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THE HOMOTOPICAL CHARACTERIZATION OF THE SET
OF UNRESTRICTED CHEBYSHEV SPACES

by
A. B. NEMETH
Cluj

0. The purpose of this paper is to establish the contractibility to a
point of the set viu of the n-dimensional unrestricted Chebyshev subspaces
in the linear normed space C"[0, 1] (for definitions see 1. and 2.). The
introduction of a topology in the set M and the investigations about the
topological propertics of this set is motivated by some problems in the
theory of nonlincar approximation of the nature of that in the paper [6].

In a recent paper [7], it was established the pathwise connectendess
of the set 9, and also the pathwise connectendess of the set € of all the
#-dimensional Chebyshev subspaces in the linear normed space C[0, 1].
The methods in [7] are based on some integral representations which were
gven by s karwnix and w, stUpbeN in [3] (Chapter XI, Theorem
12.) for the unrestricted Chebyshev systems and by M. A. RUTMAN in
[9] for the Chebyshev-Markov sequences of functions in the space C[0, 1].

In this paper we follow another way which is based on the employing
of the theorem of DE La vaLLip poussiN [11] in the qualitative theory
of linear differential equations. It will be proved that all the homotopy
groups of N are trivial and that the introduced topology in & is equiva-
lf:nt with a locally convex one, and from these, applying the method of
N H. Kuiper (4] it will follow the homotopical triviality of the set &.*

Because this method makes use of the theory of ordinary differential
:&gatloqs, it is inaplicable in a similar investigation about the set € of all
X bln-dlmensmnal Chebyshev subspaces of the space C[0, 1]. So the
Problem of the complete homotopical characterization of € remains open.

We intend to make all proofs as independent as possible, except the

1 : g :
3t step in the proof of our theorem, which in fact would be a mutatis

" )
implidt‘,\;s it was observed in this paper, this method represent an explicit exposition of an
esult of J. MILNOR in [5].
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: iti f the Theorem 2 in th

mutandis transposition of the proof of the The the py

For the sake of completity and the continuity in the expos1’ci011,p S(I))I!;r 14

plicite, immediate consequences o_f some clasmpql theorems in the g in.

of the ordinary differential equations are explicitly stated ang Prove_éow

the sequel. In

1. Denote by C[0, 1] the linear normed space of the req] val
functions having continuous derivatives of order v on the interya]
(in the endpoints 0 and 1 the one sided derivatives are considered)’ 4
which the norm is introduced by » in

|fl| = max max [ft)(x)],
0=i=v re(0,1]

where the symbol (i) denotes the %" derivative.

Definition (i) The set of n elemenis f,, fo, ..., [, of the space |
C*[0, 1] is said to form an unrestricted Chebyshev system (abbreviated U.CS)Q
if for any natural number m, 1 < m < n, for any distinct points x,, x,, ,, . y |
in the interval [0, 1], and for any natural numbres k;, i = 1,2, ... m haﬂinz-

m

the property > k; = n, the determinant
i=1

) K
det IIfJ! )(x;)ll k=01, k=1, im 1,2, . m, j=1,2...,n
18 different from zero.

_ _ (4) The subspace L of the dimension n in C*[0, I]
is said to be an unrestricted Chebyshev space (U.C.SP.), if it has a basis
which is an U.C.S..

If a basis of a subspace of dimension # in the space C” [0, 1] is an
U.C.S., then by simple algebraic considerations it follows that all its bases
have this property.

) 2. Denote by dL the set of all n-dimensional U.C.SP. in the space
C"[0, 1]. In order to introduce a topology in 8, we will introduce a topt-
logy in the set of all subspaces of the space C"[0, 1] of dimension # at most
and consider the set 8 topologized by the induced topology.

Consider the linear normed space

Ch=C"[0,1]x...x C"[0, 1]

where the expression in the rj i i i doct |
ght of this equality denotes the direct prod®
gf):tmesxgmplaas. of the space C*[0, 1], and the no)rrm in C* is one of the USU%
s I a direct product of linear normed spaces. The elements in “s
21ree f;n—tfuples of form f= (f,, £, o f,), where £, i =1,2, .. ® a
i rgsnc S 0 dtl.le space C"[0, 1]. We introduce the eqlt,n'valence relation ~
» considering (f,, f,, o f) =Ff ~ 8= (g o - g), if L(f) = LlEh
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n) = L(hy, hs, - ., b,) denotes the linear space spanned
;fll;ecl:gog )],1, hi, .+ -» 1, Consider the topological space pamusl iy The
= C3f ~
jnd denote the canonical projection of this factorization by 4. The mapping

maps an element in C? in its quivalence class in &, and the topology
? ¢ is the strongest topology Whlc_h may be introduced in £ with the
in lition to # should be cqntmuous in this topology. The elements of the
cotﬂg may be identified with the subspaces of dimension # at most in
SCe,.IrO 11 Accordingly, we will consider that 8N is in € and that 9N is to-
01‘oéized by the induced topology.

