SUR UN ESPACE QUOTIENT*)

pa

PETRU PETRIȘOR

à Cluj

Dans cet ouvrage on continue l'étude d'une relation d'ordre définie sur $\mathfrak{L}(X)$, où X est un ensemble arbitraire, introduite en [6]. Dans les ouvrages [4] et [6] on a mis en évidence plusieurs propriétés de cette relation d'ordre, en prouvant que l'élément primitif (fondamental) de quelques problèmes de nature très variée est l'opérateur \mathcal{T}_e . Dans cette note on prouve en employant l'opérateur \mathcal{T}_e , l'existence d'une relation d'équivalence Σ sur l'espace $\mathcal{S}_{\mathbb{R}}(X)$ et puis on montre que les espaces $\mathcal{C}_{\mathbb{R}}(X)$ et $\mathcal{C}_{\mathbb{R}}(X)/\Sigma$ ont les espaces de mesures topologiquement équivalents.

Soit X un ensemble quelconque, $\mathfrak{L}(X)$ la famille des sous-ensembles de X, \mathfrak{A} et \mathfrak{B} deux sous-familles de la famille $\mathfrak{L}(X)$. Par $\mathfrak{T}_{\mathfrak{c}}(\mathfrak{A},\mathfrak{B})$ on comprend

la famille des sous-ensembles de X définie par:

$$\mathcal{F}_{\mathfrak{s}}(\mathfrak{A}, \mathfrak{B}) = \{Y : \exists_{A \neq \emptyset, A \in \mathfrak{A}} Y \cap A \in \mathfrak{B}\}.$$

Si $\alpha = \mathfrak{B}$, alors $\mathfrak{T}_{\epsilon}(\alpha, \alpha)$ sera noté avec $\mathfrak{T}_{\epsilon}(\alpha)$. On notera avec Ω la famille filtrante de σ -anneaux définis sur X et avec $\mathfrak{T}_{\mathfrak{F}_{\epsilon}}$ la famille des σ -anneaux α ayant la propriété: $\mathfrak{T}_{\epsilon}(\alpha) = \alpha$.

Définition 1. Soient $A \subseteq X$, $B \subseteq X$ deux sous-ensembles de l'ensemble X. On dira que $A <_{\Omega} B$ si et seulement s'il existe $S \subseteq \Omega$ tel que $B - A \subseteq S \cap C$, où $C \subseteq S$.

^{*)} Présentée à la session des jeunes mathématiciens organisée par l'Institut de Calcul Mai, 1968.

108

La relation d'ordre introduite par la définition 1 possède les propriétés suivantes:

$$\emptyset <_{\Omega} \emptyset$$
 et $X <_{\Omega} X$

(1)
$$Si \ A \subset A' <_{\Omega} B' \subset B, \ alors \ A <_{\Omega} B.$$

Pour vérifier la propriété 2 on compte sur la définition précédente. Puisque
$$A' <_{\Omega} B'$$
 il résulte qu'il existe $\$ \in \Omega$ tel que

$$B'-A'\in \$\cap \alpha$$

où $a \in \mathcal{F}_g$. De $A \subset A'$ on trouve: $A \cap (B' - A') = \theta \in a$ et donc ou $A \in \mathcal{F}_{\ell}(A, \mathcal{C}) = \mathcal{F}_{\ell}(A)$. De $A \cap (B - A) = \emptyset$ il résulte que B - A $\in \mathcal{F}_{\ell}(A, \mathcal{C}) = \mathcal{F}_{\ell}(A)$. De $B' - A' \in \mathcal{F}_{\ell}(A) = A$ et $B' - A' \in \mathcal{F}_{\ell}(A) = A$ il résulte que $B - A \in \mathcal{F}_{\ell}(A)$ et donc $B' = A' \in \mathcal{F}_{\ell}(A)$ $\in \mathcal{S}_{\epsilon}(\alpha) = \alpha$. Be $A' = (B' - A') \cap (B - A)$ if results que $B - A \in \mathcal{S}_{\epsilon}(8)$ et donc $B - A \in \mathcal{S}_{\epsilon}(8)$ $= (B - A) \Pi (D - A)$ $\in \alpha \cap S_{\epsilon}(S)$. La famille S étant un σ-anneau on déduit que $S_{\epsilon}(S)$ est un σ -anneau et de là $A <_{\Omega} B$.

(3) Si
$$A <_{\Omega} A_1$$
 et $B <_{\Omega} B_1$, alors $A \cup B <_{\Omega} A_1 \cup B_1$ et $A \cap B <_{\Omega} A_1 \cap B_1$.

Cette propriété se démontre de la manière suivante: de $A < A_1$ et $B <_{\Omega} B_1$ il résulte l'existence de deux σ -anneaux δ' et δ'' de la famille Ω tels que $A_1 - A \in \mathcal{S}' \cap \mathcal{A}$ et $B_1 - B \in \mathcal{S}'' \cap \mathcal{A}$. On a l'égalité:

$$(A_1 \cup B_1) - (A \cup B) = [(A_1 - A) \cup \mathcal{E} B] \cup [(B_1 - B) \cap \mathcal{E} A]$$

De $A\cap (A_1-A)=\emptyset$ il résulte que $A\in \mathscr{F}_{\epsilon}(\mathfrak{A},\ \mathfrak{A})=\mathscr{F}_{\epsilon}\ (\mathfrak{A})=\mathfrak{A}$ et de

$$A \cap [(A_1 - A) \cap \mathfrak{C} B] = \emptyset$$

on déduit que $(A_1 - A) \cap \mathcal{C}B \in \mathcal{S}_{\epsilon}(\mathcal{A}) = \mathcal{A}$. D'une manière analogue on trouve que $(B_1 - B) \cap \mathcal{C} A \in \mathcal{C}$. De $A \cap [(A_1 - A) \cap \mathcal{C}B] = \emptyset \in \mathscr{S}'$ il résulte que $(A_1 - A) \cap \mathcal{C}B \in \mathscr{S}'$ $\in \mathcal{S}_{\iota}(\alpha, \mathcal{S}')$ et de $B \cap (B_1 - B) \cap \mathcal{C}A = \emptyset \in \mathcal{S}''$ on déduit que $(B_1 - B) \cap \mathcal{C}A = \emptyset$ $\bigcap \mathcal{C} A \in \mathscr{T}_{\epsilon}(\mathfrak{C}, \mathscr{S}''). \text{ De l'égalité } \mathscr{T}_{\epsilon}(\mathfrak{C}, \mathscr{S}') \ \bigcup \ \mathscr{T}_{\epsilon}(\mathfrak{C}, \mathscr{S}'') = \mathscr{T}_{\epsilon}(\mathfrak{C}, \mathscr{S}') \ \text{et du }$ fait que Ω est une famille filtrante il résulte que F.(A, &' U &") est un σ-anneau. Donc $A \cup B <_{\Omega} A_1 \cup B_1$. On prouvera maitenant que $A \cap B <_{\Omega} A_1 \cap B_1$. Puisque a $A_1 - A \in \mathcal{A}$, $B_1 - B \in \mathcal{A}$, $A \cap (A_1 - A) = B \cap (B_1 - B) = 0$ it résults que $A \cap (B_1 - B) = 0$ = θ il résulte que $A \in \mathcal{S}_{\epsilon}(\alpha)$ et $B \in \mathcal{S}_{\epsilon}(\alpha)$. De $A \cap (A_1 - A) \cap B_1 = \theta$ $= \theta$ on déduit que l'ensemble $(A_1 - A) \cap B_1$ doit appartenir à la famille $\mathcal{S}_{\bullet}(\mathfrak{A}) = \mathfrak{A}$, puisque $A \in \mathfrak{A}$. De

