REFERENCES

[1] Almering, J. H. J., Contracting matrices. Nieuw Archief woor Wiskunde 13, 85-99

[2] Faddeev, D. K. and Faddeeva V. N., Vycislitel'nyje metody lineinoi algeby,
Moscow 1960.

Moscow 1500.

[3] Householder, A. S., The Theory of Matrices in Numerical Analysis. New York.

Toronto-London 1964.

[4] Betty Jane Stone, Best possible ratios of certain matrix norms. Numer. Math. 4, 114-116 (1962).

University of Brno

Received 11. X. 1970

SUR UNE STRUCTURE UNIFORME GÉNÉRÉE PAR UNE RELATION D'ORDRE

grant mes al adiques se conques al

par

PETRU PETRIȘOR

à Cluj

Dans cette note on construit une structure uniforme générée par une relation d'ordre définie sur $\mathfrak{L}(X)$ et introduite en [3]. À l'aide de cette structure uniforme on établit les conditions que la topologie τ doit remplir pour que l'espace topologique (X, τ) soit compact.

Soit Σ la famille de σ -anneaux définis sur X ayant la propriété suivante :

$$\forall \exists \tau_{\epsilon}(\$') = \$$$

et on désigne par < 8 la relation d'ordre définie par:

$$A<_{\Sigma}B \Leftrightarrow \exists B-A\in \$ \cap \mathfrak{A} \ \, \text{où} \ \, \mathfrak{A}\in \mathfrak{F}_{\tau_{\mathbf{e}}}.$$

La famille $\mathcal{S}_{\tau_{\epsilon}}$ est formée des éléments $\$ \in \Sigma$ pour lesquels $\tau_{\epsilon}(\$) = \$$. Par $U_{\$}$, où $\$ \in \Sigma$, on entend l'ensemble défini comme suit:

$$U_{\$} = \{(x, y) : \bigvee_{A \subset X, x \in A} \{y\} <_{\$} A\}$$

et on note par $\mathcal U$ la famille $\{U_{\$} : \$ \in \Sigma\}$.

THÉORÈME 1. La famille Il est la sous-base d'une structure uniforme I définie sur X.

Démonstration. On note par . A la diagonale de l'ensemble X. Pour la démonstration nous établissons les proprietés:

$$\forall_{\$\in\Sigma} \ \Delta \subset U_{\$}.$$

Pour établir cette propriété, soit $(x, x) \in \Delta$ et $A \subseteq X$ un sous-ensemble quelconque tel que $x \in A$. De $\{x\} <_{\$} \{x\}$ et $\{x\} \subset A$ on déduit que $\{x\} <_{\$} \hat{A}$, c'est-à-dire $(x, x) \in U_{\$}$.

$$\forall \exists V \not\subset U_{\$}^{-1}.$$
(2)

En supposant remplie la condition:

$$\exists_{U_\$ \in \mathfrak{U}} \forall_{\$} \subset U_\$ \subset U_\$^{-1}.$$

On a:

$$\exists_{(x_0, y_0) \in U_{\$}} (x_0, y_0) \notin U_{\$}^{-1}$$

qui peut s'écrire sous la forme suivante :

$$\exists_{(x_0, y_0) \in U_{\S}} (y_0, x_0) \notin U_{\S}.$$

De $(x_0, y_0) \in U_s$ il résulte la condition:

$$\bigvee_{A \subset X, x_0 \in A} \{y_0\} <_{\$} A.$$

On a à analyser les cas:

(a) L'élément y_0 appartenir à l'ensemble A. De $x_0 \in A$ il résulte que $\{x_0\} < A$, c'est-à-dire $(y_0, x_0) \in U_{S'}$.

(b) $y_0 \notin A$. En ce cas $\{y_0\} <_{\$} \sim A$ et de $\{y_0\} <_{\$} A$ et de [3] il résulte que $\sim A <_{\$} \sim \{y_0\}$. Donc $\{y_0\} <_{\$} X - \{y_0\}$. De la définition de la relation $<_{\$}$ on déduit la condition $X-\{v_0\}\in \$ \cap \mathfrak{A}$. L'opérateur * étant idempotent on trouve que l'espace X appartient à la famille $\tau_{\epsilon}(\hat{s})$, Done $X \in \mathcal{A} \cap \tau_{\epsilon}(\hat{s})$ et par conséquence $\theta <_{\tau_{\epsilon}(\hat{s})} X$.

