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The morphism v, is an injection into the coproduct H,(C) ~ o (C(
1

over ¢ & E. The family of morphisms ,6,, ¢t HlCE) ~ H,(C Ce
¢ < E induces a unique morphism 08.: H,(C) — H,(C % ¢’ (@) 0 ), 0,
that 0,0, = w,6,+ for every ¢ € E. Hence 0,00, — ’weiuch
= v,0,.0:, v = v, for every injection v, angl therefpre I den;:ite,e =
Hy(C), that is the middle row of the first d151gra11} Is split exact, 1t fol)lf o
that the bottom row of the same diagram is split exact. So is also the ]?(:v ¥

tom row of the second diagram. Thus we have following isomorph
4 Hy(C % C'(e'), C'(e) = Hy(C % C'(¢')) @ H,(C'(e)).
5. Hy(C % C'(¢'), C) == Hy(C % C'(e')) @ H,(C).
6. H,(C % C', C) =2 H,(C % C') @ H,(C).

Now, H,(C % C’'(¢'), C(e')) = @H,(Cle) % C'(e), C'(e")) over e = E.
Hy(Cle) % C'(¢'), C'(¢')) 2 H,(C'(¢)), we have by 4, H,(C % C'(e')} is iso-
morphic to the coproduct of |E| — 1 copies of H(C'(¢)). Hence by 5
HE(C*C’(e')_, C) is isomorphic to the coproduct of [E| — 1 CO’pies of
I{I(C'(e’)) with H,(C). Thus, H,(C % C’, C) = ®H,L(C % C'(e'), C) over
¢ & E', and H\(C') = ®H,(C'(¢")) over ¢’ & E’, imply that H,(C % ¢’ ()
1s 1somorphic to the coproduct of |E| — 1 copies of H 1(C') .'mdy[E’l co'pics
of H/(C), But then, 6 implies that H,(C % C’) is isomorphic to the coproduct of
|E] — 1 coptes of H,(C’) aud |E’| — 1 copies of H,(C). This proves (i),

In particular (i1) shows that a converse of lemma 2(i) holds. For if
4 30, then H o(C) == 0 for every category C. Simple examples show that
a converse of ILemma 2(ii) does not hold.

6

isms,
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ON THE PRODUCT OF RELATIONS
by
A. KOVACS
Cluj

I. In the present paper we consider the so-called (¢, 7) product of some
relations in a set MW" =M x M X ... x M and give some algebraic and
geometric aspects of this product. The geometry of the relations in the
set R* has been considered in works [1] and [2].

The idea to study such problems has been suggested by st. N. BERTI .

2. Tet M be a nonempty set. We consider two relations in M*: S =
=(G, M") and T = (H, M") where G C M" and H C M" are the graphs
of the relations S and 7', M" being the cartesian product M XM X ...X M-
We introduce following

Definition. The (i, ) product of relations S and T is defined by
the set

{(xy, %oy ..., x)EM" |3 ZEM:

£ — Xiep, 2, X ipq, o000 X,) €S A (%, co vy Bl Ly Bjpts % vs %, & T},

where the numbers i and j are fixed and belong lo the set {1,2, ..., n}

Let us denote the (i, j) product by S(3) - T(j).
First we suppose that M = R, where R is the set of all real numbers.

Then the hyperplanes?of the n-dimensional space
S:ax 4+ ... +a,%5+0=0
TIA1x1+ —|—Anx”+B=O

€an considered as the graphs of some relations in the set R" We sup-
Pose that 5 — j. The numeration being irrelevant, let be 2> .
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= A; =% 0, from the definiti 2
se a. If a;=¢0 and 4, " : on of 4y
ductcii follows directly that (x1,...,%,) € S(4). T(5) it ang 031 (zj.
exists Z € R such that ¥ 1

ary .t @it Gl +a x| + a
A+ ... F 4%+ A;Z + Aj41%541 + ...

therefore by the elimination of Z we have

—1

.

i—1
(a, Aj — @, 4,) %, + ad;x; + Y (@, 4; — a, 4, %

d=j+1 d T a'-A';xl‘ _{__

n

+ Z (2, 4; —

I=i+1

a; A,) ¥+ b4;—a, B =

which represents a hyperplane of #-dimensional space R*
the following notations :

H(dy, dy, ..., d, € =dx, + Aoy + ... 4 dy %y 4 =0

and ,,."” for the (7, §) product, where Z, 7 are fixed. Hence
Hay, ..., a, b) . H(4,, -4, B) = H(
,...,a,,A,-—a,-Ad, "