$$B \cap [(B_1 - B) \cap A] = \emptyset$$

on déduit que $(B_1-B)\cap A_1\in\mathfrak{A}$, puisque $B\in\mathfrak{A}$. En utilisant l'égalité

$$(A_1 \cap B_1) - (A \cap B) = [(A_1 - A) \cap B_1] \cup (B_1 - B) \cap A_1]$$

et les résultats précédents on trouve que l'ensemble $(A_1 \cap B_1) - (A \cap B)$ doit appartenir à la famille &. De

$$(A_1 - A) \cap B \in \mathfrak{A}$$
 $A \cap [(A_1 - A) \cap B_1] = \emptyset \in \mathfrak{S}'$

il résulte que l'ensemble $(A_1 - A) \cap B_1$ doit appartenir à la famille $\mathcal{F}_{\epsilon}(\mathcal{A}, S')$. D'une manière analogue on a: $(B_1 - B) \cap A_1 \subseteq \mathcal{F}_{\epsilon}(\mathfrak{A}, \mathcal{S}')$. Donc:

$$(A_1 \cap B_1) - (A \cap B) \in \alpha \cap \mathfrak{F}_{\mathfrak{c}}(a, s' \cup s'')$$

et de là on déduit: $A \cap B <_{\Omega} A_1 \cap B_1$

(4) Si pour tout
$$\alpha \in \Gamma$$
 on a $A_{\alpha} <_{\Omega} B_{\alpha}$, alors $\bigcup_{\alpha \in \Gamma} A_{\alpha} <_{\Omega} \bigcup_{\alpha \in \Gamma} B_{\alpha}$.

En effet, și $A_{\alpha} <_{\Omega} B_{\alpha}$, alors il en résulte l'existence d'un σ -anneau $\mathcal{S}_{\alpha} \subseteq$ $\in \Omega$ tel que $B_{\alpha} - A_{\alpha} \in \mathcal{S}_{\alpha} \cap \mathcal{A}$. L'égalité:

$$A_{\alpha} \cap (B_{\alpha} - A_{\alpha}) = \emptyset \in \mathfrak{A}$$

montre qu'on a $A_{\alpha} \in \mathcal{A}$ et l'égalité:

$$A_{\alpha} \cap [B_{\alpha} \cap (\bigcap_{\alpha \in \Gamma} \mathcal{C} A_{\alpha})] = \emptyset$$

nous montre qu'on a $B_{\alpha} \cap (\bigcap_{\alpha \in \Gamma} \mathcal{C} A_{\alpha}) \in \mathcal{F}_{e}(\mathcal{C}) = \mathcal{C}$. De l'égalité:

$$B_{\alpha} \cap (\bigcap_{\alpha \in \Gamma} \mathcal{C} A_{\alpha}) = (\bigcup_{\alpha \in \Gamma} [B_{\alpha} \cap (\bigcap_{\alpha \in \Gamma} \mathcal{C} A_{\alpha})]) \cap [B_{\alpha} \cap (\bigcap_{\alpha \in \Gamma} \mathcal{C} A_{\alpha})]$$

il résulte que l'ensemble $\bigcup_{\alpha \in \Gamma} [B_{\alpha} \cap (\bigcap_{\alpha \in \Gamma} \mathcal{C} A_{\alpha})]$ doit appartenir à la famille $\mathcal{S}_{\bullet}(\alpha) = \alpha$, c'est-à-dire que l'ensemble doit appartenir à la famille α . Du "fait que $B_{\alpha} - A_{\alpha} = (B_{\alpha} - A_{\alpha}) \cap [\bigcup_{\alpha \in \Gamma} (B_{\alpha} - A_{\alpha})]$ et $B_{\alpha} - A_{\alpha} \in$ $\in \mathcal{F}_{\bullet}(\mathfrak{C})$ il résulte que l'ensemble $\bigcup_{\alpha} (B_{\alpha} - A_{\alpha})$ doit appartenir à la famille $\mathscr{F}_{\ell}(\mathbb{S}_{\alpha})$, c'est-à-dire $\bigcup_{\alpha\in\Gamma}(B_{\alpha}-A_{\alpha})\in\mathbb{S}=\bigcap_{\alpha\in\Gamma}\mathscr{F}_{\ell}(\mathbb{S}_{\alpha})$. Puisque l'ensemble $B_{\alpha}-A_{\alpha}$ appartient à la famille \mathcal{S}_{α} et les ensembles A_{α} et $B_{\alpha}-A_{\alpha}$ sont

5

disjoints, il résulte que $A_{\alpha} \in \mathcal{F}_{\epsilon}(\$_{\alpha})$ et donc $\bigcap_{\alpha \in \Gamma} \mathcal{C} A_{\alpha} \in \mathcal{F}_{\epsilon}(\$_{\alpha})$, c'est-à. dire $\bigcap \mathcal{E} A_{\alpha} \in \mathcal{S}$. L'égalité:

$$\bigcup_{\alpha\in\Gamma} B_{\alpha} - \bigcup_{\alpha\in\Gamma} A_{\alpha} = \left[\bigcap_{\alpha\in\Gamma} \mathcal{C} A_{\alpha}\right] \cap \left[\bigcup_{\alpha\in\Gamma} \left(B_{\alpha} - A_{\alpha}\right)\right]$$

et les résultats précédents montrent que nous avons la relation:

$$\bigcup_{\alpha \in \Gamma} B_{\alpha} - \bigcup_{\alpha \in \Gamma} A_{\alpha} \in \mathbb{S}$$

c'est-à-dire $\bigcup_{\alpha \in \Gamma} A_{\alpha} <_{\Omega} \bigcup_{\alpha \in \Gamma} B_{\alpha}$.

(5) Si pour tout
$$\alpha \in \Gamma$$
 on a $A_{\alpha} <_{\Omega} B_{\alpha}$, alors $\bigcap_{\alpha \in \Gamma} A_{\alpha} <_{\Omega} \bigcap_{\alpha \in \Gamma} B_{\alpha}$.