De $(y_0, x_0) \notin U_{\delta'}$ il résulte que la relation $\{x_0\} <_{\delta'} A$ pour $A \subseteq X$ fixe qui contient le point yo n'est pas verifiée, c'est-à-dire:

$$\exists_{A\subseteq X, y_0\in A} \{x_0\} \subset_{\S'} A.$$

En supposant que $A - \{x_0\} \notin \mathfrak{A}$. Si $X - \{x_0\} \in \tau_s(\mathfrak{A}) = \mathfrak{A}$, alors du fait que les ensembles $\{x_0\}$ et $X - \{x_0\}$ sont disjoints on déduit que $\{x_0\} \in \mathfrak{A}$

et de $\{x_0\} \cap (A - \{x_0\}) = \Phi$ il résulte que $A - \{x_0\} \in \mathcal{A}$ ce qui constitue une contradiction. Donc $X - \{x_0\} \notin \mathcal{A}$ et par conséquent on a :

$$\bigvee_{\Gamma \in \alpha} \Gamma \cap (X - \{x_0\}) \notin \alpha.$$

De $x_0 \in A$ il résulte que pour tout $\delta \in \Sigma$ on a $\{x_0\} < A$ et donc $A - \{x_0\} \in \mathcal{A}$. De la condition ci-dessus déduit que ensemble:

$$(A - \{x_0\}) \cap (X - \{x_0\})$$

n'appartient pas à C, c'est-à-dire $A - \{x_0\} \notin C$, ceci constitue une contradiction.

Si $A - \{x_0\} \not\in \mathcal{S}$, alors $x_0 \not\in A$.

2

3

En effet, si $x_0 \in A$ alors $\{x_0\} <_{\$'} A$, ce qui contredit l'hypothèse admise. De $x_0 \notin A$ il résulte que $A \notin S'$ puisque $A = A - \{x_0\}$. De $y_0 \in A$ on déduit la relation $\{y_0\} <_{\$'} A$, c'est-à-dire $A - \{y_0\} \in \$'$. L'égalité $(A - \{y_0\}) \cap X = A - \{y_0\}$ montre que $X \in \tau$ (§ \cap §'). Soit §" $\in \Sigma$ telque $\tau_{\bullet}(\delta'') = \delta'$. De $A \notin \delta'$ il résulte que $A \notin \tau_{\bullet}(\delta'')$ et de $X \in \tau_{\bullet}[\delta \cap \delta']$ $\bigcap \tau_{\epsilon}(\S'')$] on déduit que $X \in \tau_{\epsilon}(\S') = \S'$. Donc $A \subset X$. De l'inclusion $A \subset X$ il résulte que $X - A \in \S' = \tau(\S'')$ et de :

$$A \cap (X - A) = \Phi \in \tau_{\epsilon}(S'')$$

on déduit que $A \in \tau_{\epsilon}(\tau_{\epsilon}(\mathbb{S}''), \tau_{\epsilon}(\mathbb{S}'')) = \tau_{\epsilon}^2(\mathbb{S}'') = \tau_{\epsilon}(\mathbb{S}'') = \mathbb{S}'$, ce qui constitue une contradiction. Donc (2) est démontrée.

$$\forall U_{\$} \cdot U_{\$} \subseteq U_{\$}.$$

Soit $(x, z) \in U_{\$} \cdot U_{\$}$. Il existe un $y \in X$ tel que $(x, y) \in U_{\$}$ et $(y, z) \in U_{\$}$. Si $A \subseteq X$ est un ensemble arbitraire qui contient le point x, alors de $(x,y) \in U_{\$}$ il résulte que $\{y\} <_{\$} A$. Si $\hat{y} \in A$ alors de $(y,z) \in U_{\$}$ on déduit $\{z\} <_{\$} A$ et avec $x \in A$, on déduit $(x, z) \in U_{\$}$.

Si $y \notin A$ et $z \in A$ alors $\{z\} <_{\$} A$ et puisque $x \in A$ il résulte $(x, z) \in U_{\$}$. Si $z \notin A$ alors $\Phi <_{\$} A$, puisque $y \notin A$. De $z \notin A$ on déduit, $A - \{z\} = A$ et puisque $\Phi <_{\$} A$ il résulte que $A \in \$ \cap \alpha$, ce qui montre que $\{z\} <_{\$} A$, c'est-à-dire $(x,z) \in U_{\$}$. La propriété est démontrée.

Les proprietes 1, 2, 3 montrent que U est la sous-base d'une structure uniforme V définie sur X.