P As it was mentioned in the introduction, in the paper [7] it was proved
the pathwise connectendess of the set S in the above introduced topology.
[n the present paper we will prove the following theorem :

raEorEM. The topological space O of all the n-dimensional unves-
wicted Chebyshev subspaces in the linear normed space C"[0, 1] s contractible
lo a point.

We remind that the contractibility to a point of a topological space
means the homotopical equivalence of the identity mapping of this space
with any constant mapping of this space onto one of its points.

In order to avoid an interruption in the following exposition, we will

prove at this point the following lemma:
Lemma 1. The canonical projection
p:Cn—> ¢
of the factorization defined above, restricted to the subset L” in Cy of all the

wtuples (fy, for ..., f.) for which fy, fa, ..., [, are linearly independent ele-
ments in C*[0, 1], is an open mapping.

Proof. Suppose that the set U is an open subset of L". Then we have

pHpU) = (ge Ll g =4f, f€ U, A &GL,),

Wh“e‘ GL, denotes the set of all real, nonsingular # X » matrices. The above
®quality may be written also in the following equivalent form:

P73 (p(0)) = Y A(U),

AEGLy

:iere A(U.) ={gel":g=Af, fe U}. Because A is a mnonsingular
% matrix, the mapping

f e Af
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onto itself and therefore A(U) is an Open s

: hism of L =
is a homeomorpiis is also open. From the definition of t Ubgey

in L*. But thenAe%JL” A(U) he factq,

topology then it follows that p(U) is open in the set £ = (L™, that j

p|L™ is an open mapping. '
3. Consider the differential equation

(1) ¥ 4+ @)y + o+ 6 Y +a(x)y =0,

where the coefficients a,(x), 1= 1,2, ..., # are real valued continygy,
functions for x in [0, 1], i.e., they are elements of the linear normeq Spage
C[0, 1] = C°[0, 1]. The n-tuple of functions & = (@1, s, ..., a,), which, s
be considered by us to be an element of the linear normed space

Co=C[0, 1]x ... XC[0, 1]

(in which the norm is one of the standard norms of the direct product of |
normed spaces), determines the differential equation (1), and equally tp|

linear differential operator

d"—l
dx”—l

@) %‘ + a,(%) + .ot a,, (%) a% + a,(x) E,

where E denotes the identical operator of the space C"[0, 1].

In this way a one to one correspondence is established between the
set of all differential operators of form (2), and the set C? introduced above.
In what follows we will identify these sets, and will consider that the set
of all differential operators of the form (2) is topologized by the topology
of the linear normed space C° We adopt the convention that in the sequel
the symbol C) will denote the set of all differential operators of form (2.
Accordingly, the elements of form (a, a, ..., a,) in C® will sometimes
called ,,differential operators”.

Let D denote the set in C of all u-tuples (f,, fa, ..., f,) having the
property that the functions f,, f,, ..., f, form a fundamental system of
solutions for a differential equation of the form (1). The set D is then form
by the n-tuples for which ;

(3) W/ fa

where W(f,, f,, .
tions f, fo, ..., f, in the point x.
We define the mapping

o fi®) =0, x e [0, 1.

r: Do Cg,
by setting

¥ (fl»fz;

...,f") n-.(al, ag, ..., a,.),

-+ J4; %) denotes the value of the Wronskian of the fult !
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whefe
() = W ST A L Y ()
W Wihoto - odui ) | fE0(2) fEF () Lo fUH0 ()
) 0 )
t==0, 1, .ic, 8 — L
Lemma 2. The mapping r is continuous and open.
Proof. The continuity of 7 follows from the fact that W(fi, fo-- o fo; %)

is a non vanishing, continuous function on the direct product D x [0, 1],
and from the fact that the second determinant in (4) is also continuous
on this set.

