K.O. KORTANEK

94 8
r 1 that ATy —|-- c *
mply respectively =1
Now (5.1) a1 (%Ze)née,};t is jmpossible 0T SUP (—¢, %) subjec ¢, 47V <,
are both CON2: 227" pieh would necessarily follow if (1¢) =)
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0. Introduction and definitions

Denote by [«, P] a finite closed interval of the real axis R. Let C[a, B]
and C"[¢, B] be the linear spaces of real and continuous functions, and res-
pective the real functions with continuous, #'® derivatives, with the usual
norms.

In a previous paper [1] we have introduced the notion of the differential
n-parameter families. The differential #-parameter families are #-parameter
families in the sense of 1. TORNHEMM[2], which considered as manifolds in
the space C[«, B], are differential manifolds and have as tangent spaces
ti-dimensional Chebyshev subspaces of Cla«, 8]

The case when C[a, P] is changed in C"[«, f], and the Chebyshev spa-
ces in unrestricted Chebyshev spaces is particularly important, because
it has a strong connection with the disconjugate »t order differential equa-
tions. The aim of our paper is the transpozition of the results in [1] to
this particular case with releaving of the special problems, and the appli-
cations of the obtained results to many point boundary value problems
for nonlinear differential equations. We will deal with this last problem
In the second part of our paper.

Definition 1. Suppose that Y(x, a) is a real valued function defined
on the direct product [o, ] X R”, having partial derivatives with respect
% of orders 1,2, .... m, denoted by YO (a, %), 1=1,2, ...., n, which
re continuous functions on [o, B] X R™ It will be said that Y forms (or 1s)
M unrestricted n-parameter family (abbreviated, UnF), if for amy matural
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<m L many distinct poinis Xy, ¥ -+ (%, B] ang . i
] = m " ’ |
", ) b with the property 2""‘ = n, there exists 4 ..
e ‘ Singl,
aumbers ku
point @ in R* such that
i . — 1, 1' = 1’ 2, N
Yoz, ) =Yh J = 0, ...,k .
) -=0,1,.._’k.__1,2:=1
for any fixed system of reals ¥, 7 ‘ % .

b cothiit inition 1 and is linear (additive and hop
L lsts gfy’?ﬁgn]%ﬁnégrresp(mdjng Unk will be called an un?ggtnreig: )
8;121%;2;1? space’. As it is easy to see, in this case Y is an ”‘dimensimf-fl
n
subspace of C 5:.: Ei called the space of parameters. The coordiy
1 Tg:gﬁcﬁ” will be denoted by al, @ ...., a””and are called
in?al';is of the corresponding function Y(’f’ a) in C*[a, _
In what follows we will refer sometimes to the function v satis

Definition 1. as to an UnF.
Definition 2. Suppose that Y forms an UnF in the sense of Defin

ates of ay
the para.

fjﬂ'ug

ayu) ; p )
tion 1, and that a::‘ x), =01 ...,m i=1,2, ..., n exist and ar
continuous functions on the divect product [, Bl X R™. If the functions al("_{)

dai '
i=1,2 ....,n generale an unrestricted Chebyshev space for any qgps

ie., they form a so called unrestricted Chebyshev system), then the corresponding

UnF s called unrestricted differential n-parameler family ( abbreviated,
UDnF).

If Y satisfies the conditions in the Definition 2, then it may be consi-
dered a differential manifold in C"[a, B], which has in any point a tangent

space L(a) which is an n-dimensional unrestricted Chebyshev subspace of
the space C*[q, B).

1. The topologieal charaeterisation of UnF-s and UDnF-s.

. In this paragraph we will iv
UnF-sand UDnF-s. The 1dea ing::
to interchange the role of the var

der the function Y (y, a) as a family of functions from R* to R* dependi®g
on the parameter y in [aB].

duct I[BEa %RE} :I: 1}:1:6 real valyeq Junction Y(x, @) defined on the direct pr:
. ., (l!}iﬂo a t.. 4 1 A 7] Q .oy ”, W}
respect 10 5 in [, 8] 8 partial derivatives of orders 1, 2, -

denoted by Y@ (x, a j =12 , " which 6

e simple topological characterizations of |
he following characterization theorems!s
iable ¥ and the parameter q, i.e., to cons |
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n
plinions o7 [, Bl X R*, forms an UnF,
¢

/ if and only if for
amber M 1 < m << n, any distinct points %y, > ¥ Jor uny watural
"

o voiy X 0 [a B] and any

paturdl numbers Ry, Ra, .. R, @kzck satisfy;k,. =, the mapping with the

coordinate functions

0 f.‘,f(a) = YUl(x;, a), j =0,1,..., ki —1, 1= L2 ...

m,
is @ homeomorphism of R* onto itself.

