mathfrak{B}^{\mathsf{C}})\,] \subseteq \tau_{\epsilon}[\,\tau_{\epsilon}(\mathfrak{A},\,\mathfrak{B}^{\mathsf{C}})\,] \subseteq \bar{\tau}_{\epsilon}[\,\tau_{\epsilon}(\mathfrak{A},\,\mathfrak{B}^{\mathsf{C}})\,].$$

Mais $\bar{\tau}_{\epsilon}(\Omega) = \overline{\tau_{\epsilon}(\Omega)}$ et en appliquant la relation (4) on trouve:

$$\bar{\tau}_{\epsilon}[\tau_{\epsilon}(\mathfrak{A}, \mathfrak{B}^{c})] \subseteq \bar{\tau}_{\epsilon}[\bar{\tau}(\mathfrak{A}, \mathfrak{B}^{c})].$$

On a donc la relation:

$$\bar{\tau}_{\epsilon}[\tau_{\epsilon}(\mathfrak{A}, \mathfrak{B}^{c})] = \tau_{\epsilon}[\bar{\tau}_{\epsilon}(\mathfrak{A}, \mathfrak{B}^{c})].$$

En employant les relations (3), (4), (5) on peut démontrer la relation de l'énoncé du théorème 6.

En appliquant la relation (4) on est conduit aux inclusions:

$$\overline{\tau}_{\epsilon}^{2}(\mathfrak{A},\,\mathfrak{B}^{c})=\overline{\tau}_{\epsilon}[\overline{\tau}_{\epsilon}(\mathfrak{A},\,\mathfrak{B}^{c})]\subseteq\tau_{\epsilon}[\overline{\tau}(\mathfrak{A},\,\mathfrak{B}^{c})].$$

Puisque pour tout $Y \in \overline{\tau}$ (A, B) il existe un ensemble $B \in \tau_{\epsilon}(A, B)$ tel que $Y \subset B$, la dernière inclusion nous conduit aux inclusions:

$$\overline{\tau}_{\epsilon}^{\epsilon}(\mathfrak{A},\,\mathfrak{B}^{c})\subseteq\tau_{\epsilon}[\overline{\tau}(\mathfrak{A},\,\mathfrak{B}^{c})]\subseteq\tau_{\epsilon}[\tau_{\epsilon}(\mathfrak{A},\,\mathfrak{B})]=\tau_{\epsilon}^{\epsilon}(\mathfrak{A},\,\mathfrak{B}).$$

On a également:

$$\begin{split} &\tau_{\epsilon}^{2}(\mathfrak{A},\,\mathfrak{B}^{C}) \,=\, \tau_{\epsilon}[\,\tau_{\epsilon}(\mathfrak{A},\,\mathfrak{B}^{C})\,] \,\subseteq\, \tau_{\epsilon}[\,\bar{\tau}_{\epsilon}(\mathfrak{A},\,\mathfrak{B}^{C})\,] \,=\, \\ &= \bar{\tau}_{\epsilon}[\,\tau_{\epsilon}(\mathfrak{A},\,\mathfrak{B}^{C})\,] \,\subseteq\, \bar{\tau}_{\epsilon}[\,\bar{\tau}_{\epsilon}(\mathfrak{A},\,\mathfrak{B}^{C})\,] \,=\, \bar{\tau}_{\epsilon}^{2}(\mathfrak{A},\,\mathfrak{B}), \end{split}$$

 \mathfrak{C}' est-à-dire $\overline{\tau}^{\mathfrak{s}}_{\mathfrak{c}}(\mathfrak{A}, \mathfrak{B}^{c}) = \tau^{\mathfrak{s}}_{\mathfrak{c}}(\mathfrak{A}, \mathfrak{B})$ et le théorème est démontré.

BIBLIOGRAPHIE

[1] Jean-Pierre Henry, Prolongement des mesures Radon. Ann. Inst. Fourier, Grenoble [2] Petru Petrisor, Sur un certain type de topologie définie sur la famille $\mathfrak{L}(X)$ (sous

Reçu le 15. VI. 1970.

^{10 -} Mathematica Vol. 12(35) — fascicola 2/1970