En effet, si $A_{\alpha} <_{\Omega} B_{\alpha}$, alors il en résulte l'existence d'un σ -anneau $\delta_{\alpha} \in$ $\in \Omega$ tel que $B_{\alpha} - A_{\alpha} \in \mathcal{S}_{\alpha} \cap \mathcal{A}$, où $\mathcal{A} \in \mathcal{F}_{\mathfrak{F}_{\alpha}}$. Puisque les ensembles A_{α} et $B_{\alpha}-A_{\alpha}$ sont disjoints il en résulte que $A_{\alpha} \subseteq \mathcal{F}_{\epsilon}(\mathfrak{A})$ et de $A_{\alpha} \cap [(\bigcap B_{\alpha}) \cap B_{\alpha}]$ $\bigcap \mathcal{C} A_{\alpha} = \emptyset$ on déduit que l'ensemble $(\bigcap B_{\alpha}) \cap \mathcal{C} A_{\alpha}$ doit appartenir à la famille $\mathscr{F}_{\epsilon}(\mathfrak{A})=\mathfrak{A}$. Cette égalité montre que l'ensemble $\bigcup (\bigcap B_{a}) \bigcap$ $\bigcap \mathcal{C} A_{\alpha}$ appartient à \mathcal{C} . L'opérateur \mathcal{F} , est idempotent et donc $B_{\alpha} \in$ $\in \mathfrak{F}(\S_{\alpha})$ ce qui montre que $\hat{B}_{\alpha} \in \mathfrak{F}_{\epsilon}(\bigcup \S_{\alpha}) = \$$. On définit $\mathfrak{F}''_{\epsilon}(\$)$ par:

$$\mathscr{F}''_{\epsilon}(\$) = \{Y : \exists_{A \neq \emptyset, A \in \$} A \cap Y = \emptyset\}$$

et on prouve que \$\sigma''(\dagger)\$ est un σ-anneau.

En effet, si Y_1 et Y_1 appartiennent à $\mathfrak{F}''_{\ell}(\$)$, alors il existe les ensembles $A_1 \neq \emptyset$, $A_2 \neq \emptyset$ de α tels que $Y_1 \cap A_1 = Y_1 \cap A_2 = \emptyset$. Nous avons:

$$(Y_1 - Y_2) \cap (A_1 - A_2) = (Y_1 \cap A_1) \cap \mathcal{C}(Y_1 \cup Y_2) = \emptyset.$$

et s étant un σ -anneau il résulte que $Y_1 - Y_2 \in \mathcal{F}_e^r$ (s). Soit $(Y_n : n \in \mathbb{N})$ une famille dénombrable d'ensembles $Y_n \in \mathcal{S}_{\ell}^{*}(\mathbb{S})$. De la définition de l'opérateur \mathcal{S}_{ℓ}^{*} il résulte qu'il l'opérateur 3", il résulte qu'il existe l'ensemble $A_{m_n} \in \mathcal{S}$ tel que $Y_n \cap A_{m_n} = \emptyset$. De la relation:

$$\left(\bigcup_{n=1}^{\infty} Y_n\right) \cap \left(\bigcup_{n=1}^{\infty} A_{m_n}\right) = \bigcup_{n=1}^{\infty} (Y_n \cap A_{m_n}) = \emptyset$$

et du fait que S est un σ-anneau on déduit que l'ensemble UY, appartient à la famille J. (8). tion de l'opérateur J' il résulte la condition:

$$\exists_{S_{\alpha} \neq \emptyset, S_{\alpha} \in \$} B_{\alpha} \cap S_{\alpha} = \emptyset$$

et de l'inclusion $S_{\alpha} \cap (\bigcap_{\alpha \in \Gamma} B_{\alpha}) \subseteq S_{\alpha} \cap B_{\alpha} = \emptyset$ on déduit que:

$$\bigcap_{\alpha\in\Gamma}B_{\alpha}\in\mathscr{F}_{e}^{"}(\$).$$

L'ensemble $\bigcup_{\alpha \in \Gamma} (B_{\alpha} - A_{\alpha})$ appartient à la famille \$ et de l'égalité:

$$\bigcap_{\alpha \in \Gamma} B_{\alpha} - \bigcap_{\alpha \in \Gamma} A_{\alpha} = \bigcup_{\alpha \in \Gamma} (B_{\alpha} - A_{\alpha}) \cap (\bigcap_{\alpha \in \Gamma} B_{\alpha})$$

il résulte que $\bigcap_{\alpha\in\Gamma}B_{\alpha}-\bigcap_{\alpha\in\Gamma}A_{\alpha}\in\mathbb{S}\cap\mathcal{S}_{\epsilon}''(\mathbb{S})=\mathbb{S}$, c'est-à-dire $\bigcap_{\alpha\in\Gamma}A_{\alpha}<\bigcap_{\alpha\in\Gamma}B_{\alpha}$. (6) Si $A <_{\Omega} B$, alors il existe un ensemble C que $A <_{\Omega} C <_{\Omega} B$. Pour démontrer cette propriété on désignera par T l'ensemble

$$\{Y:Y<_{\Omega}B\}.$$

Puisque $A \in T$ il résulte que $T \preceq \emptyset$. Soit $T' = \{Y_{\alpha} : \alpha \in \Gamma\} \subset T$ totalement ordonée par inclusion et $Y = \bigcup_{\alpha} Y_{\alpha}$. De la définition de l'ensemble T il résulte qu'il existe un σ-anneau \mathcal{S}_{α} tel que $B-Y_{\alpha} \in \mathcal{S}_{\alpha} \cap \mathcal{A}$, où $a \in \mathcal{F}_{\delta_{\epsilon}}$. Les ensembles Y_{α} et $B - Y_{\alpha}$ étant disjoints on déduit que $Y \in \mathcal{F}_{\epsilon}(\hat{\mathbb{S}}_{\alpha})$, c'est-à-dire $Y \in \bigcap_{\alpha \in \Gamma} \mathcal{F}_{\epsilon}(\hat{\mathbb{S}}_{\alpha}) = \hat{\mathbb{S}}$. De $Y \in \mathcal{F}_{\epsilon}''(\hat{\mathbb{S}})$ et $Y - Y_{\alpha} \subseteq Y$ on déduit que $Y-Y_{\alpha}\in \mathcal{F}_{\epsilon}(\$)$. Du fait que $B-Y_{\alpha}\in \mathfrak{A}$ il résulte: $Y_{\alpha} \in \mathcal{A} = \mathcal{F}_{\epsilon}(\mathcal{A})$ et de $Y_{\alpha} \subseteq Y$ on déduit que l'ensemble Y appartient à la famille &, c'est-à-dire:

$$Y_{\alpha} <_{\Omega} Y, \ \alpha \in \Gamma$$

et donc T est inductivement ordonné. En utilisant le lemme de Zorn il résulte que T contient un élément maximal C, c'est-à-dire $A <_{\Omega} C <_{\Omega} B$.