In order to prove the openess of the mapping », suppose that U is an
open set of [ and that 7(U') is not open in C% Suppose that (a,, 4, ..., 4,)
is in »(U7)\int #({/) and let be {(a',', as, ..., a)},v=1,2, ... a sequence
in CON7(U) which tends to (a,, @y, ..., a,) as v — oco. Consider a point
(o fo oo f) in v Yay, a, ...,a,) N U and let be (fiw fom vi )
the point in »~'(uy, as, ..., a;) having the property that fi,'(0) =
=f7U0), i, j=1,2, ..., n. Then it follows that (froe Fows « = o Fn)
tends to (fy, fa, ..., f,) as v — oo (see for ex. p. HARTMAN [2],2.3., Theorem
IL). But then, according to the openess of the set U, it follows that

(fir foun ooy fun) is in U for sufficiently great v, and thergefore (ai, a3,
oo @) =7(fin, fou, ..., fuu) is in the set #(U), which is a contra-
diction.,

Lemma 3. Consider the subset D, in D of all the n-tuples (f, f»
voon fu)y which has the property

Ao =84ij=12..n
Then 5 — r\Dg is a homeomorphic mapping of D, onto C.

{ Proof. The mapping s is obviously onto. It is one to one according
0 the unicity of solutions which satisfy the initial value condition in the
‘Mma of a differential equation of the form (I). The continuity of s follows
fr(l’m the continuity of » (Lemma 2.). The continuity of the inverse of s
“llows from the theory of differential equations ([2], 2.3, Theorem IL.).

Pro 5 We will say that the differential operator (2) has the interpolatory
(1 lzerty, if the space of solutions of the correspondmg_dlfferentlal equation
Drobis an U.C.SP., or, equivalently, if any many point boundary value

®m for this differential equation has a solution for the points in [0, 1].
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i dence between the
ere exists a one to ome correspon set Co
the (;I‘i?ferential operators of the form (2) ;;ln(i the sez of all n'dlmensifo ;"
subspaces in C"[0, 1], which have ba_ses TR TR fu w With the. ropertal
(3). This correspondence may be realized by atti'c nglto the dlffefentia!i |
operator (2) the corresponding differential eqaution (1) and

i , : COnSideryy, |
the n-dimensional linear space of solutions of this equation. Ip this Waél
is defined a mapping '

y:Cl—» %

Because the condition (3) is equivalent with the condition in the point
of our Definition for the particular casem = 1, it follows that there @Xisté
a subset Mof the set CY such that there exists a one to one correspondey, £
ceby y between the sets I and . According to the above definition of the
mapping x, it follows that M = (M) will be the set of all differentjy)
operators of the form (2) which have the interpolatory property. In why!
follows will be proved the topological equivalence of the sets I and g |

Lemma 4. If y is the mapping defined above, we have :
x = pr, |

y is an imbedding of C9 into £, and y |M is a homeomorphic mapping bet-|
ween M and M.

Proof. We will prove that
pr-1:C) - £

is a homeomorphic imbedding of the set C? into £" (for the definition o
the set £ see the Lemma 1.). Observe that pr—! is well defined. Really
if (ay, @y, ..., @,) is in CY, then the set r~1(a,, a,, ..., a,) contains all the
n-tuples (fy, fo ..., f,) in D C L for which fy, for ..., f, form a funds
mental system of solutions of the differential equation (1). All these
tuples are transformed by p in the same element L in £*, which is the #
dJmensional subspace in C"[0, 1] of the solutions of differential equatiol
(1). This mapping is obviously one to one. The mappings pr=* and 7p”" =
= (pr=)~1 are open maps. Really, if V is an open set of CJ, then 711
is open by the continuity of r (Lemma 2.). Then p(»-1(V)) is open by ¥
openess of p|L". Indeed, in Lemma 1. it was proved that p|L" is open mag—
ping. But 7=}(V) is an open subset in D. According to the condition (,}
about thf el_emznts in D, it follows that D is open in L" and then rsluﬂ'
1S open also in L”, i.e., p|D is open mapping. Similarl , if U is an open >
set of pr-l({,'g),_ther_a #7}(U) is open b)lr) I‘zhegcontinuitg of p (p being the c:_
nomcaii7 projection in a factorization), and r(p=1(U)) is open by - ggf
:ftsifnf o; (tlfleem:;: %IE) The last part in the lemma follows from the
From the Lemma 4. it follows that our Theorem stated in the P

2. above, has the following equivalent formulation :

jot
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FHEOREM. ’Ti“ize set I of all ‘dszarential operators of the Jorm. (2) with
in CIO, 1, i=1, 2, .8, which have the wnterpolatory property on
# 11 (or, for which any many point boundary value problem for the points
[0, 0, 1] fias a solution), is contractible to a point. ' e o

i 10, - TG .