Further e

L M ﬂ,—A‘-, s ey, a’.AJv—-o a'-‘*"“ "'ll)-4j—ain,

therefore we infer that the product of two hyperplanes of R*{

of B* 15 a hyperplane
Case b. If a‘- =0 and AJ =0 we have
Hay o 0,00,0,0,00, .. 0, b) - H(d,, ..., A, B) =
= Hla,, ..., T a,, b),

-1
which is a certajn hyperplane of R~

Case ¢. For a; =% ()
Parallel with the %; axis

Case 4. For a; =

parallel with the X, axis.
and AJ' =0

4;=0 we have that

(x5, ..., %) s Ha,, ..., 2;-1,0, 2,44, ..., a, b).
H(dy, .. 4, o, 44, ..., 4,, B)
if there exists Z g R such that
a,x, e

et e gk I TRT SR B

.+ a,x, +6=0
A1x1 4 +Ai-1xj__1 +4

=0
it %41 + ... 4 Anxn T B

o — ‘

P

@, A —a A, e d,

e e e B s S g e,

s

we obtain a hyperplane which 5
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. resents the intersection of
which rEPO (=1 ...,7) and 4,=

for ay =, in R” h b — B r =14, oy 'ﬂ) this set dege-
either in R” (when = 0) or in the empty set ¢
“e’atg‘c;‘ In the other cases we are led to the = hen b,

If 1,:], then the ('L, ]) product
nd H(Aw ---» A, B) amount to
a

H(@d; — a:dy, ..

same degenerationg.
of the hyperplanes H(a,, ...

.y “;—1—4;' - “.’A;—L 0: a;+1A.' == a‘-A,-+1, s
- aiAH’ bAI S (JIB)

where a; 7= 0 and A; 4= 0, whichisa hyperplane

parallel with the %; axis. In
the other cases we can make an :

analogous discussion.

3. Further we assumne that a; 4 0, a; & 0, where ¢ 4= J- Let us denote

by ¥ the set of all hyperplanes of the set R* with this assumption and by
. the (i, j) product of two arbitrary elements of the set ¥, Relating to
the structure of the set % there occurs the following theorem :

THEOREM 1.

For any 1, j the set 3 with the (i, §) product ,,
denote this group by § = (X, .),

Proof.

From the definition of the (i, j)
any H,, H,, H, & % we have (I,
also from the system

" generales a group. We

product we can easy verify that for
< Hg) « Hy= H; - (H, « H,;). We obtain

a;A; = a;
’—a"f1|~ = (l,-
aPAJ s a,-Af. —_ ap (/)= ], -..,j‘—'],j_*_ l,---,“:__ 111’+ 1; "']n)
bA; —aB =1t

the coefficients of the unit hyperplane :

Ay =1 =

A. —1

A, =B =0.

It results, that there exists U & % such that for any H'E-_?ﬂ we have
H.u=vy. H = H, where U is the unit-hyperplane. Similarly, from

=1

ajAj = a,—A;

apd; — a4,

Ve find the coefficients of the inverse hyperplane

H-Ya,, ...,a,b) =HA, ..., A, B),
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where i -
A=_I_ A,='_ APZ:—__ B:._{)__ Proof. . 3
= a; ia; aiay In fact, the inverse of the hyperplane # @y ..., a, IR=F being
¥ there exists H-1 g % such t it o il 4 24 1 |
Thereforefor aI].YHE hat HI—H .--;a"aj)--traj:---,a—.a;,---,;—,...,ﬂi‘i-—'.__,‘-z—ba_],
¢ i 17
Hay, ..., 8, 0) - HYay, ..., 4, b) = g1 Hxy

This completes the proof of our theorem.

; i belian group, Th o
bviously the group G is not an a group & ool |
Bty oo 0) Uy e Aoy B) = H(dy Conditi

’ " .

Ireoon 4

are given by the system ) ,,a‘,?
. a., .

W, _ B =hl=._‘ll_:.__=__2=£=£iﬂ§

A, Ai—x Af+l Al'—l Al'-E—L Ap B f“fn-ii.é

1

The powers of a hyperplane H & % are defined Tecurrently, by g,
formula H* = H*1 . H, where bk = 2, 3, .... Thus, for g — 2,3 we i
duce that

Hay, ...,a, b) = HJ..., (@ — a) a,, ..., @Goooy (aj —a)a, ..

y—al, ..., (a4 — a) A, ..., (a; — a) b) ?
i
@3, (4] — ag

L] (a;‘! — a.a; + alz) b]

Ha,, ..., a, b)=HJ..., (af-—a.'-a,--}-a?) B =
sy WY, oo (0f — a,a; 4 a?) a, .