(7)
$$Si \ A_{\alpha} <_{\Omega} B(\alpha \in \Gamma), \ alors \ \bigcup_{\alpha \in \Gamma} A_{\alpha} <_{\Omega} B.$$

En effet, si $A_{\alpha} <_{\Omega} B$ alors il existe un σ -anneau \mathcal{S}_{α} tel que:

$$B-A_{\alpha}\in \mathcal{S}_{\alpha}\cap \mathcal{A}$$

et donc $A_{\alpha} \in \mathcal{F}_{\iota}(\delta_{\alpha})$. Puisque $A_{\alpha} \subseteq \bigcup_{\alpha \in \Gamma} A_{\alpha}$ il résulte que :

$$\bigvee_{\alpha\in\Gamma}\bigcup_{\alpha\in\Gamma}A_\alpha\in\mathscr{T}_{\mathfrak{o}}(\$_\alpha)$$

et donc $\bigcup_{\alpha\in\Gamma}A_{\alpha}\in\bigcap_{\alpha\in\Gamma}\mathscr{F}_{\iota}(\mathscr{S}_{\alpha})=\mathscr{S}.$

L'égalité :

$$(\bigcup_{\alpha\in\Gamma}A_{\alpha})\cap(B-\bigcup_{\alpha\in\Gamma}A_{\alpha})=\emptyset\in\$.$$

conduit à $B - \bigcup_{\alpha} A_{\alpha} \in \mathscr{F}_{\epsilon}(\delta)$.

D'une manière analogue on trouve que $B - \bigcup_{\alpha \in \Gamma} A_{\alpha} \in \mathcal{A}$ et donc $\bigcup_{\alpha \in \Gamma} A_{\alpha} <_{\mathbb{Q}} B$.

(8) Si
$$A <_{\Omega} B$$
, alors $X - B <_{\Omega} X - A$.

Cette propriété résulte de l'égalité: (X-A)-(X-B)=B-A et du fait que $\hat{A} <_{\Omega} B$.

Définition 2. On dit qu'un ensemble A est Ω -équivalent à un ensemble B, $A \stackrel{\Omega}{=} B$, si et seulement $A <_{\Omega} B$ et $B <_{\Omega} A$.

Soit $\mu: \mathfrak{A} \to \mathbb{R}_+$ une mesure définie sur le σ -anneau $\mathfrak{A}, \mathfrak{F}(\mathfrak{B}) = \mathfrak{B} \subset \mathfrak{A}$ un σ-anneau et β_u la partie absolument continue de la mesure μ par rapport au σ -anneau & (écriture: $\beta_u \ll \mathcal{B}$). De la définition de la mesure β_u on

$$\bigvee_{A\in\alpha} \exists_{B\in\mathfrak{A}} \beta_{\mu}(A) = \mu(A-B)$$

et B peut être remplacée par n'importe quel ensemble $B' \subseteq \mathcal{B}$ tel que $B' \supset B$. La relation précédente peut être écrite de la manière suivante:

$$\beta_{\mu}(\chi_{A}) = \mu(\chi_{A-B})$$

et donc $\beta_{\mu}(z) = \mu(z')$, où $z = \sum_{j=1}^{q} a_j \chi_{A_j}$, $z' = \sum_{j=1}^{q} a_j \chi_{A_j - B}$. Ici B_i est un ensemble tel que:

$$\beta_{\mu}(\chi_{A_j}) = \mu(A_j - B_j).$$

Soit $D_i \supset B_j$, $D_j \in \mathcal{B}$ et $z'' = \sum_{j=1}^q a_j \chi_{A_j - D_j}$. De la définition de la mesure Soit $D_j = 0$ il résulte: $\beta_{\mu}(z) = \mu(z') = \mu(z'')$. En particulier pour $a_k = 0$, $k \neq j$ on déduit l'égalité: $\mu(A_j - B_j) = \mu(A_j - D_j)$ et $A_j - D_j \subseteq A_j - B_j$, qui montre que l'ensemble $(A_j - B_j) - (A_j - D_j)$ appartient à la famille $\mathfrak{N}^{\mu}(a)$ (la famille des sous-ensembles de X mesurables par rapport à la mesure \u00e4), puisque:

$$\mu((A_j - B_j) - (A_j - D_j)) = \mu(A_j - B_j) - \mu(A_j - D_j) = 0.$$

De $B_j \in \mathcal{B}$ et $B_j \cap (A_j - B_j) = \emptyset$ il résulte que $A_j - B_j \in \mathcal{F}_{\epsilon}(\mathcal{B})$. L'ensemble $A_j - D_j$ appartient à la famille $\mathcal{F}_{\epsilon}(\mathcal{B})$ et $\mathcal{F}_{\epsilon}(\mathcal{B})$ étant un σ anneau on déduit que $(A_j - B_j) - (A_j - D_j) \in \mathcal{F}_{\epsilon}(\mathfrak{A})$. Des résultats antérieurs on déduit:

$$(A_j - B_j) - (A_j - D_j) \in \mathfrak{M}^{\mu}(\mathfrak{A}) \cap \mathfrak{F}_{\epsilon}(\mathfrak{A}).$$

La famille $\mathfrak{N}^{\mu}(\mathfrak{A})$ appartient à $\mathfrak{F}_{\mathfrak{F}_{e}}$ puisque $\mathfrak{F}_{e}[\mathfrak{M}^{\mu}(\mathfrak{A})]=\mathfrak{M}^{\mu}(\mathfrak{A})$ et du résultats antérieur on déduit:

$$A_j - D_j \stackrel{\Omega}{=} A_j - B_j$$

La relation obtenue et la propriété (4) montre que la condition:

$$\operatorname{supp}(z) \stackrel{\Omega}{=} \operatorname{supp}(z')$$

est remplie.

Définition 3. Les fonctions z et z's'appelent équivalentes si et seulement si supp $(z) \stackrel{\Omega}{=} \text{supp } (z')$.

Soit $\mathcal{C}_{\mathbb{R}}(X)$ l'espace des fonctions continues à valeurs réelles définies sur X. Des résultats antérieurs on déduit:

$$\forall_{f \in \mathcal{C}_{\mathbf{R}}(X)} \, \underline{\mathbf{g}}_{f} \in \mathcal{C}_{\mathbf{R}}(X), \, \underline{\mathbf{g}}_{f} < f} \, \beta_{\mu}(f) = \mu(q_{f}).$$

La famille des fonctions q_f telles ques $\beta_{\mu}(f) = \mu(q_f)$ pour f fixe, forme une classe d'équivalence. Cette classe d'équivalence s'appelle la classe d'équivalence de l'élément f générée par la mesure μ . Soit Σ^{μ} cette relation d'équivalence et $\mathcal{E}_{\mathbf{R}}(X)$ l'espace des fonctions z =

^{8 —} Malhematica — vol. 14(37) fasc. 1/1972.

 $= \sum_{i=1}^{q} a_i \chi_{A_i} \text{ où } A_i \in \mathcal{A} \text{ et } a_i \in \mathbf{R}. \text{ La trace la relation } \sum_{i=1}^{q} \sup_{\mathbf{R} \in \mathcal{X}_i} \mathbf{g}_{\mathbf{R}(X_i)}$

 $\overline{j=1}$ désignée par T^{μ} . On définit l'application :

$$g_{\mu}: \mathfrak{S}_{\mathbf{R}}(X) \to \mathfrak{S}_{\mathbf{R}}(X)/T^{\mu}$$

par $g_{\mu}(z) = [z']$, où [z'] est la classe d'équivalence de l'élément z générée par la mesure µ.

