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0. Definitions and notations

In the first part of our paper, [8], were given the definitions and some
topological and transformational properties of the unrestricted #-parame-
ter family (abbreviated UnF) and of the unrestricted differential n-para-
meter family (UDnX). In what follows we will establish a connection bet-
ween UnF—s and UDnF —s and the disconjugacy properties of the ordinary
differential equations. This connection will permit us to present some as-
pects of our considerations in [8] from the point of view of the theory of i
disconjugacy. On the other hand, the results in the theory of disconjugacy
lead to the solution of some particular cases of our problem in [8] of con-
struction of an UDnF with given tangent spaces (Theorem 4). In the para-
graph 4 of our paper we give a disconjugacy criterion for the nonlinear

. differential equations which makes a connection between the disconjugacy
}  properties of the equation and its equations in variation (Theorem §).

Denote by [o, B] 4 finite, closed interval of the real axis R. Let C[a, B]
and C"[«, B] be the linear spaces of the real valued continuous [functions,
and respectively, the functions with continuous #' derivatives defined on i
[o, B, each endowed with the usual norm. |

For the notions of UnF-s and UDnF-s see Definition 1 and 2 in [8]. ".
The UDnF which is linear with respect to the parameters is called an un- ¥
resiricted Chebyshev space (UCSp). It is in fact an #-dimensional subspace
of the space C"[«, B] in which any Hermite-type interpolation problem
}(%SC sé )solution. A basis of an UCSp is called an unrestricted Chebyshey system
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Consider the differential equation

) ' » |

. y(”) =G(x,y,y, ...,y( ), |

(1 | %

G is a real valued function defined on the direct product [, 8 5 "

where G1s a

The differential equation (1) will be said to be g, on. |

1 d the nterva I ﬁ ) umber m, 1 = |
7‘“ga & on i 1 o, ), ‘.EffO? aﬂy ﬂatuial V(] i |
. (- p .:M‘;S x L] x’ﬂ i’]’ |dx BIJ a”’} ”’atz“ al ﬁumbers k . |
aﬂy dfshnct 01/ 1)

G, o xists a single solution y of (1) hay: |
with the property; k; =, there ¢ ) having
the properties

¥

for any given real numbers ¥ o |
T A important particular case of the differential equation (1) is the liney,
differential equation

() g = ay(x) YU + ay(x)y"D 4 ...+ a, (2)y,

Definition 1

U)(xi)u-l——y{,j=0, 1, ...,k,-*—].,1,='1, o iy T,

where a; are elements of the space C[a«, B].

i i 2) is a disconjugated differential equation if and only
if {;;Ssgg‘c?l;? ;ctiazo(h}tions is an ]UgSp Moreover, any UCSp is the solu-
tion space for a linear differential equation of the form (2) with a,in C[q, g),
+=1,..., n. In the first part of our paper (paragraphs 1 and 2), we
will prove that this property is more general: an UnF (respectively an
UDnF) is an integral variety of a (disconjugated) differential equation (l)
with G a continuous function (respetively, with G having continuous par-
tial derivatives with respect to its last n variables).

Denote by Cj, the direct product space of # exemplars of the space C[g, ]
and by C, the direct product space of # exemplars of the space C*[a, ).
By the coefficients 4, « C[a, B] ¢ =1, ..., # a correspondence is
defined between the set 9 of all the linear differential equations of the form ,
- (2) and the set C,. In what follows we will identify these sets and will cor-

“sider the set @ of differential equations of form (2) endowed with the topo- |
logy of C,. The set M of all the disconjugated differential equations of

form (2) is open in C° (see [2 it i ly convex .
bopalogioa] spmm (see [2] or [6]), and therefore it is a locally

In the paper [6] a topology is introduced in the set 9 of all UCSp of the
dimension 7 in C*[«, B] with a factorization of :ehe direct produgt i
i‘ (I}Y e c}q;nva(lienCe relation ~ introduced as follows ; the elements f= |
il LI( *v+2Jn) AN gd= (€1, ..., g,) are equivalent, f ~ g, if the linear Sp¥"

v f) and Ligy, 0 Y coincide. I will be considered a suo"
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set of the factor space Cjf~.
tion is denoted by p. In the Lem
it are homeomorphic.