Soit (X, T) un espace topologique et Σ' la famille des σ -anneaux \$définis sur X tels que $\$ \cap \$_0 = \Phi$, où $\$_0$ est le σ -anneau des sous-ensembles boréliens de X. On désigne par \mathcal{P} la structure uniforme générée par la sous-base $\{U_{\$} \colon \$ \in \Sigma'\}$ et par $\mathcal{J}_{\mathcal{P}}$ la topologie attachée à la structure uniforme \mathcal{P} . Soit $G \in \mathfrak{D}_T$ un ensemble T-ouvert et $x \in G$. On considère l'ensemble $U_{\$}[x]$, où $\$ \in \Sigma'$. Soit $y \in U_{\$}[x]$. Donc $(x,y) \in U_{\$}$. De $x \in G$ et $(x,y) \in U_{\$}$ il résulte:

$$\{y\} <_{\mathbf{8}} G.$$

Si $y \notin G$, alors $\Phi <_{\$} G$ et donc $G \in \$$, ce qui contredit la définition de la famille Σ' . Donc $y \in G$ ce qui montre que

$$U_{\mathbf{8}}[x] \subseteq G$$

c'est-à-dire que G est un ensemble $\mathcal{I}_{\mathcal{P}}$ — ouvert et par conséquent $T < \mathfrak{I}_{\mathfrak{P}}$

On observe que dans un espace topologique qui vérifie l'axiome de séparation T_1 (c'est-à-dire $\{y\}$ est T-fermé), la relation $\mathcal{J}_{ep} < T$ est fausse. Pour cela il suffit de montrer que $U_{\$}[x]$ n'est pas T-ouvert. Soit $y \in U_{\$}[x]$ et donc $(x, y) \in U_{\$}$. De $x \in U_{\$}[x]$ et $(x, y) \in U_{\$}$ il résulte $\{y\} <_{\$} U_{\$}[x]$, donc $U_{\$}[x] - \{y\} \in \$ \in \Sigma'$. De la définition de la famille Σ' il résulte que $U_{\$}[x] - \{y\}$ n'est pas T-ouvert. L'espace (X, T) vérifie l'axiome de séparation T_1 et donc $\{y\}$ est T-fermé.

Si $U_{\$}[x]$ est T-ouvert, alors $U_{\$}[x] - \{y\}$ est T-ouvert, qui constitue une contradiction.

THÉORÈME 2. Il existe un σ -anneau δ de sous-ensembles de X il que δ et $\tau_*(\delta)$ ne contiennent les ensembles ouverts de X.

Démonstration. Soit \$ la famille des ensembles $Y \subseteq X$ ayant les propriétés :

$$\exists G \subseteq Y.$$

$$G \in \mathfrak{D}_T$$

(2) Pour toutes les paires (Y_1, G_1) , (Y_2, G_2) , où G_1 et G_2 sont déterminées par la condition (1) on a $Y_1 \cap G_2 = Y_2 \cap G_1 = \Phi$. La famille a les trois propriétés suivantes:

$$\forall Y_1, Y_2 \in \S.$$

De Y_1 et $Y_2 \in \mathcal{S}$ il résulte l'existence des ensembles ouverts $G_1 \subset Y_1$, $G_2 \subset Y_2$ tels que $Y_1 \cap G_2 = Y_2 \cap G_1 = \Phi$. De $G_1 \cap Y_2 = \Phi$ on déduit

$$Y_1 - Y_2 \supset G_1 \cap \mathcal{C}Y_2 = G_1.$$

On considère la paire $(G_1, Y_1 - Y_2)$ et la paire (G', Y') où $Y' \in \mathcal{S}$ est arbitraire. Puisque $Y_1 \in \mathcal{S}$ il résulte que les ensembles $G_1 \cap Y'$, $G' \cap Y_1$ sont vides et donc

$$(Y_1 - Y_2) \cap G' = (Y_1 \cap G') \cap \mathcal{C}Y_2 = \Phi,$$

.c'est-à-dire $Y_1 - Y_2 ∈ \$$.

5

$$\forall \bigcup_{Y_n \in \$} \bigvee_{n=1}^{\infty} Y_n \in \$.$$

De $Y_n \in \mathcal{S}$ il résulte qu'il existe un ensemble $G_n \in \mathfrak{D}_T$ tel que $G_n \subset Y_n$ et donc $\bigcup_{n=1}^{\infty} G_n \subset \bigcup_{n=1}^{\infty} Y_n$. On considère les paires :

$$\left(\bigcup_{n=1}^{\infty}G_{n},\bigcup_{n=1}^{\infty}Y_{n}\right), (G',Y'),$$

où $Y' \in \mathcal{S}$ est arbitraire. Puisque $Y_n \in \mathcal{S}$ il en résulte $G_n \cap Y' = Y_n \cap G' = \Phi$, donc $G' \cap \left(\bigcup_{n=1}^{\infty} G_n\right) = \Phi$ et $Y' \cap \left(\bigcup_{n=1}^{\infty} G_n\right) = \Phi$, c'est-à-dire $\bigcup_{n=1}^{\infty} Y_n \in \mathcal{S}$.