THÉORÈME 1. L'application g_{μ} est une bijection linéaire.

Démonstration. Soient $z_1, z_2 \in \mathcal{S}_{\mathbb{R}}(X)$, $z \neq z_2$ tels que $g_{\mu}(z_1) = g_{\mu}(z_2)$ En appliquant la définition de l'application g_{μ} il résulte que le fonction z_1-z_2 est nulle sur l'ensemble supp β_{μ} . De $z_1 \neq z_2$ il résulte que

$$\exists_{\zeta \in X} (z_1 - z_2) \, (\zeta) = 0$$

et de la définition de l'espace $\mathscr{E}_{\mathbf{R}}(X)$ on déduit :

$$(z_1-z_2)(\zeta)=\sum_{j=1}^q a_j\,\chi_{B_j}(\zeta)$$

et puisque $\beta(z_1-z_2)=0$ il résulte que l'ensemble B_i appartient à la famille &. Donc:

$$\exists_{B_i \in \mathfrak{B}} \chi_{B_j}(\zeta) = 0,$$

ce qui montre que l'élément ζ n'appartient pas à l'ensemble B_i . De $B_j \in \mathfrak{B}$ et $\beta_{\mu} \leqslant \mathfrak{B}$ il en résulte $\beta_{\mu}(B_j) = 0$ et donc χ_{B_j} est nulle sur l'ensemble supp β_{μ} . Dans ce cas les ensembles B_j et supp β_{μ} sont disjoints et de la définition de l'opérateur \mathcal{F}_{μ} on déduit que supp $\beta_{\mu} \in \mathcal{F}_{\mu}(\mathfrak{A})$. De la définition de la relation $<_{\$}$ et de supp $\beta_{\mu} \in \mathscr{F}_{*}(\mathfrak{A})$ on déduit:

(2)
$$\{\zeta\} <_{\mathfrak{F}_{e}(\mathfrak{B})} \operatorname{supp} \ \beta_{\mu}$$

puisque $\zeta \not\in \text{supp } \beta_{\mu}$ De $\zeta \not\in \text{supp } \beta_{\mu}$ il résulte $\{\zeta\} \in \mathcal{F}_{\epsilon}(\mathcal{B})$ et donc supp $\beta_{\mu} <_{\mathcal{F}_{\epsilon}(\mathcal{B})} \{\zeta\}$. Puisque $\{\zeta\} \subset B_j$ on déduit qu'on supp $\beta_{\mu} <_{\mathfrak{F}_{\rho}(\mathfrak{B})} B_j$.

pe (2) et du fait que les ensembles B_j et supp β_μ sont disjoints on déduit $B_j <_{\mathfrak{F}_{\mathfrak{s}}(\mathfrak{B})} \operatorname{supp} \beta_{\mu}$

ce qui d'une l'égalité: $B_j \stackrel{\Omega}{=} \operatorname{supp} \beta_{\mu}$ et donc $\operatorname{supp}(z_1 - z_2) \stackrel{\Omega}{=} \operatorname{supp} \beta_{\mu}$. Soit Y l'ensemble supp β_{μ} . Si $Y \in \mathcal{B}$, alors de $\beta_{\mu} \ll \mathcal{B}$ il en résulte que χ_y est nulle sur l'ensemble Y, ce qui nous a amene's à une contradicque λ_Y est nulle sur $\sim Y$. Donc $Y \in \mathcal{A} - \mathcal{B}$.

De $z_1 - z_2 = \sum_{i=1}^{q} a_i \chi_{B_i}$ et $B_i \in \mathcal{B}$ il résulte supp $(z_1 - z_2) \supseteq B_i$ pour j fixe. L'opérateur & étant idempotent on déduit que

$$\operatorname{supp}(z_1-z_2)\in\mathscr{F}_{\epsilon}(\mathfrak{F}).$$

Soit $Y' = \text{supp}(z_1 - z_2)$. Des résultats précédents on déduit que $Y' \in \mathcal{B}$ et $Y \stackrel{\Omega}{=} Y'$. De $Y <_{\mathfrak{F}_{-}(\mathfrak{F}_{0})} Y'$ il résulte

$$Y'-Y\in \mathcal{F}(\mathfrak{A})$$

et de $Y \cap (Y' - Y) = \emptyset$ on trouve que $Y \in \mathcal{F}_{\epsilon}(\mathfrak{A}) = \mathfrak{A}$, ce qui constitue une contradiction. La contradiction obtenue montre qu'on a $g_u(z_1) = g_u(z_2)$.

Soit $z' \in \mathcal{E}_{\mathbf{R}}(X)/T^{\mu}$ et $u' = \sum_{j=1}^{q} a_j \chi_{A_j - D_j}$, $D_j \in \mathcal{B}$ un représentant de la classe d'équivalence [z']. À l'aide de u' on construite l'élément:

$$z=\sum_{j=1}^q a_j\chi_{A_j}.$$

De la définition de la relation $\beta_u \leqslant \mathfrak{B}$ on déduit $\beta_u(z) = \mu(u')$ et donc $g_{\mu}(z) = [u'] = [z'].$

La démonstration du fait que g_{μ} est linéaire est évidente. On définit l'application $g'_{\mu}: \mathcal{C}_{\mathbf{R}}(X) \to \mathcal{C}_{\mathbf{R}}(X)/\Sigma^{\mu}$ par $g'(f) = [g_f]$, où g_f vérifie la condition: $\beta_{\mu}(f) = \mu(g_f)$ et $g_f \leqslant f$, c'est-à-dire que l'image par g'_{μ} de f est cette classe d'équivalence $[g_f]$ dont le représentant vérifie la condition $\beta_{\mu}(f) = \mu(g_f)$ et $\hat{g_f} \leqslant f$.

THÉORÈME 2. L'application g'u est une bijection linéaire.

Démonstration. Soient $f_1, f_2 \in \mathcal{C}_{\mathbb{R}}(X)$, $f_1 \neq f_2$ tels $g'_{\mu}(f_1) = g'_{\mu}(f_2)$ De la définition de l'application g'_{μ} on déduit la condition:

$$\beta_{u}(f_1-f_2)=0.$$

11

De la relation $\beta_{\mu} \ll \mathcal{B}$ on déduit la condition :