~ The proof of the theorem is analogous with the proof of Theorem 1 in
[1]-
THEOREM 2. The rem? valued function Y(%, a), defined on the direct
product [«, ] X R", having partial devivatives of orders 1,2,
respect 10 % in [o B), denoted by Y)(x, q), j =1, 2, ..
avy) (x, .
aa(f a)' 7= L seay n,1t=1,2, ..., n which are
all continuous on [«, B] X R*, forms an UDnF, if and only if for any
natural number m, 1<m <n, any distinct points X1y Fzs v evs Xy 0 [, B],

vor R which satisfy ) k;=n, the
i=1
mapping with the coordinate functions (1) is a diffeomorphism of R™ onto itself.

Proof. From the Definition 2. it follows that if Y(x, a) is an UDwF,
then the Jacobian determinant of the mapping (1) is everywhere different
from zero, i.e., the mapping (1) is a local diffeomorphism in any point g,
and according our Theorem 1, it is also a global diffeomorphism. Conversely,
the condition of non vanishing of the Jacobian determinant of the mapping

(1) is equivalent with the final part of the Definition 2, and the proof is
complete. '

- M, and pariial
deribﬁtives of form

and any natural numbers ky, k,,

2, A transformation theorem

,‘ Applying the results of the paragraph 1, we will prove here the follo-
wing theorem :

THEOREM 3. Suppose that Y(x, a) is an UnF (respectively, an UDnF)
and et pe .

@0 ¢a homeomorphism (respectively, a diffeomorphism) of the space
R" onto itself ;

@) x a diffeomorphism of class C* of the interval [«, B] onto itself;

7 — Mathematicy _ vol. 14(37) fasc. 1/1972,
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w® hism of class C* (respectively, of

o o g diffeomor?
(m):; ;f;o stself ;

?a)c& a fixed dlement of the space C*Le Bl
1v) ¥

then the function
2z a) = *¥ (9, Y @) + 4(x)

ectively, an U DnF ).

‘be as in the theorem.lf ", xlr Xoy « . . y k ,k
ns in the Definition 1, then the ma’;)pml ;

s also an UnF (7esp

Proof. (i) Let ¥
satisfy t{le conditio
coordinate functions

yo)(x;, ¥a), J = 01 <»-

m of R” onto itself, becat}se it is the com
¥ and the homeomorphism with the ¢q

1)

.' 5 ')k
g with th;

.,k"—l,i=1,2,____ m

will be a homeomorphis
of the homeomorphism
functions

Ofdil]ate

YW(x;, 8), =0, 1, s apdty = dg 8 =1 B < au, 0,

which are both onto. But then, according to the Theorem 1, the funct,

Y(x, ¥(a))
will be an UnF.

In the case when Y is an UDnF and ¥ is a diffeomorphism, we have

Ayl (z;, ¥(a)
aak -=‘0p1|---,h’-—1, iﬂl,:.’,...,m k=], 2,..-,"

o¥!(a)

— " aYQ(x;), ¥(a))
da* u;&, Ly Bipns (9

dbk J=0, .o k=1, i=1,...,m k=1,...,n

¥z

|
Positigy |

¢
Class qu.]) o1 .'
le

i
i

|
|
|
!

f
|
!