We will prove in what follows this form of our theorem.

5, Lemma 5. The set M 1is open in the space C°,

Proof. We will prove first that the differential operator (2) has the
interpolatory property on the interval [0, 1] if and only if there exists
2 fundamental system of solutions f,, fy, ..., f, of the corresponding dif-
ferential equation (I) such that '

) A =W 0 >0, Wl fu50) >0, oo, W(fas fare o s 1) > 0,

for x in [0, 1]. :

Suppose that there exists a fundamental system of solutions of the
differential equatiow (1) such that the inequalities (5) hold. Suppose that
the functions f,, f,, ..., f, arc extensions of the functions in this system,
which are of class C" on the interval (o, B) D [0, 1]. Because the Wrons-
kians W(fy, fa, .o  fi: x), =12 ..., n are continuous functions on
(2, B), according to (5) there exists a positive number e, such that [—e,
14+¢) C (2, B) and theconditions (3) hold with f; changedin f;, i =1,2,.., n
for x in [—e, [ <+ ). But then, from Theorem II of . poLvA in [8], it
follows that the differeutial operator corresponding to the differential
equation with the system of functions fy, f,, ..., f, as fundamental system
of solutions, has the interpolatory property on the interval (—e, 1 + )
and such also on the interval [0, 11, but here it coincides with (2), and the
sufficience of the condition (5) is proved.

Suppose now that (2) has the interpolatory property on [0, 1], and
extend the coefficients of (2) as constant functions to (—oo, 0] and [1,
). From a result of o. aramA [1] it follows then that the maximal
mterval in which the differential operator (2) (with extended coefficients)
has the interpolatory property and which begins at 0 in the positive direc-
tion, is of the form {0, 8). But {0, 1] C [0, 8), and therefore & > 1. Let
be now g = (I, 8). Then the differential operator (2) has the interpolatory
E{Tope.rty ontheinterval [0, 8]. The maximal interval beginning with f in nega-
Etve direction in which (2) has the interpolatory property is of the ‘fo.rm (@, @].
Out 0. 8] — (e, B] and therefore « < 0. In conclusion the differential
aggr‘;tﬂf (2) has the interpolatory property on the interval (e, ) D [0, 1],
o, h]en from the Theorem IV in [8], it follows th:_-xt there_ exists a_funda-
mrrea System f), f,, ..., f, of solutions of the differential equation (1)
o “:g}}),o“dmg to the differential operator (2) (with extended coefficients)
el eh the condition (5) is fulfilled for x in (e, @) and therefore also for

10, 1]. This proves the necessity of the condition (5).

T Mathematica Vol. 13 (36) — Fasc. 2/1971
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jven a differential operator (2) in M and suppoge th

Let igs aglf‘:fxfdamental system of solutions of the correspondi:; (iﬁ{ :
’re'xit'i;l“equation (1), having the property (5)._ %et be 7 the mapping e

in the point 3. Then (f,,fz,_....,f,,) is in r7Y(ay, @y, ..., @), If
(g1 82 - - +» &) of Cp is sufficiently near to Ve s
ofhcozﬁtinuity of the Wronskians in (5) we have :
gl(x) = W(glr x) >0, W(glx gzp x) - L | AN W(gv &2, - . > 8ni x) >0'
in [0, 1]. This means that 7=*(M) is open in C% and also in D, Becay
f)?rtﬁénolgenes]s of the mapping 7, proved in the Lemma 2., it follows the:

that M = #(r-1(M)) is open, which completes the proof of the lemm, |

6. Consider the differential equation (1), where the coefficients a
i=1,2, ..., n are elements of C[0, 1]. The theorem of pE 14 VALLL:é
poussIN [11] asserts that the solutions of the equation (1) form an U.C.8p.

on any interval of the form [«, « + B] in [0, 1] for 0 < @ < 4,, where |

hy is the positive solution of the # order algebraic equation
i | n A '
2 llagll = —1=0,
i=1 il

ie., to any differential equation of form (1), except the equation
corresponds a positive real number %,, which will be called the de Ja Vallé

Poussin number (VP-number) of the equation (1), or of the differential |

operator (2), and this differentjal operator will have the interpolatory pro-
perty in any closed interval in [0, 1] of smaller length of its VP-number.
In what follows we will attach to the differential equation y =0 the
de la Vallée Poussin number equal with +oo. The solutions of this diffe-
rential equation are the polynomials of order # — 1 at most, and they
obviously form an U.C.SP. on all the real line.