 $f_1 - f_2 = \lim_{\alpha} z_{\alpha}$, où $z_{\alpha} = \sum_{i=1}^{r} a_i^{\alpha} \chi_{B_i^{\alpha}}$

et $f_1
eq f_2$ on déduit:

$$\exists_{\zeta \in X} f_1(\zeta) \neq f_2(\zeta)$$

ce qui montre que:

$$\exists_{\alpha_0\in\Gamma} z_{\alpha_0}(\zeta) = 0.$$

La fonction z_{a_0} appartient à l'espace $\mathcal{E}_{\mathbf{R}}(X)$ et donc est de forme:

$$z_{\alpha_0} = \sum_{j=1}^q a_j^{\alpha_0} \chi_{B_j}$$

ce qui montre l'existence d'un $j_0 \in N$, tel que $\chi_{B_{j_a}^{\alpha_0}}(\zeta) = 0$, c'est-à-dire qu'on a $\zeta \in B_{j_{\bullet}}^{\alpha_{\bullet}}$. De $B_{j_{\bullet}}^{\alpha_{\bullet}} \in \mathcal{B}$ et $\beta_{\mu} \ll \mathcal{B}$ il résulte que $\chi_{B_{j_{\bullet}}^{\alpha_{\bullet}}}$ est nulle sur l'ensemble supp β_{μ} , c'est-à-dire $B_{j_{\bullet}}^{\alpha_{\bullet}} \cap$ supp $\beta_{\mu} = \emptyset$. De la définition de l'opérateur \mathfrak{F}_{ℓ} et de la dernière condition on déduit supp $\beta_{\mu} \subseteq \mathfrak{F}_{\ell}(\mathfrak{F})$. De la même manière que dans le cas de l'application g_{μ} on trouve $B_{j_{\bullet}}^{\alpha_{\bullet}} \stackrel{\Omega}{=} \sup \beta_{\mu}$ et $Y = \sup \beta_{\mu} \in \mathcal{A} - \mathcal{B}$. L'ensemble supp $z_{\alpha_{\bullet}}$ apartient à la famille \mathfrak{F}_{\bullet} (3) puisque $B_{j_0}^{\alpha_0} \subseteq \text{supp } z_{\alpha_0}$. Donc $Y' \subseteq \mathcal{B}$ puisque $\mathcal{B} = \mathcal{F}_{\lambda}(\mathcal{B})$, où Y' = $= \operatorname{supp} z_{\alpha_0}$ Des résultats précédents on déduit la relation :

$$Y <_{\mathfrak{F}_e(\mathfrak{B})} B_{j_{\bullet}}^{\alpha_{\bullet}}$$

qui montre que $Y <_{\mathfrak{F}_{e}(\$)} Y'$ puisque $B_{j_{0}}^{\alpha_{0}} \subseteq Y'$ et donc $Y' - Y \in \mathfrak{F}_{e}(\$)$ Les ensemble Y et Y' - Y étant disjoints il en résulte que l'ensemble l' appartient à la famille $\mathcal{S}_{\epsilon}(\mathfrak{A})$, ce qui constitue contradiction. La contradiction diction als contradictions de la famille $\mathcal{S}_{\epsilon}(\mathfrak{A})$ diction obtenuie montre que la condition $g(f_1) \neq g(f_2)$ est remplie, c'està-dire que g'_{μ} est une application injective.

Soit $[f] \in \mathcal{C}_{\mathbb{R}}(X)/\Sigma^{\mu}$ une classe d'équivalence et h un représentant de cette classe. Donc:

$$f = \lim_{\alpha} z_{\alpha}$$
, où $z_{\alpha} = \sum_{j=1}^{r} a_{j}^{\alpha} \chi_{A_{j}^{\alpha} - B_{j}^{\alpha}}$.

On désigne par z'_{α} la fonction $\sum_{j=1}^{j} a_j^{\alpha} \chi_{A_j^{\alpha}}$ et $f' = \lim_{\alpha} z'_{\alpha}$. On a $\beta_{\mu}(f') = \lim_{\alpha} \beta_{\mu}(z'_{\alpha}) = \lim_{\alpha \to 0} \beta_{\mu}(z'_{\alpha})$ $\lim_{\alpha \to \infty} \mu(z_{\alpha}) = \mu(\lim_{\alpha} z_{\alpha}) = \mu(f), \text{ ce qui montre l'égalité } g'_{\mu}(f') = f, \text{ c'est-à-}$ dire que g'_{μ} est un application surjective. Le théorème est démontré. Soit $r \in N$ et V, le sous- espace généré par $\chi_{Y_1}, \chi_{Y_2}, \ldots, \chi_{Y_r}$ où χ_{Y_r} est la fonction caractéristique de l'ensemble Y_i et $Y_i \in \mathcal{B}$. Soit U_i la famille:

$${A:A\subseteq X,\ \chi_A\in V_{r}}$$

Du théorème de N. Bourbaki il résulte que U, est un clan. Puisque pour tout $r_1, r_2 \in N$ on a $U_{r_1} \subseteq U$, $U_{r_2} \subseteq U$, où $r = \max(r_1, r_2)$ il en résulte que $\mathfrak{A} = \overset{\sim}{\bigcup} U$, est un clan. De la définition de \mathfrak{A} il résulte $\mathfrak{A} \subseteq \mathfrak{A}$. Soit Y & J. (B, U). De la définition de l'opérateur J on déduit que la condition:

$$\exists_{B_{\bullet}\neq\emptyset, B_{\bullet}\in\mathfrak{A}}Y\cap B_{\bullet}\in\mathfrak{A}$$

est remplie, donc on déduit l'existence d'un $r_0 \in N$ tel que

$$\chi_{Y \cap B_{\bullet}} = \sum_{j=1}^{r_{\bullet}} a_j \chi_{Y_j}$$

où $Y_j \in \mathcal{B}$. Si $\zeta \notin Y \cap B$, alors $\chi_{Y \cap B_s}(\zeta) = 0$, c'est-à-dire:

$$\bigvee_{J\in N_r}\chi_{Y_j}(\zeta)=0$$

et par suite $\zeta \not\in Y_j$, ce qui montre que

$$\bigcup_{j=1}^{n} Y_j \subseteq Y \cap B_0 \subseteq Y.$$

De $\bigcup_{i=1}^n Y_i \in \mathfrak{A} = \mathfrak{F}_{\mathfrak{c}}(\mathfrak{A})$ on déduit $Y \in \mathfrak{A} \subset \mathfrak{A}$ c'est-à-dire

$$\mathfrak{F}_{\epsilon}(\mathfrak{B},\,\mathfrak{A})\subseteq\mathfrak{A}.$$

Puisque U est un clan, il en résulte que T,(B, U) est un clan. Soit e, ruisque " colonierée par F. (B, U). On a:

$$s_{\epsilon}(\mathfrak{B},\mathfrak{A})\subseteq \mathfrak{C}\subseteq \mathfrak{A}$$

Si Y ∈ F[F,(B, N), C] alors:

$$\bigvee_{B\in \mathcal{S}_{\boldsymbol{\ell}}(\mathfrak{B},\ \mathfrak{A})}Y\cap B\in \mathfrak{C}$$

Du fait que l'ensemble B appartient à la famille $\mathcal{F}_{\epsilon}(\mathfrak{B}, \mathfrak{A})$ on déduit.