$$(\gamma) \qquad \qquad \bigvee_{Q \in \mathfrak{D}_T} Q \not \in \$.$$

S'il existe un $Q_0 \in \mathcal{S} \cap \mathfrak{D}_T$, alors il existe un $G_0 \in \mathfrak{D}_T$ tel que $G_0 \subset Q$. On considère les paires (G_0, G_0) , (G', Y') où $Y' \in \mathcal{S}$ est arbitraire. De $Q_0 \in \mathcal{S}$ il résulte que $G' \cap Q_0 = Y' \cap G_0 = \Phi$ et donc $G' \cap G_0 = \Phi$, c'est-à-dire $G_0 \in \mathcal{S}$. En considérant les paires (G_0, G_0) , (G_0, G_0) il résulte $G_0 \cap G_0 = \Phi$, c'est-à-dire $G_0 = \Phi$, ce qui est absurde.

Les proprietes α, β, γ montrent que s est un σ-anneau tel que:

$$\forall \quad G \not\in \mathbb{S}$$
$$G \in \mathfrak{D}_T$$

Soit $G \in \mathfrak{D}_T$ un ensemble T — ouvert et $Y \in \mathfrak{F}$ tel que $Y \neq \Phi$. Si $G \subset Y$, alors $G \cap Y = G \notin \mathfrak{F}$. Mais cela prouve que $G \notin \tau_{\mathfrak{F}}(\mathfrak{F})$. Si $G \cap Y = \emptyset$, alors la relation $Y \in \mathfrak{F}$ signifie qu'il existe une partie $G_0 \in \mathfrak{D}_T$ telle que $Y \supset G_0$.

Supposons maintenant que (Y', G') est une paire arbitraire, où $Y' \in \$$ et donc $G_0 \cap Y' = G' \cap Y = \Phi$.

311

De $G' \cap Y = \Phi$ et du fait que $G_0 \subset Y$ il résulte $G' \cap G_0 = \Phi$, c'est-à-dire $G_0 \in \mathcal{S}$. En vertu de la première partie du raisonnement on a $G_0 \in \mathcal{S}$ de $G_0 \in \mathcal{S}$. En vertu de la première partie du raisonnement on a $G_0 \in \mathcal{S}$ de $G_0 \in \mathcal{S}$ on a $G_0 \in \mathcal{S}$ on a $G_0 \in \mathcal{S}$ on déduit $G_0 \cap G_0 \cap$

THÉORÈME 3. La structure uniforme \ est précompacte.

Démonstration. De la définition de l'opérateur τ_e on déduit que $X \in \tau_e(\mathfrak{C})$. On supposera que $A_1, A_2, A_3, \ldots, A_{n-1}, X$ appartiennent à la famille τ_e (§). Il existe les ensembles disjoints $B_1, B_2, \ldots, B_{m-1}, B_m$ ($m = 2^m - 1$) tels que tout ensemble de la première suite est la réunion d'ensembles de la deuxième suite. Donc $X = \bigcup_{j=1}^{n} B_j$.

Pour $p_j \in B_j$ on a l'inclusion:

(a)
$$B_j \subseteq U_{\tau_{\boldsymbol{c}}(\boldsymbol{\mathfrak{F}})}[p_j].$$

En effet, soit $y \in B_j$ et $A \subseteq X$ un ensemble arbitraire tel que $p_j \in A$ et $N_r = (1, 2, 3, ..., r)$. De $p_j \in B_j$ il résulte que $A \cap B_j \neq \Phi$ et donc on a:

$$\forall_{l \in N_r - \{j\}} A \neq B_i.$$

On a également:

$$\bigvee_{l \in N_r - \{j\}} A \not\subset B_l.$$

De cette condition et de $A \subseteq X$ il résulte que $A - B_i \subseteq B_j$ pour $l \in N_r - \{j\}$. De $y \in B_j$, on déduit de même $y \notin B_i$ puisque les ensembles B_j et B_i sont disjoints. Si $y \notin A$, alors $B_j \subseteq A$ ce qui montre que $A \cap B_j = \Phi$, ce qui est absurde.

Donc, on a $y \in A$ ce qui montre que $y \in A - B_i$, c'est-à-dire $A - B_i = B_j$ pour tout $i \in N_r - \{j\}$. Puisque $y \in B_j$ on déduit que:

$$\{y\} <_{\tau_*(\S)} B_j$$

ce qui montre $\{y\} <_{\tau_{e}(s)} A - B_{l}$.