i
I
{
i

Where we have demoted b= W(a), b= (51, 52, ...., ") and ¥=(1 f
..... » ¥"). The matrices in the right hand side are nonsingular ac® |

ding to the Theorem 2 and the definition of the mapping ‘¥. Then thel”

product is nonsingular, and therefore from the Theorem £ it follows i}

: Y(x, ¥(a))
1s an UDyF,

(i) Consider the function

2(%, @) = Y (y(x), a),

f’
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x)is asin the theorem. ILet - £ &
! ’ 2y e«

where X 'She Def_initiorl 1. Differentiating j times the.fune
e obtain

Xy Ry Ry, oo, b,
tion Z with respect

g 206 =Y (0 ) 0m) g Yo, gy
=01 . k—1i=12 .. .m

where y® denotes the &* partial derivative of
to its first variable. From this relation it foll
the coordinate functions

the function ¥ with respect
ows that the mapping with

Z(j)(xi:a)l ]=O, 11 . .,k;—l, 1'=1'2’ ree, M

is the composition of the mapping with the coordinate functions

YO(x), @), 5=0,1, ..., k —

1:1‘.=1,2,...,m,

and the linear mapping with the matrix

M, 0 0
M — 0 M, 0 '
0 O e M,
where
1 0 0 0 H
0 ¥'(x,) O 0
M;=|0 x'(=) X(*)>*...0 "
1 e Y (' (%) 57"
1=1, 2, , m
We have then
ky(ky—1) ky(ks—1) kmlkm—1)
] ' 2
det M = (y'(%)) * ((%) * .- (%) ,

aud because of the condition (ii) in the theorem det M =0, i.e., the linear
maPng 1s nonsingular. This means that the composite mapping is a ho-
®0morphism onto, and therefore, by the Theorem 1, Z(x, a) is an UnF.
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is an UDnF, then differentiati, b
8 (2 wiy

If we Suppose that Y(x, D)
gespect t0 o, we obtailt

|
!
|
i

l
i

. . YWy (x;
e 8y o(e) + -+ T

) (2, 8) _
é_z__.—(—-'—-——‘ al

odt

and therefore W€ have

aa‘ %j=0,1....,k;‘1"’=112l"'Jmtt =L2...,n

oat

j=0r L___,k’.—l,l.=l, 2, caay M, l=1,2,,__."'

=M -
tion about ¥, and the nonsingulartiy of M, it fol %
he left hand side of this equality is nonsingular. 'lc‘)hli{;ws that !
apping 1s a local diffeomorphism and aCCgrg\irs |
f it is also a global homeomorphism, i.e Tding |

From the cond
the matrix in t
that the corresponding m
to the first part of our proo

Z(x, a) = Y(x(%), a)

is an UDnF by Theorem 2.

(iii) Let us consider the function

e T

(3) Z(x, a) = »(Y (%, a)),

where Y and x are as in the theorem. The functions Z is continuous and has |
{

t;onztmuous par'?ial derivatives on the direct product [«, B] X R” of orders |
»2, ..., n with respect to % according the conditions about Y and i |

Similarly, if Y is an UD#F and x is of class C**!, then i3‘2—“)(—’:—'—01. ] =0,
a ‘

L cosestty, =179 : i
s =L4 e, ,n exist and are continuous on the direct
rod n
i&%yimXR'&mW%m“ﬁuxh%,nu,%ukuh~whm>
ton 1. By derivation j times with respect to % in (3), We obtait

@  Zzu(, g =Y (5, @) (Y'(xs )i + ... + x’(Y(x.-,a))Y(”("i' 0

i=01,. 0 bh—145=12,...., m
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e vaves YO @) Tor F=0.1, 5 1 ;_
1 gniquely determined as functions of Zt) Zx a), = 10, 2, ....,m can
pom Ly By e , m, from the system (4), Really for ;Jgi:en,ila. P e ]
i ndex ¢ we have:

Z(x;, a) = x(Y(x;, a)),
Z'(a;, a) = %' (Y (%, a)) Y'(%,, a),
Z"(x;, @) = %" (Y (%, a))(Y'(%;, 2))* + »'(Y(#;, a))Y"(x, a)

. - .
.
........
L
.

and it is easy to see that according the definiti

may be recursively determined Y(%c,f, a), ;'fzzlf:))fl;f(;;,- f;;n;tihe;iﬁrelations
that the conditions in Definition 1 for the function Z" m,a b. t asuoed
via (4) in conditions of similar nature for Y. Because (4) Ydete l'flnSpose.d
quely the values YU (x;, @), and Y is an UnF, it follows thatez;mnes ok
a single @ for which the conditions as those in Definition 1 ke e'ms'ts
This proves that Z forms an UnF. b

In the case when Y is an < i ; G

e o e havea UDnF and x is of class C*+!, differentiating

0292, a) : (4)
e ) LN ’ Y . 0Y(x, a) J
=0 o) (F22))

where § denotes the order of derivation with respect to x. We have then

020y, a) _ LI (Y (x Y (%i, @) rxrs . oyl
dal ) Y (Y'(x;, a))f + ... 4+ %' (Y(x;, a)) — (xi, &)
i« Oa!