$$\mathbf{g}_{B,\neq\emptyset,\,B_0\in\mathfrak{A}}B\cap B_0\in\mathfrak{A}.$$

On a $B \cap B_0 \in \mathcal{B}$ et donc $B \in \mathcal{F}_{\epsilon}(\mathcal{B}) = \mathcal{B}$. De la condition

$$\bigvee_{B_{\bullet} \in \mathscr{S}_{e}(\mathfrak{B}, \ \mathfrak{A})} Y \cap B \in \mathfrak{C}$$

et de dernière condition on trouve que Y appartient à la famille 3(3, 4) et donc $Y \subseteq \mathcal{C}$ puisque $\mathfrak{F}(\mathfrak{B},\mathcal{C}) \subseteq \mathcal{C}$. C'est-à-dire on a

$$\mathfrak{s}[\mathfrak{s}_{\ell}(\mathfrak{A},\mathfrak{A}),\mathfrak{C}]\subseteq\mathfrak{C}$$

et par suite:

$$\mathfrak{F}(\mathfrak{B}, \mathfrak{A}) \subseteq \mathfrak{F}[\mathfrak{F}(\mathfrak{B}, \mathfrak{A}), \mathfrak{C}] \subseteq \mathfrak{C}.$$

En supposant remplie la condition:

on aura

et de la définition de l'opérateur T, on déduit

$$\exists_{Y_0 \in \mathcal{S}[\mathcal{S}_{e}(\mathfrak{F}, \mathcal{U}), \mathcal{C}]} Y_0 \not\in \mathcal{C}$$

De la condition que l'ensemble Y₀ appartient à la famille

il résulte:

13

$$\bigvee_{B \in \mathcal{S}_{\varepsilon}(\mathfrak{B}, \mathfrak{A})} Y_{\mathfrak{o}} \cap B \in \mathfrak{C}$$

et de $B \in \mathcal{F}_{\epsilon}(\mathfrak{A}, \mathcal{U})$ on déduit

$$\exists_{B_{\bullet}\neq\varnothing,\;B_{\bullet}\in\mathcal{S}}B\cap B_{0}\in\mathcal{U}$$

donc $B \in \mathcal{F}_{\epsilon}(\mathcal{B}) = \mathcal{B}$. Cette condition montre que l'ensemble Y appartienent à la famille I(B, C). De $X \subseteq \mathcal{B}$ et du dernièr résultat on déduit que $\mathcal{S}(\mathcal{B}, \mathcal{C}) \subseteq \mathcal{C}$ ce qui constitue une contradiction: $Y_0 \in \mathcal{C}$.

En supposant remplie la condition:

$$\mathcal{F}[\mathcal{F}_{\ell}(\mathfrak{B},\,\mathfrak{A}),\,\mathfrak{C}]
eq \mathcal{F}_{\ell}(\mathfrak{B},\,\mathfrak{A})$$

On aura la relation:

$$\mathcal{F}[\mathcal{F}_{\epsilon}(\mathfrak{A}, \mathfrak{A}), \mathcal{C}] \subset \mathcal{F}_{\epsilon}(\mathfrak{A}, \mathfrak{A}).$$

i district to the manifely (ii)

Si $Y_{\phi} \in \mathcal{F}[\mathcal{F}_{\phi}(\mathfrak{F}, \mathfrak{A}), \mathfrak{C}] - \mathfrak{B}$, alors de l'hypothèse ci-dessus on déduit que $Y_0 \in \mathcal{F}(\mathfrak{B}, \mathfrak{A})$, ce qui montre que l'ensemble $Y_0 \cap B_0$ appartient à la famille \mathcal{U} pour $B_0 \subseteq \mathcal{B}$ fixe et par conséquent $Y_0 \subseteq \mathcal{B}$ ceci constitue une contradiction. Donc:

$$\mathcal{F}_{\epsilon}(\mathfrak{A}, \mathfrak{A}) \subset \mathcal{F}[\mathcal{F}_{\epsilon}(\mathfrak{A}, \mathfrak{A}), \mathfrak{C}] \subset \mathfrak{C}$$

et par conséquence a est une semi-tribu générée par T.(B, U). Du raisonnement ci-dessus on déduit le resultat:

THÉORÈME 3. A est une semi-tribu générée par T_e(B, U). Soit & un o - anneau (où tribu) et & C U un autre o - anneau tel que $\mathcal{F}_{\epsilon}(\mathfrak{A}) = \mathfrak{A}$. On suppose que \mathfrak{A} vérifie la condition:

$$\mathfrak{Z}(\bigcap\{A:A\neq\emptyset,\ A\in\mathfrak{A}\})\subset\mathfrak{F}_{\epsilon}(\mathfrak{A},\mathfrak{B})$$

On notera par (M, ||·||0) l'espace des mesures définies sur l'espace quo. On notera par $(e^{\eta c})$, il ilest une mesure ayant la propriété suivante : tient $\mathfrak{C}_{\mathbf{R}}(X)/\Sigma^{\mu_0}$, où μ_0 est une mesure ayant la propriété suivante :

$$\zeta_f^{g_{\mu}, \cdot \mu} \subseteq \zeta_f^{\mu}$$

C'étant la classe d'équivalence de l'élément f induite par la mesure v. C'étant la classe d'équivalence des mesures définies sur $\mathfrak{C}_{\mathbf{R}}(X)$ et γ. Par $(\mathfrak{M}^{\mu}, ||\cdot||)$ on désigne l'espace des mesure v par rapport à \mathfrak{B} . Par (810, 11.11) on designe and la mesure v par rapport à &.

la partie absolument continue de la mesure v par rapport à &. on definit l'application $\psi: (\mathfrak{M}^{\mu}, ||\cdot||_{Q}) \to (\mathfrak{M}^{\mu}, ||\cdot||)$ par

$$\psi(\mu) = (g_{\mu \bullet} \cdot \mu)_{\mu}$$

THÉORÈME 4. Si pour toute mesure μ il existe la mesure μο telle que $\zeta_{f}^{e_{\mu} \cdot \mu} \subseteq \zeta_{f}^{\mu}$, alors les espaces $(\mathfrak{M}^{\mu}, ||\cdot||_{Q})$ et $(\mathfrak{M}^{\mu}, ||\cdot||)$

sont topologiquement isomorphe. topologiquement con la par ψ l'application définie ci-dessus et Démonstration. On notera par ψ l'application définie ci-dessus et admettons que $\mu_1 = \mu_2$. On supposera remplie la condition $\psi(\mu_1) = \psi(\mu_2)$. En ce cas on a:

$$\bigvee_{A\in\mathcal{A}} \mathop{\exists}_{Y_{\bullet}\in\mathcal{B}} (g_{\mu_{\bullet}}\cdot \mu_{1})(A-Y_{0}) = (g_{\mu_{\bullet}}\cdot \mu_{2})(A-Y_{0}).$$

On désigne par 8 la famille:

$${A - Y_0: A \in \mathfrak{A}}.$$

Puisque & est un σ — anneau il en résulte que & est un σ — anneau. soit Y = \$ (8). De la définition de l'opérateur 5, on déduit

$$\exists_{B\neq\emptyset,\ B\in\$}Y\cap B\in\$.$$

Donc $B = A - Y_0$, $Y \cap B = A' - Y_0$ où A et A' appartient à la famille a. De cette representation on déduit l'égalité suivante :

$$Y \cap (A - Y_0) = A' - Y_0$$

qui montre que $Y = (A' \cap A) - Y_0$. De $A, A' \in \mathcal{A}$ il résulte que $A \cap A' \in \mathcal{A}$, c'est-à-dire $Y \in \mathcal{S}$. Donc $\mathcal{F}_{\epsilon}(\mathcal{S}) = \mathcal{S}$. Les ensembles Y_0 et $A-Y_0$ étant disjoints on déduit que l'ensemble $A-Y_0$ appartient à la famille $S_{\ell}(B) = B$ et donc $S \subseteq B \subseteq \mathcal{U}$. Du théorème précepdent il résulte que α est le σ — anneau générée par $\mathcal{F}_{\epsilon}(\$, \mathcal{U})$.