De $A - B_i \subseteq A$ il résulte $\{y\} <_{\tau_e(\S)}A$, c'est-à-dire $y \in U_{\tau_e(\S)}[p_j]$ et (a) est démontrée.

De l'inclusion $B_j \subseteq U_{\tau_e(s)}[p_j]$ nous déduisons :

$$\bigcup_{r=1}^{j} B_{j} \subseteq \bigcup_{j=1}^{r} U_{\tau_{e}(\$)}[p_{j}]$$

et donc $X = \bigcup_{j=1}^r U_{\tau_e(\$)}[p_j]$. Ceci montre que $\mathscr P$ est une structure uniforme précompacte et le théorème est démontré.

THÉORÈME 4. Soit X un ensemble sur lequel sont définies deux topologies τ_1 et τ_2 telles que $\tau_1 < \tau_2$. Alors la famille $\{U_{\$}: \$ \in \Sigma\}$, ou Σ est la famille des σ -anneaux définis sur X qui contiennent la famille $\mathfrak{D}_{\tau_1} - \mathfrak{D}_{\tau_2}$, est la sous-base d'une structure uniforme \mathfrak{P} qui induit la topologie $\tau_{\mathfrak{P}}$, telle que $\tau_1 < \tau_{\mathfrak{P}} < \tau_2$.

Démonstration. Pour prouver cela, soit $G\in\mathfrak{D}_{\tau_1}$ et $x\in G$. On a $U_{\mathbf{S}}[x]\subseteq G$.

En effet, soit $y \in U_{\$}[x]$. De la définition de l'ensemble $U_{\$}[x]$ nous déduisons que $\{y\} <_{\$} U_{\$}[x]$, c'est-à-dire $(x,y) \in U_{\$}$. De $x \in G$ il résulte que $\{y\} <_{\$} G$. Si $y \notin G$, alors $G - \{y\} = G \in \$$, ce qui contredit la définition de la famille Σ . Donc, on a $y \in G$, ce qui montre que $G \in \mathfrak{D}_{\tau_{\infty}}$. Soit $Y \in \mathfrak{D}_{\tau_{\infty}}$. En ce cas on a la condition suivante:

$$\exists \quad \forall \quad U_{\mathcal{E}_0}[x] \subseteq Y$$
$$\mathcal{E}_0 \in \Sigma \quad x \in Y$$

ce qui montre que $U_{\tau_{\bullet}(\S')}[x] \subseteq Y$.

7

Soit $y \in U_{s_a}[x]$. De la définition de la relation $<_s$ nous déduisons que:

$$\forall_{\$ \in \Sigma} \{y\} <_{\$} Y.$$

De $U_{\mathfrak{S}_{\mathfrak{o}}}[x] \subseteq Y$ on déduit la condition suivante :

$$\forall_{\$ \in \Sigma} \{y\} <_{\$} Y.$$

En particuler on a $\{y\} <_{\tau_c(\S')} Y$, où \S' est le σ -anneau construit antérieurement, ce qui montre que $Y - \{y\} \in \tau_c(\S')$.

De $Y \supseteq Y - \{y\}$ nous déduisons que $Y \in \tau_{\epsilon}(S')$ c'est-à-dire :

$$\exists_{A \in \S', A \neq \Phi} Y \cap A \in \S'.$$

De la définition de la famille &' on conclut :

$$\exists G_0 \subseteq Y \cap A,$$

$$G_0 \in \mathfrak{D}_{\tau_1} - \mathfrak{D}_{\tau_1}$$

313

ce qui montre que:

$$\exists G_0 \subseteq Y.$$

$$G_0 \subseteq \mathfrak{D}_{\tau_1} - \mathfrak{D}_{\tau_1}$$

De $x \in G$ et $G \in \mathfrak{D}_{\tau_i}$ il résulte que si $\{x\} \in \tau_{\epsilon}(\S')$ alors $G \in \tau_{\epsilon}(\S')$ qui est absurde. Donc, on $a \{x\} \notin \tau_{\epsilon}(\S')$, c'est-à-dire:

$$\forall G \subset \mathfrak{D}_{\tau_{\mathbf{i}}} - \mathfrak{D}_{\tau_{\mathbf{i}}}$$

En particulier $G_0 \not\subset \{x\}$ et donc $G - \{x\} \neq \Phi$.