Denote by [R*] the compactificated positive half line.

Lemma 6. Consider the mapping
: €7~ [R*],

which maps a differential operalor a = (a,, a,, ..

) in C3 into its VP
number. The mapping o is continuous.

. .4,

. 3 t
Proof. We prove first the continuity of the function ¢ in ;hebsi |

(1]
E'\{B}, 6=(0,0,... 0). Denote by a=(a, a,, ..., a,) anh their

= (b1, by, ..., b,) two elements of this set. & d let be 4,, respective 4
VP-numbers. Then we have PR I e &

¥ h

. n h:; " "o n i ” .
@ 0= lall 2= — 32115l 2 = 3™ (llai — (13,1 = Sl

defipgg |

& poiy |
.,fﬂ), thel] beé)aolllgz :'

y(") . 0. :

U —
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Jf e SUpPOSE that a is fixed and let b — 4, theq
in th

: e

e right hand sige o}i the above equality tends to
=% 0, there exists a positiy :

osed that a Positive number ¢ ang an ;

:35!1’ that ||a;|] > &, and therefore for 5 sufficiently near to a, \I:S Gifa‘:eo

Jso 1181l > ,;_ > 0. Because [|5]|=0, i=1,39, .. M for a given

Il the terms in the last sum of (6) have the same sign. But then it follows
it he — ks =0 as b — a and therefore hy = k,, and the continuity of -

lows. i : i ‘
fo OTO prove the continuity in the point + oo, we will prove that
is any given positive number, there exists a neighbourhood U of the
§ such that if a € U, then o¢(a) > 4. Suppose

@; and the firgt term
zero. Because it was

if A
point
that ¢ = ¢-1 angd fet be

U={a=(a,a,...,a,)€C: ) <e.

Denote h, = @(a¢). Then we have for any a U a=-0

H

I=3

g =1

R
= g4 AJ

n hi
Do =< ed
fea] 8

b
Hadl = <e
t!

and therefore s, — A > 0, which completes the proof of our lemma.

Lemma 7. Denote by V) the set in
which have thetr N'P-numbers greater then

linear structure of the space Cg.

M of all the differential operators
1. Then 9 is a convex set in the

Proof. Suppose that the differential operators @ = (a,, a,, ..., a,

and b = (b,, by, ..., b)) are in 9 and let A, respective k, denote their
VP-numbers. Consider the differential operator ¢ = Aa + (1 — 2) b, where

0ISAi<, ¢ = (¢, €2y +.., ¢,), and let be %, the VP-number of ¢. Then
We ave

el < Mlaill + (1 — 2|15,
and therefore for any k> 0 the inequality

]

il

L Sl 23 3 hadl & (1 — 2 5

holds, Suppose now that 1 < &, << 4,. Then

n }li
>l =< 1,
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and therefore from the inequality (7) it follows tpq4 h
> el 2= 1.
i=1 z:

This last inequality implies % 2 B > 1, which proves g, 5, -
: ‘ d,

7. Let the elements fy, Jar oo 5 [ in C*[0, 1] form an {7 ¢ « |
be 3 a real number, 0 < § = 1.. Consider the mapping x — 8?3 ang |
of the interval [0, 1] onto the interval [0, 8]. From oy deﬁlli,tioe-"ﬂ’ I}
follows immediatelly that the functions. 4 Nin);

1 =1,2

y v, R

8) : gi(t) =fi(8),t s [0, 1],

form an U.C.S. Similarly, if we have f = (/,, f,,
= (68w -+ 8 €D

Lemma 8 Let be f=(fu,fo ....[ ) and g = (21 g, el
elements in D which are velated by the formula (8). Denote by h,, respei, |
by h, the VP-numbers of the differential operators #{J,, Fo o fidl
= (a, A, + ., &,) = a and (g, o, -

® 'an) ED, th&]]g:

hb e ]Z“.