The canonical projection in this factoriza-
ma 4 of [7] was'proved that the sets S and

1. Auxiliary results

In order to avoid an interruption in the followin

A g proofs, we will prove
here some auxiliary results. B P

ILem ma 1. Suppose that
() f: [e Bl X R" > R"is a continuous mapping;
(ii) for any fixed x4 in [a, B] the mapping

a — f(x,, a)

is a homeomorphic mapping of R™ onto 1tself.

Then the equality
f (x, (l) =5

determines an implicit function a = g(x, b), which has similay properties (i)
and (ii).

Proof. Denote by ¥ the mapping defined by
¥ (%, a) — (x, f(x,q)).

Then ¥ will be a homeomorphism of [, B] X R" onto itself. The mapping
¥ is one to one, according the condition (i) on f. It is also continuous by
(i). To prove the continuity of ¥'-1 we will prove in fact that ¥ is an open
mapping. For this, let U be an open set in [, B] X R", and let be (%,, ay)
in U. Then the point (x,, a,) has a neighbourhood U, of form Uy, =V X
XW, which isin U, V is open in [«, ] and W is open in R*. We have

V(Uy) =V x AV, W).
The set f(V, W)C R* is open. Really,

SV, W)y =U flz, W)

zeV

and the openess follows from the condition (ii). This proves that ¥ (U,)
1S open, and completes the proof of continuity of ¥-1,

Pt S

i

1
{6
it




A, B. NEMETH _ 4
92

Deuote g(x, b) = PIz ° IF_l (x, b):

. : duct [
- to R* in the direct PO « B] X R~
he projection O%

where Pre denotes t
Then we have — f(%, Pra2 ¥-1 (%, b))

S, g b))
), where b = flx, @),
f(, g(# B) = f(x, &) =0

) = (5,4 and therefore
But 11)"—1 (x,b = (X,

3)
: p - . It is obvious]y Continuo
i i d implicit function o] : "
that is, gls B2 T requ;rs:ed in [o, Bl Then from (ii) and (3) it follows
on [«, B] X R". Let %, 11X !
e b g(xﬂ’ b)

.« 4 homeomorphic mapping of R* onto itself, which completes the proof
is a ho

of the lemma.

9. Suppose that _ .
](’_i,)e ?.HE: B] X R" » R"is a conlinuous mapping,

(ii) all the partial deyivatives of the coordinate fumtions of f with respect
to their last vaviables are coniimuous on [a, P] X R*;

(iii) for any fizned xq 11 [, B) the mapping

ﬂ""’f(xm a)

is a diffeomorphism of R" onto stself.
Then the relation

flw, @) =b

determines an implicit function @ = g(%, b), which maps the set [«, B] X R
onto R* and has the properties (i), (ii) and (iii).

Proof. The condition (i) for g is obviously fulfilled according Lemma .
Denote f= (f% ..., f") and g= @, ...., g% and let be

g (% ab)=fix,ae—b i=1.....%

Applying these notations, from the implicit function theorem Wwe€ have for
fixed %

a;:‘.. — —L D("]l; ewy 7]”)
v J@) Da, ..., a1, bj, ai+l, ..., a"
1;: j - 1, ey B
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where g is the implicit function determined as in th
](ﬂ) is the Jacobian of the mapping . the: showe lemma. sud

a — f(x, a).

According to Lemma 1, g is continuous of x and b, and therefore if we put
in the above formula a = g(x, b), we have the partial derivatives of the
components of g functions of x and b. Because all these functions are conti-
puons and J (g(x, b)) # 0, the continuity of the partial derivatives of g
?n the direct product [«, B] X R™ follows. This proves the condition (ii)
or g .

The condition (iii.) for g is an immediate consequence of the Lemma 1
(ii) and of the implicit function theorem, ,

2. Relation with the disconjugacy theory

In this parag{'aph we will prove theorems of technical character, which
make a connection between UnF-s (UDnF-s) and the disconjugated diffe-
rential equations. We prove first

tuEOREM 1. If the function Y(x, a) generates am UnF (respectively, a
UDnF), then it forms an integral variety for a disconjugated differential
equation of the form (1), where G is continuous ( respectively, it 1s continuous
and has continuwous first order partial derivatives with respect to its last n
variables) on the direct product [o, B] X R*.