.“:_].”_,j—l;d_—_j-{-l,.,_,'1.-——1:(:1:'1—1.---:”' h

. . / S }‘.
It is obviously that for 4; = a; we have H*(a,, ..., a,, b) = U, ths u#
order of the group (X, ) is equal with 2, |

; el %

. % We consider NOW an arbitrary hyperplane H(ay, .- -» T b)a!g,;-,_j
We notice that for any § =+ 0 we have Ha,s, ..., a,s, bs) = H(al,t,. i
€0 We can assyme always that ai + ... 4+ a2 = 1. In fact, ‘

. & T {s oo
T Tl =K ], then by taking s = L we have satisfyed ti
K

® e & 8 3 e eﬂdﬁ.:
S]tﬁlaorrilt' I this assumption the connection with the notion of PP |
Y 18 given by the following theorem :

=l

. O

then 1;;,?30%?;’2} If H is q hyperplane of the set X, g’flh lg};m i
elermineq witf ";}':: E': @ perpendicular on his inverse ,

7) product.

j--l 2 i—1 2 "
g : g
o L —+ 14 =0
u=1%9 d=j11%9; 15711 3,9

which is equivalent with la; — a;) =1 and the theorem b Sl
v, 1 comuectind with he subgroups of the group ¢ = (%, .) we
have following results:
THEOREM 3. a) The subset Wy of the set % with
group Gy = (¥y,-) of the group § = (X,.).
b) The subset %, of the set 9 with a; = — a; forms aq
subgroup Gy = (¥z, -) of the group G = (I, .),

b=0 forms a sup-

Proof. a) For any H, H, =%, from »" = bAj — a;B =0, we con-
clude that /1, . /f, = M. Also U = Hyand H7' < %, since b — 0

b) Suppose H,, H, to belong to 9, We assume that g, =
=—8=A, = — 4, =1, From the definition of the (1, /) product it
follows directly that

H(a,, ..., a, b) - H(A,, ..., A, B) = H{,,. . byt Ay vvuy — 1,
vy A, L1, @+ A4, ...,b4 B) =%,
Also we hayve that U = %(,, since we may take s = —1, Similarly, for the

vers plane we conclude that

HiVa,, ..., a, B) == B by, o\, a, b) s %,

Thus the theorem is proved. _
Now we consider the set iy, , defined by %, ,=19, N A, Tt is

Zb"iOFSIY that %, , is a subgroup of the group %. For any H < % and

2 we form the following product: H-1.} . H. This product has
the fory,

i1 § i—1 4 i i

adj a ] J —_

— ___;_,i_l ¥ xu —_— x} —_— da?y . xd + x._ P E ¢ . X 0
w1l A, d=j+1 A; t=it1 4;

3 - .
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e we obtain again an element of the set o(,, ,. Thus We are | a4
re, 0

therefore, n
the following resulit:

crporgn 4. The seb %y, o G5 @ mormal subgroup of the group ¢ _
=&, -).

6. We extend these considerations on the (%, /) product in ¢

o, =al) +ial; =" +d% (p=1,.. 49
==
nd ] are fixed and bc_elong to _the set {1, ..., Be
ghfeizgtit;:ne 11}1(1gnbers ]z 4 d) is a complex relation and it can be considergd a}s
e i e

a complex hyperplé,ne’:'Let us denote by & the set of all complex hyperplanes

of the set C* with ¢, 3= 0, ¢, &= 0. Then by definition of the (%, 1) product
we have that

Hity sisss G @)
< s na 6g€, — B4l -

' H(Clx ) Cn! D) = H(’ Cucl - ckcul
o By — 050G, - .

i 4wy G
o dCy — ¢, D),

'
T ckcki uie

where
ti-: /\' —‘}" 1, oy, N,

u=1...,1—1; d=I+1,...,k—1;

We use the following symbols:
K=x+i%,=0; K=x—1ix,=0.