Proof. In the notations adopted in the -lemma, we have for the coe:'f;-;%
cients of the differential operator corresponding by » to g = (g,, g0, ....&0

N |
]

£(?) g(?) . &)
. = . v . = C C ¥ & .J '
(—1)"=i gyn () gfv (@) ... gl-")
| bn—i.(t) = AP RY, g(lj.H)(t) gl(zj-l.])(t) ot g(nj”)(l) =
g g ... gl
fi(38)  fa(30) ALY
n(n—1) IR R :
(—1)r=ig ° +n—j Fu=0(88) fu=0 (1) . .. f},””(&)}
s SEn(t) fgo (31) - S0
I»V(f,,...,f”;s,:) T - .n. .
fo3) (st e SO

i=0,1,...,n—1.
From this formula it follows that

bn—-j(t) = "1 Ay—j (8{)'

R AT | gn) == ({)l.r b2! sy bn) = b T’E(:l.f
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; =1, 2, ..., n denote the coefficients of the diff i
Gy, 8= 13 erentia
“cr,h;;gpo nding by 7 to the element f = (f, f,.
?t follows that . i

liffer 1 equation
iy f”); From this relation

euedll = &l ill, G=0,1, L1
and hence

n Il. g n : ’i
2 1Bl 73 ] 2

ha

for any h > 0. If h = 3 then we have

=

> bl (—ts lad) 2 =1,

1 =1 1! 1=1

8. Lemma 9. A/l the homolopy groups of the topological space M

are trivial.

Proof. Let he S a topological sphere of any dimension; and let be
®O:S > M '

a continuous mapping of S in M. Then B(S) is a compact subset of M,

For any a in d(S) we have for the corresponding VP-number the inequality

%(a) > 0. Because the continuity of ¢ (Lemma 6.) and the compactness

of ®(S), it follows that there exists a positive number p such that ¢(a) >

> ¢ >0 for any differential operator in the set ®(S). Suppose p < 1.
Consider now the linear mapping

¥x=(1—x4+2p)t, t=[0,1],

ofdliu_a i11tgr\val [0, 1] onto the interval [0, 1 — » + Ap], where 2 is suppo-
;edflxed n [0, 1]. (We have.obviously 0<1— 2+ Ap=1.) Let be a in M
" suppose that f=(ufo ..., f,) €7r1(a). Introduce the functions

) =f(1—a4+2)9), t=[0,1],i=12 ..., 1% |

:\-51(1,3% Was observed at the beginning of the point 7., (g1, g - - -» &) is in
i Denote p — (g1, & - .., g,). With this procedure it was defined

a funCtiou b — F(a, 2) from t.he set M x [0, 1] to M. It is easy to see that
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‘ . . ed. For this is sufficient to observe that 4
the function F 18 well getflﬁeabove correspondence, 1S independent up derhe

element b in N defined i : .
: tem of solutions Fir Sz 55551, Of the g
changing of the fundamental syste o the differential operator a. In “:{lf:t

i ti 1) corresponding t - :
;3111;1;15 ?gu;iﬁmb((a )proved that the above defined function
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F:Mx[0,1] > M

is continuous. ., )
Suppose that U is an open subset of M and let be (a’, 1') a fixed ele.

ment of F-1(U). Denote by fu fa .., f, the fundamental system of s,
lutions of the differential equation corresponding to a’, which satisfieg

the initial value conditions

©) A0 =8 47=12...mn

From the definition of the function F it follows that the differential equa-
tion which corresponds to the differential operator F(a', %) has a funda-
mental system of solutions of the form
Bl =f{1—nN+2p1),ta(0,1L:i=12 ....m
ie, (hy by ..., h,) €7-1(F(a', \')) C#~Y(U). Because the set »~}(U) is
open in 7=1(M) and this second set is open in D (this follows from the Lemma
2 and the Lemma 5.), and therefore also in C? according the condition
(3) which characterizes the set D,-there exists a number ¢ > 0 such that
for any I = (I, Iy, ..., 4,) in C? for which ||k, — || <e, i =1,2, ...,
we have -l & r-YU). - ‘
Let be 8; > 0 so chosen that