F=0,1, oo, By —1, t=12 .sc,m, =12 ...,m,
and from these relations it follows that

az(:‘) (xi- a)
dat

j=0,1, ...s h’-—I, i=1,2...,m, I=1,2,...,n

)

N oY (z;, a)
dat

»
i=0,1, ..., k;—1, i=1,2, ...,m =12, .08
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' 4. The function Y(x, a) f £ o o '
here : HEOREM 5 2 A orms an uwispatial UDnF
wher N, G .- 0 , - t:ﬂg"”t space L if and only if 1t may be represented i'bn the fo;'m” with
Ny sse B S .
/ = w ow om o §
Z\. . O : . ¥iz, aj = gf (@) 9:(x) + $(x),
0 « AV i
; = 1,2, ..., n form a basis of the s L fi g ‘
¥y ere @5 ¥ . : e space wdyts=Ly .. :
and fr]f the coorc??:;lte _;unctzco?ts Ofaf diffeomorphism of R* onto itself, and 4:'1"; ;‘
y : Jement of the space o Bl
*'(Y) o 0 .. 0 an eThe proof of the theorem is similar to the proof of Theorem 2 in 1]
@y x (¥) . «er B As it was observed at the end of the paragraph 2, applying Thearetn
Ne=l[l . .00 v v v e o o vt 3 an equivalence relation may be introduced in the set of all UDnF —s. !
@)@t K (E) : The property fo be unispatial of an UDnF is not preserved by a transfor- |
i ' mation given in Theorem 3. By a dlrg:ct method it is easy to show that the I
L1292 m tangent spaces of an UDnF which is obtained from an unispatial UDnF I

by the transformations in the _Theorem 3,.Will be of form oL, where L is
a constant space, and ¢(x, ) is a nonvanishing function on [«, 8] X R™

i prgrinenit of V and Y’ being (x;, @). From the form of the matrix y j Really, applying the notations in Theorem 3, we have

follows that
det N = (<(¥ (ry, ) (< (V (5 @) - (Y (%, a)))im

oz _ . ~ OY (x(%). ¥ i
oo = (Y (x(n), ¥(a)) P ZHATE 0,
a =1 ab da

where b = (6%, 0%, ..., 8") is the second argument of ¥, and ¥ =

(%) = 0 for any % in R, we have that det N = 0. From t; ‘ 2Con.
and because x'(x) ¥ m this = (¥, ¥, ..., ¥"). From this equality it follows then our affirmation.

and from the condition about Y it follows !:hat the matri.s_: in the left hapd
side of the relation (5) is nonsingular, which together with the first part
of our proof, proves that Z is an UDnl", according Theorem 2.

(iv) The proof of the fact that if YV is an UnF (or an UDnF) and }
is a fixed element in C"[«, p], then ¥ 4 ¢ is also an Unl" (respectively, au
UDnF) is an immediate consequence of the Definitions 1 and 2. This com-
pletes the proof of the Theorem 3.

4. An UDnF having given tangent spaces

We introduce first the notion of composable unrestricted Chebyéhev
systems : ;

. ; . . . Definition 5. Let ¢y, @, ..., 0, and ¢y, $s, ..., §, be unres-
This theorem permits to introduce an equivalence relation in the st tricted Chebyshev systems in C* [1(2, é] (i.e., they span unrestricted Chebyshev
of Un'.I" —s and the set of UDnF —s. Two UnF —s (or UDnF —s) are equivy spaces). They will be said to be composable if: '

lent, if there exist ¥, % and x which satisfy the conditions in Theorem 3 1 (1) every sequence of m fumctions, 0y, s, ..., N, Where m; is @; o1 ¢

such that one of them is th 1sformati , ot fthe other. ~ (gemerally "depending on '4), form an wunvestricted Chebyshev system,
e transformation by these functions o ! ) 1 sy gy e Byt By By e ey B 05 @ given System of mumbers
Satisfying the conditions of Definition 1, then the determinants