Puisque $x \in Y$ on a $G - \{x\} \subseteq Y - \{x\}$, c'est-à-dire $Y - \{x\} \in S'$. Soit $\Omega \in S'$ un ensemble arbitraire. On montrera qu'on a $\Omega \cap (G_0 - \{x\}) \in S'$. De $\Omega \in S'$ il résulte qu'on peut considérer la paire (G, Ω) , où $G \subset \Omega$ et $G \in \mathfrak{D}_{\tau} - \mathfrak{D}_{\tau}$. Soit la paire (G', Y') avec $Y' \in S'$ arbitraire. De la définition de la famille S' on déduit que les ensembles $G' \cap \Omega$ et $G \cap Y'$ sont vides. On également a $G - \{x\} \subset \Omega - \{x\}$ puisque $G \subset \Omega$. Donc, on a:

$$(G - \{x\}) \cap G_0 \subseteq (\Omega - \{x\}) \cap G_0.$$

Considérons la paire $((G - \{x\}) \cap G_0, (\Omega - \{x\}) \cap G_0)$ et la paire (G', Y'), ou Y' est un ensemble arbitraire qui appartient à la famille S'. Puisque les ensembles G et Y' sont disjoints il résulte que les ensembles $(G - \{x\}) \cap G_0 \cap Y'$ et $(G_0 - \{x\}) \cap G \cap Y'$ sont vides.

On a également:

$$(\Omega - \{x\}) \cap G_0 \cap G' = (G - \{x\}) \cap \Omega \cap G' = \Phi,$$

puisque $\Omega \cap G' = \Phi$.

Donc, on a $(\Omega - \{x\}) \cap G_0 \subseteq S'$, ce qui montre que $(G_0 - \{x\}) \cap \Omega \in S'$, c'est-à-dire $G_0 - \{x\} \subseteq T_e(S')$.

De $G_0 - \{x\} \subseteq Y - \{x\}$ et de $Y' \in S'$ il résulte que $G_0 - \{x\} \in S'$. Si $x \notin G_0$, alors $G_0 = G_0 - \{x\} \in S'$ et donc $G_0 \in S'$, ce qui est absurde. Donc, on a $x \in G_0$, c'est-à-dire:

$$\bigvee_{x\in Y} \mathop{\exists}_{G_0\in\mathfrak{D}_{\tau_*}} x\in G_0\subseteq Y$$

et par suite $\tau_1 < \tau_{\phi} < \tau_2$. Cela démontre notre assertion.

THEOREME 5. Soit X un ensemble sur lequel sont définies deux topologies τ_1 et τ_2 telles que $\tau_1 < \tau_2$. Alors la famille

9

$$\{U_{\$}\colon \$\in\Sigma\cup\{\$'\}\}$$

ou s' est le σ -anneau de théorème 2, est la sous-base d'une structure uniforme q qui induit la topologie τ_{q} égale à τ_{2} .

Démonstration. Du théorème 4 il résulte la relation $\tau_1 < \tau_{\varphi} < \tau_z$. Soit un ensemble $Y \subseteq \mathfrak{D}_{\tau_z}$ (la famille d'ensembles ouverts par rapport à la topologie τ_z) et supposons remplie la condition:

$$\exists_{x_0 \in Y} \forall_{s \in \Sigma} U_s[x_0] \not\subset Y.$$

En ce cas on déduit l'existence de l'élément y_0 qui appartient à l'ensemble $U_{\$_0}[x_0]-Y$ et donc, on a

$$\forall \{y_0\} <_{s_1} U_{s_0}[x_0] - Y$$

c'est-à-dire $(U_{\mathfrak{F}_0}[x_0] - \{y_0\}) \cap \mathfrak{C}Y \subseteq \mathfrak{F}_1 \cap \mathfrak{A}$. En particuler pour $\mathfrak{F}_1 = \mathfrak{F}'$ nous avons

$$(U_{\$_0}[x_0] - \{y_0\}) \cap @Y \in \$'.$$

De la définition de la famille δ on déduit l'existence d'un ensemble ouvert par rapport à la topologie τ_1 tel que

$$G_0 \subseteq (U_{\mathfrak{S}_0}[x_0] - \{y_0\}) \cap \mathfrak{C}Y.$$

Considérons la paire $(G_0, (U_{\mathbf{8}_0}[x_0] - \{y_0\}) \cap \mathcal{C}Y)$.

Des résultats précédents il résulte l'inclusion

(1)
$$G_0 - \{y_0\} \subset (U_{\mathbf{S}_0}[x_0] - \{y_0\}) \cap \mathcal{C}Y$$

et l'ensemble appartient à la famille s'. Soit (G, Ω) où $\Omega \subseteq s'$ est un ensemble arbitraire. On a

$$\Omega \cap (G_0 - \{y_0\}) \subseteq \Omega \cap (U_{\mathbf{S}_0}[x_0] - \{y_0\})$$

Considérons la paire $((G - \{y_0\}) \cap G_0, (Y - \{y_0\}) \cap G_0)$ et la paire (G', Y'), Y' étant un ensemble arbitraire de S'.