[fs!j,(x’) _fsj)(xrl)l < ‘:;, 1=12 ...,m, ]=0, 1, .o B;

if #, 2" &10,1] and |2’ — #"| < §,. Introduce the notation

M= max ||f;]],
1ICign

P

and suppose that 8§, > 0 is so chosen that
=N pdY — (I —x" + )< £, j=1,2...,m
41 3 T

for any A" &[0, 1] for which I = A" < 3, Dem;te 8 = min (3o 8y

J=:0' 1) .
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the Lemma 3. it follov_vs that _the mapping s|B, wh _
DFfrO]“;_l(mz), is a homeomorphic mapping of B onto I Congi’gerBt];
=0 ;
opeﬂ Set

G_____{g:(gl, g2 -'-!gn) EB'“.ﬂ—g.||<§,i=1,2,..

n}

pecause §|B is a homeomorphism, U, = 3(5) is an opén éubset of
0 Consider also the open set ] j 7o .

Ve={\" &[0, 1]:]5\’ - A< ‘o‘}T

The open set UgxV, in M x [0, 1] contains the element (a', X') and
is contained in F-Y(U). Really, in order to prove the second affirmation
it be (@, N') & UoX Vo and let (gy, g2 ..., &) = s~Ya"). Consider the

functions

L) =g((1— 2"+ 2) 1), t&01],i=12 ...,

We have for ¢ in [0,1]:

W' — 1) =
= (1= 2 4 Vel £7((1 = ¥ + Vo) §) —
— (1= 2"+ 2") g/ (1 — 2" + ) | =
SIL— N 4 We) — (1 — N+ ") L1 — A"+ Ne) A +
+ 121 = X+ W) ) — SO =N+ W) I(L = A+ Ny +
+ (1= 4 2p) ) — g1 — N+ V) HI(1— N+ A <

SME 2 4 (01— ¥ + V) ) — 2L = 2" + 270 A

i=0,1...n:i=12 ..

sliﬁince”l(l — N W)t — (1= A+ N =N =N (I —p) =
~ ) —N<s _—g-_ 3;, it follows that {f,-{‘”((l — N+ )flp) t) — .-‘”((l _
TR < 31 . The above inequalities then give |A(t) — 90 < e

~om, i=1,2 ..., n from which it follows that

“h,""‘l,-” <e, 1=12,...,n
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; SEEE % {
5 i Of €, l ’ 12) ee l" =yl

the chosing (. e (). From y_

and therefore, BY tion F it follows ‘that

finition of the func .

1’(11: lz: £ 7y lu) == F(ﬂ”, 7\”)

@) €U, be, (@ ) SFU). This g

e

a[l;ldx I}h? F__l((U)_ It was prf)Ved thgn thgt ean;h point (@, % } % o hat

haos a ﬁeighbourhood which is qontamed in thlS; set, that ig - ‘(L’)
ves the continuity of the mapping F. |, () i ¢

open, which pro 7
We have F(a, 0) = a, and therefore F'({(S), 0) = @(S). Let yg d
¥(S) = F(®(S), 1). From the contimuity of I then it follows thatq)ehote

denotes the homotopical equivalence. Y

where ~

From the Lemma 8. it follows that ¥'(S) C 9). Indeed, let be a in ¢ :
¢

set ¥(S) and determiu_e_the VP-number _of tlEe’ differentia] operator

According to the definition of the function J',. there exists ap elemea'
a' € ®(S), the corresponding differential equation having a fuy dam(‘ntn§
system of solutions fy, fo ..., f, such that 2

5

k() =filpt), ¢ =1,2, ..., m,

and hy, hy, ..., b, form a fundamental system of solutions for the diffe-
rential equation corresponding to the element a. For the VP-number o
the differential operator @' is valid the inequality 4., > p. Applying nov
Lemma 8., we have ; ’

he 2 p7%he > p7tp =1,
ie, a €9. This proves that ¥(S) C 9 and because 9) is a convex st

in Cg (Lemma 7.), it is contractible to a point ([10], Chapter I, 3.4.), an
therefore oy A N

"'IP'&C,
where C denotes a constant mapping. But then
O C,
Which.(‘:ompletes the proof of the lemma.,

Space? ; bfi]if é}b :OSol{ bc;j; ihg%tifﬁm’lé?n. ‘The topological space M is in f%
I : e linea 0 di

ma 5, the topology of M is a r normed’ space C0. Cx‘éc;r?rislzgpa racompact

Y convex topology, which according to the Lem;ﬂfpat
in §3. of the pa PY groups trivial. Then an analogous procedure 9
PAPer of KUIPEK [4] gives the proof of the theore™™

cta metric r
o the Lew
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