It is easily to verify that we have following decomposition of the real ‘u_n\it
hyperplane: U = K . K. Similarly, we can deduce the decompositicn
Bl X, A 880 ¢ vios B gy 5w o5 %X, + 10, X, o001, Xy,

w5 X +igX, ..., 0X, + ix,B) =
= py B, o W 95 sy Hx ves
| O PR S o

. - 53 Bw % 5

b4
"'le’ " oey A'l i

. = b‘. }
If we suppose that H belongs to ¥, we define the m-th radical of the H b

"\'/FI ={hsd|m=0n.1. - h = Hj},

where ,,."” means the (k, !) product defined above. Hence for

have
\/H(al, e @, b)) =H(A,, ..., A
= HY4,, ..., 4,, B) = H [

2
M

:2\\'6
i B) if H(al, caoes Ay b): A
Ay =AY Ay, A (A A
o (A, —A) A, ..., (4, — A, B]

he cage |
hen M = C, where C is the set of all complex numbers, We SUppose t}?;: |
whe = My i
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hat is equivalent with the system
-4 Adp=a (p=1,...,1_ Li+, .
=g
__.A}22= (Zh
(A; it Ak) By =b.

k=L k41, g

without loss of generality we may assume that @, > 0. We shall tel] two
caSeS: : . 2 0
a) a < 0. In this case, if ar % a; we

obtain two elements %
and hy € ¥ such that /3 = 2 = H where Sk

= H [
. Va.‘-—\/—ah ! \/at—\/‘-ﬂk,“.'
Vodg o @ b
.\/”t - — dy ' ’ d;} = :—ak
and
;1 ‘—*}Il’...,,"“‘t,——a-l—"“-“——,..., &—,...,T_JL-— oy w
2 ( \’(;‘- + V_ 7 v I VU, + \’:-—ak ] ’
,——\/:'(—l—‘.,...,-'j:. (’%‘;—,...,—:—b‘_—_~)‘
Var + V- a, Va,+ V=a,
If a} = af, then we obtain a single element € X such that 72 — H,
where
k::H(...,-—‘-_-_- .8 i ey Nl v u i g s i
Va; 4+ V- ay \/—I Vo, + V= a,’
W e . —2 . ].
g Vaj + V—a,’ "Var + V—a;
b) a, > 0. 1f a; -} — a, then we obtain two elements hy and A} such

n

that jijx — h = H where k) € ¥, hye¥ and b =3 Aix,+ B' =0
s=1

4" — _apVa; ) I

NS +z—a"t”—j%(p=1....,1—1.1+1,...,k-1,k+1,...,n)

B’:b"[a—f - b ’ o ’ . ey ’ < e "
m zav%;Alzva;:Ak=lv(lk;szEAs xs—{—B =

s=1

A< Ve opva

“1+ak

Bn___b\a’__ bVa, |, " a_ X ™
a; + ay a;+aa’A’ \/'HA"_‘ zvak'
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iti can establish that
decomposition we
From the above
' a o aqVa —
auVar g DAL
M= H |t o Ve g5V,
; G‘Ja bva_l].
a+a " e+ oy
ad 1 a, b
ay o I o y v oey S R Y y e, '
'K'H(”"a;-,'-ak" r "ay + ay a; 4+ ay, m
. a,,\/a_l .\/E e aa\/az’
hy = H TR T aj + ay :
= at\/;l b\/a)
VB e
aq ﬂ’ b i
8 1, ... O e e Y
K-H ...,al+ak;---: ’ ,a,+ak' ) :“’_{hak 'al+al|E

which are the reprezentations of the complex radicals with the aid of the
real elements and the complex unit. i
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A NOTE ON A SPECIAL CLASS OF DEMAND FUNCTIONS

by

JEAN MEINGUET am WLODZIMIERZ SZWARC
Louvain, Belgium Pittsburgh, U.S.A,

1. Introduction*

By demand functions we mean a system of # functions ¢,(m, p,,
i=1 ..., n where g, =0, m =0, p,;> 0, satisfying the following
tions known as Slutsky's conditions :

-4 '71)5)1

condi-

2 gl iy Qi 45 g 4,5
() k” —Hpj Om 9 (}p;+ dm 7 # e Al 5l
3 Zf’j kij = 0.

j=1

The natural way to derive demand functions is to start with a given
ct or indirect utility function. In the first case it is practhally possﬂ:?le
to do this jf the utility function (which has to be ccncave) is quadratic.

1 the second case demand functions are obtained from the well known
oy formula, -
ti One may yse also another approach to derive demand functions star-
g directly from Slutsky’s conditions. So did McFadden in an unpubli-
\-
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