9 - Mathematics, vol. 14 (37), 2, 1972.

De $\Omega \in \mathcal{S}'$ il résulte que $G \cap Y' = G' \cap \Omega = \Phi$. On a

$$(G - \{y_0\}) \cap G_0 \cap Y' = (G_0 - \{y_0\}) \cap G \cap Y' = \Phi,$$

$$(\Omega - \{y_0\}) \cap G_0 \cap G' = (G_0 - \{y_0\}) \cap \Omega \cap G' = \Phi,$$

ce qui entraine que l'ensemble $(\Omega - \{y_0\}) \cap G_0$ appartient à la famille S', c'est-à-dire $(G_0 - \{y_0\}) \cap \Omega \in S'$. Donc, on a $G_0 - \{y_0\} \in \tau_c(S')$. En désignant par F l'ensemble $\mathscr{C}Y$ et en utilisant la condition (1) nous trouvons que l'ensemble $(F - \{y_0\}) \cap U_{S_0}[x_0]$ appartient à la famille $\tau_c(S')$, c'est-à-dire que $F \in \tau_c(S')$. La famille $\tau_c(S')$ étant un σ -anneau il résulte que $\mathscr{C}F = Y \in \tau_c(S')$. Donc, on a

$$\mathfrak{D}_{\tau_{s}} \subseteq \tau_{e}(\S').$$

De $\mathfrak{D}_{\tau_1} \subseteq \mathfrak{D}_{\tau_2}$ nous déduisons la relation : $\mathfrak{D}_{\tau_1} \subseteq \tau_e(\$')$ ce qui est absurde démontre notre assertion.

THÉORÈME 6. Soit (X, T) un espace topologique et $\tau_1 < T$ un topologie telle que la famille $\Sigma = \{\$: \mathfrak{D}_{\tau} - \mathfrak{D}_{\tau_1} \subseteq \$\}$ ait la propriété:

$$\forall \exists \tau_{\iota}(\$) = \$'$$

$$\$ \in \Sigma \ \$' \in \Sigma$$

Alors (X, T) est compact.

Démonstration. Puisque $\tau_1 < T$ du théorème 5 il résulte qu'il existe une structure uniforme \mathfrak{P} qui induit une topologie $\tau_{\mathfrak{P}}$ telle que $\tau_{\mathfrak{P}} = \tau_1$. Supposons qu'il existe un filtre \mathfrak{F} , \mathfrak{P} — Cauchy non-convergent. Donc, on a

$$\forall \exists F \not\subset U s_z[x]$$

$$z \in X, F \in S \quad s_z \in \Sigma$$

ce qui entraîne la condition:

(2)
$$\forall x \in X, F \in S_1^1, s \in F, s_x \in \Sigma$$

De la définition de l'ensemble $U_{s}[x]$ on déduit:

$$\forall \exists (x, s) \notin Us_{x}.$$

La structure $^{\circ p}$ étant uniforme il résulte qu'il existe un élément $U_{\vartheta_{x}^{n}} \in ^{\circ p}$ tel que $U_{\vartheta_{x}^{n}}^{-1} \subseteq U_{\vartheta}$.

Donc, on a

11

$$\forall \exists_{x \in X, F \in \mathscr{F}} \exists_{s \in F, \, \$'' \in \Sigma} (x, s) \notin U_{\$_x''}^{-1},$$

ce qui peut s'écrire aussi

$$\forall \underset{x \in X, F \in \mathscr{F}}{\exists} \{x\} \overline{<}_{\$''_x \in \Sigma} A_x \cap F$$

c'est-à-dire que la relation $\{x\} <_{\$_x} A_x$ n'est pas vérifiée. Si $x \in A_x$, alors $\{x\} <_{\$_x''} A_x$, ce qui est absurde. Donc, on a $x \notin A_x$ il résulte $A_x - \{s\} \in \mathcal{C}$, c'est-à-dire que $A_x \in \mathcal{C} = \tau_e(\mathcal{C})$. De

$$\{x\} \subset_{\$_x''} A_x, A_x \in \mathfrak{A}, x \notin A_x$$

il résulte que $A_x \not\in S_x$. Donc, on a

$$\forall \exists x \notin A_x, A_x \notin S_x.$$

$$x \in X \ A_x \in \emptyset, S_x'' \in \Sigma$$

Soit $\Omega_F = \left\{ t: \bigvee_{x \in F, \ x \neq t} t \notin U_{\widetilde{\$}}[x] \right\}$ où $\widetilde{\$} = \bigcap \left\{ \$_{\Upsilon} \colon \$_{\Upsilon} \in \Sigma \right\}$ et désignons par \$ un σ -anneau tel que $\tau_{\epsilon}(\$) = \widetilde{\$}$. Soient $F \in \mathscr{F}$, $\zeta_0 \in F$ et choisissons $s \in F - \{\zeta_0\}$ arbitraire. De $s \in F$ il résulte que $F - \{s\} \in \mathfrak{C}$.