Les mesures g_{μ} . μ_1 , g_{μ} . μ_2 sont égales sur δ et donc leurs prolongements sont égaux sur $\mathcal{F}_{\epsilon}(\delta, \mathcal{U})$ ([4], théorème 3). α ètant le σ — anneau génésont $\mathcal{F}_{\epsilon}(\delta, \mathcal{U})$ on en déduit que ces mesures sont égales. sont egals, \mathfrak{I}) on en déduit que ces mesures sont égales sur \mathfrak{C} . De $\mu_1 = \mu_2$ il en résulte:

$$\exists_{ \begin{bmatrix} \zeta_f^{\mu_\bullet} \end{bmatrix} \in \mathcal{C}_{\mathbf{R}}(X)/\Sigma^{\mu_\bullet}} \mu_1(\begin{bmatrix} \zeta_f^{\mu_\bullet} \end{bmatrix}) = \mu_2(\begin{bmatrix} \zeta_f^{\mu_\bullet} \end{bmatrix})$$

On a

15

$$(g_{\mu_{\bullet}}\cdot \mu_{1})(f) = \mu_{1}(g_{\mu_{\bullet}}(f)) = \mu_{1}(\zeta_{f}^{\mu_{\bullet}}), \ (g_{\mu_{\bullet}}\cdot \mu_{2})(f) = \mu_{2}(g_{\mu_{\bullet}}(f)) = \mu_{2}(\zeta_{f}^{\mu_{\bullet}})$$

et puisque $g_{\mu_{\bullet}} \cdot \mu_1 = g_{\mu_{\bullet}} \cdot \mu_2$ est vérifiée sur α on déduit que $\mu_1(\zeta_f^{\mu_{\bullet}}) =$ $=\mu_2(\zeta_p^{\mu_0})$ ce qui constitue une contradiction et donc ψ est une applica-Soit ν ∈ (M^μ, ||·||). On définit la mesure μ par la condition

$$\mu(\zeta_f^{\mu_\bullet}) = \nu(f).$$

En particulier on a $\mu([\chi_{A-Y}]) = \nu(\chi_A)$, ce qui conduit à l'égalité:

$$\mu[g_{\mu}(\chi_{A-Y_{\bullet}})] = \nu(\chi_{A})$$

et donc

$$(g_{\mu_{\bullet}} \cdot \mu)[\chi_{A-Y_{\bullet}}] = \nu(\chi_{A})$$

ce qui montre que $(g_{\mu_{\bullet}}\cdot\mu)_{\mu}=\nu$, c'est-à-dire $\psi(\mu)=\nu$ et l'application ♦ est surjective. On suppose que la mesure μ_0 vérifie la condition :

$$\zeta_{\mu}^{g_{\mu}} \cdot \mu \subseteq \zeta_{f}^{\mu}$$
.

En ce cas on a:

$$||\psi(\mu)|| = ||(g_{\mu_{\bullet}} \cdot \mu)_{\mu}|| = \sup_{\|f\| \leq 1} |(g_{\mu_{\bullet}} \cdot \mu)(q_{f})| = \sup_{\|f\| \leq 1} |\mu(g_{\mu_{\bullet}}(q_{f}))| = \sup_{\|f\| \leq 1} |\mu(\zeta_{q}^{\mu_{\bullet}})|.$$

De l'hypothèse ci-dessus on déduit que l'élément q, appartient à la classe d'équivalence $\zeta^{g_{\mu} \cdot \mu}$ et par conséquence:

$$q_f \in \zeta_f^{\mu_{\bullet}}$$

De $q_f \leqslant f$ il résulte que $||q_f|| \leqslant 1$ puisque $||f|| \leqslant 1$, c'est-à-dire

On a

$$||\psi(\mu)|| = \sup_{\left\|\zeta_f^{\mu_0}\right\| < 1} \left| \mu\left(\zeta_{q_f}^{\mu_0}\right) \right| = ||\mu||_Q$$

et donc ψ^{-1} est continue. Soit $\mu = \lim \mu_{\alpha}$, où $\mu_{\alpha} \in (\mathfrak{M}, ||\cdot||_{Q})$ on a:

$$\lim_{\alpha} \|\mu_{\alpha} - \mu\|_{Q} = 0 \text{ et } \lim_{\alpha} \|\psi(\mu_{\alpha}) - \psi(\mu)\| = \lim_{\alpha} \|\mu_{\alpha} - \mu\| = \lim_{\alpha} \|\mu_{\alpha} - \mu\|_{Q} = 0.$$

Donc ψ est une application continue. Le théorème est démontré.

BIBLIOGRAPHIE

[1] Gaal, S. A., Point set topology. Acad. Press (1964).

[2] Kelley, J. L., General topology. Van Nostrand (1955).

[3] Kelley, J.L., Namioka, I. and co-authors, Linear Spaces. Van Nostrand (1963)

[4] Petrisor, P., Sur le prolongement d'une mesure (sous presse).

- Sur un certain type de topologie définie sur la famille $\mathfrak{L}(X)$ (sous presse). Sur un type d'interpolation. Mathematica 12(35), 1, 189-204 (1970). Reçu le 8. I. 1971

ОБ ОДНОЙ ТЕОРЕМЕ ВЛОЖЕНИЯ М. К. ПОТАПОВ

Москва

§ 1. Обозначения и формулировка основной теоремы

Будем, как обычно через L_p , $1\leqslant p\leqslant \infty$, обозначать пространство всех 2π -периодических измеримых функций*, для которых при $1\leqslant p<\infty$

$$||f||_p = \left(\int_0^{2\pi} |f(x)|^p dx\right)^{1/p} < \infty,$$

а при $p=\infty$ будем считать, что $L_{\infty}=C$, т.е. L_{∞} есть пространство всех 2π-периодических непрерывных функций и

$$||f||_p = \max_{0 \leqslant x \leqslant 2\pi} |f(x)| < \infty.$$

Через $\omega_k(f;t)_p$ обозначим модуль гладкости (в метрике L_p) порядка kфункции $f(x) \in L_p$, т.е.

$$\omega_k(f;t)_p = \sup_{|h| \leq t} \left\| \sum_{v=0}^k (-1)^{k-v} C_k^v f(x-vh) \right\|_p.$$

^{*} Всюду ниже мы не различаем эквивалентные функции.