e e

3. Unispatial UDuF—s o6 det |1 (%1, ..ot imttum, bonz
Definjti . xrie q) has B : ;
PPy ;(;01,2041; ;f tle((I DnF formed by the function ¥ (%, aznﬂS‘ | ‘1?” Q{ tge same sign independently of the manner of choosing @; or ¢, Jor .
oo EENESpace L(a) dn any point a & R" is the same? | S 2y g W
i : ‘ A i . s . =t i e . by
:;(:u(, hebyshen space L, then it 1oqy be called unispatial UDnF with the la% | We observe first, that from the condition (i) and- (ii) it follows that if
gent space I S We have for example the ordering x; < 2, < ... < X, then all the deter-
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04 : ) ; 1y
1 ave the same SIgD, independently of Valueg

h

ition of permanence of the orderj m
Ondl ea‘x, — BW and ele, eﬁ‘x,ng of kﬂrnl;ots J:xi
) Wh‘er
Sys
1 Vanigp;

= gl i ship
ants of from (6) for v; = ¢ b wlfw.er: Yi 1S o or g, 4, S_g 3
s deterl(lille for m = m) follows frto m £ e fact that evs "y, ™ Sy,
koots #; (1.€ % Chebyshev system for any pairwise diffe,,, '* t™
form an .“Eresmdeii_, n. All the cqrresppndmg' determinantg e()l;erflt luy,
bers i, + = 11 % ¢ imilar consideration as in [1], &4, Byt thiorm 5
inition 5 are fulfilled. S ey,

let analogy with the Theorem 3 in the paper [1), we
Ve

ed;t’ .
‘e, €
.. < a, <P, are real numbers, These

aﬁeazufrggtric'ted Chebyshev systems. The no

. and g, Yo, ..., $, ar
rHEOREM 5. If @1, P2 - - Pn 4 *tn  GTC Compogy,
unrestricted Chebyshev systems 1 the space C'[a, B, then the functioy, ¢

$
n 8

Y(x, 4) = ; flx, a*) da’,

where
i(%), . a': <0 ‘r
J(x, 8) = { @ g;(%) + (1 — @) §(x), 0 < @ < 1,
(Pi(x): (l'. =< 1,
$e2 LG van gy
is an UDnF, having in ay = (0,0, ...,0) and a, = (1,1, ..., 1) as (an-

gent spaces the space L({y, o,
Doy s sy q’n)

Consider the UDnF constructed in Theorem 5 for # = 2 and the con-
posable unrestricted Chebyshev systems en*, en* and ehr, ebe, where
% S By < o < By The tangent spaces of this UDaF in the point 4=
=5(0, 0) and a = (1, ]) Will be Spanned by eﬂ;x’ eﬁ,z] respective]y, by o |
¢%*. In what follows we will prove that if the differences B, — ay, B2 — % ;
Eé(i-fﬁz’ Pe — o are pairwise different, then this UDnF cnnot be obtar |

;:?h :2 ICJimzpatlal UDnF by a transformation given in Theorem I? »
tained by artl of the Paragraph 3 it was observed that if an UDnlj" is O] |
UDnF, then i;anSformatlon as that in the Theorem 3 from an unispatt g

has its tangent spac is a fix

T es of " here L 1sa |
n-dimensiona] unrestricted Chebp el Mgy ishing |
function on ¢ |

voor b)) and  respectively the space Liy,

. yshev space, and o(x, a) is a nonvant
he direct product [ 8] X R". 7 )
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Suppose that the UDu#F considered ahoye can be obtained from‘an

| UDnF by a transformation. Then it follows that there exist the

. atia .
“’;ffani shing functions p(x) und o(x) such that
1

P(x)L(galx, ea.x) — g-(x)L(gB;x, ce,z)
ie., We have

p(x)ems = (cyeh® 4 cpobe)o(a),

(7) p(x)t.;anx = (k]ﬂﬁ,.t + kzea")c(x),
from which it follows that
(8) Clg(ﬁz—m)x + Cgemi—‘m)x = klg(ﬂx-—a,)x + kze(ﬂl_ﬂa)-‘_

According (7), mot all 65, ¢;, %y, k. are zero, and therefore from (8) it fo-
Hlows that the functions e® ™%, 4, j =1, 2, are linearly dependent, which
is a contradiction.
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