Supposons maintenant que $F - \{\zeta\} \in \tilde{\mathbb{S}}$. Puisque les ensembles $\{\zeta\}$ et $F - \{\zeta\}$ sont disjoints on déduit que $\{\zeta\} \in \tau_{\epsilon}^2(\mathbb{S}) = \tau_{\epsilon}(\mathbb{S}) = \tilde{\mathbb{S}}$. Mais $\zeta \not\in A_{\zeta}$ et donc $A_{\zeta} \in \tau_{\epsilon}(\mathbb{S}) = \tilde{\mathbb{S}}$, c'est-à-dire $A_{\zeta} \in \mathbb{S}_{\gamma}$, ce qui est absurde. Donc, on a $F - \{\zeta\} \not\in \tilde{\mathbb{S}}$. En ce cas nous avons $\{\zeta\} \subset \tilde{\mathbb{S}}$. De $S \in F$ il résulte que $(S, \zeta) \not\in U_{\tilde{\mathbb{S}}}$, c'est-à-dire:

$$\forall_{s \in Y} \zeta \notin U_{\tilde{s}}[s],$$

ce qui montre que $\zeta \in \Omega_F$.

De cette condition on déduit que $F \subseteq \Omega_F$ et donc, on a:

$$\forall U_{\widetilde{\$}}[F] \notin \mathscr{F}.$$

De la définition de l'ensemble Ω_F il résulte que les ensembles Ω_F et $U_{\mathfrak{s}}[\bigcup_{s\in F}\{s\}] = U_{\mathfrak{s}}[F]$ sont disjoints, ce qui montre que

(5)

 $\forall U_{\widetilde{\$}}[F] \notin \mathscr{F}.$

La famille & étant un filtre %-Cauchy on déduit la relation

$$\exists_{F_0 \in \mathscr{F}} \forall_{\$} [F_0] \in \mathscr{F}.$$

En remplaçant \$ par \$ on déduit la relation $U_{\$}[F_0] \in \$$. La relation (γ) ayant lieu pour $F \in \$$ il résulte que $U_{\$}[F_0] \notin \$$, ce qui est absurde. Donc (X, T) est compact, ce qui achève la démonstration.

BIBLIOGRAPHIE

[1] Gaal, S. A., Point set topology. Acad. Press (1964).

[2] Kelley, J. L., General Topology. Van Nostrand (1955).

[3] Petrisor, P. Sur prolongement d'une mesure (sous presse).

Reçu le 8. I. 1971

MATHEMATICA VOL. 14 (37), 2, 1972, pp. 317-337

OF NONLINEAR EIGENVALUE PROBLEMS

WALTER PETRY

Düsseldorf

1. Introduction

Existence theorems for nonlinear eigenvalue problems of the form

$$f'(x) = \lambda g'(x), \quad \text{and } x \in \mathbb{R}^n$$

where f, g resp., is a functional on a reflexive Banach space B, f'(x), g'(x) resp., is the corresponding gradient, are considered in many papers (s. [13, 24, 4-7, 11]). These existence theorems are based on the existence of a relative extreme point of f(x) with respect to the level surface $M_c = \{x \in B: g(x) = c\}$. Under suitable conditions it is proved that there exists at least one eigenelement, resp. an infinite number of eigenelements, on the level surface M_c .

The application of such existence theorems to nonlinear partial differential equations are considered in [3-7] and to integral equations of Hammerstein type in [10, 13, 24].

The existence of a positive eigenelement for nonlinear eigenvalue problems is considered in [14, 19] and applications to integral and differential equations can be found in [19, 12, 22, 21] and many other papers.

For integral equations of Hammerstein type with oscillation kernels the existence of oscillationary eigenelements can be proved with Schauder's fixed point theorem (s. [18, 9, 15, 23] and others).

For extremizing a functional f(x) on a Banach space B with respect to the level surface M_c ALTMAN [1] constructed three different iteration processes. These iteration methods are rather complicated. To prove convergence of the iteration sequence a monotonicity condition for the functional f is used.

Another iteration method for the construction of an eigenelement and the corresponding eigenvalue is considered by SCHRÖDER [20], where