Proof. Tet (v, ¥, ..., y""V) denotes a point in R". Then for x, fixed
there exists a vector @ in R" such that

(4) YU)(x,, a) =y, = 0,1,...,n—1,

where we have denoted by Y0 the j partial derivative of Y with respect
to x. Denote : :

(5) Y(x,, @) = Y™

The functions in (4) for fixed x are the coordinate functions of a homeo-
morphism of R* onto itself (see Theorem 1 in [8]), and they are conti-

nuous functions of x. Then according to Lemma 1 there exists a continuous
function g: [«, 3] X R* = R", such that

a=gxeys -y
By a substitution in (5) we obtain '

y(,,) — Y(n)(xo) g(xo, v, y” s .,y('l—l))) —

(6)
= G(%o, ¥, ¥'s - ., i),
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nsidering now x variable, %, ¢=0,1, ..., % may be considere
1(3:: functiox%s of %, and according (4) and (5) they are in fact the 0,1, d t’(:
order derivatives of the function' y. The dlscon]ugacy_ of the obtaineq d.if,fe_
rential equation follows immediatelly from the definition of the Upyp g
This completes the proof of the first part of the theorem. ‘

In the case of Y(x, @) an UDnF, we observ'e that according the Poin;
(ii) in the Lemma 2, the relations (4) deternime‘ a function g which hos
continuous partial derivatives on [«, ] X R* with Tespect to its Iaq¢ %
variables. From this and from the definition of the UDnF-s 1t follows that
the function G in (6) has continuous partial de_rxvatwes with Tespect ¢,
its last »# variables on the set [«, ] X R™. This completes the proof of
the theorem. . )

The notion of the equation in variation for a differential e
in the followings is that in the book [9], Theorem 15.

THEOREM 2. Y (%, a) generates an UDnFE if and on'ly if it is an integml
variety of a differential equation of form (1), where G vS continuous and jg
continuous partial derivatives with respect to the last n variables oy [#, B] x R
and the equations in variation of this differential equation are also d; !

Sconjugated.
Proof. For proving the »only if”” part of the above t

heorem, it suffices,
according Theorem 1, to prove that the equations in variation of the diffe-
rential equation of form (1) determined by this theorem, has a fundamenta

system of solutions which forms an UCS, We have obviously the identity

Yin(x, a) — G(x, Y(x, a),Y'(x,a), ..., Yin-(y, a)),

quation, used

from which by derivation with respect to a', we obtain

) ¥z a) N 96 vl a P "
S E Y T

Because of the continuity of the partial derivatives we have

=01, ..., n

ay(f)(x’ a) _ ( Y (x, a) () i
da* da* ' /

From the definition of the UDnF the functions M, t=1,...,n form

1

a
an UCS, and then from (7) our assertion )?ollows‘.z

] i he condition, suppose that Y (%, a) is the
Integral variety of the differentia] equation (1) which is parametrized with
the Cauchy type 1nitial value conditions in the Point «, that is, the func-
tion Y (x, a) for a fixed q is the solution y of the differential equation (1)
for which

(8) =1

=ajl j=1,-‘.,n.
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hen from the Theorem 1S in [97, it follows that i i
g‘n [«; B] X R" and has partia] derivatives with respe(?;('f(; ‘:z)" 11'_3:0;1t1nu01’115
which are als_o contmpous on this get. From the disconjugac’y of tlie. éliffe:
rential equation (1) it follows that v %, a) is an UnF. From the same
Theorem 15 in [9] it follows also that for the fixed Parameter a the functions

Y (x, a)
T =1, ...
(9) da’ ' g 5

are solutions of the equation in vatiation of the differentia] equation (1)
in the point a, and they are satisfying the initial value conditions

(10)

It follows then that (9) is a fundamental s
in variation, and because of the discon
this system is an UCS. From this follo
proves the theorem,

! system of solutions for the equation
Jugacy of this equation in variation,

3. Construction of UDnF-s

From the considerations in the papers [6] and [7] it follows that the

set p~1(O) of all the n-tuples (fi, ....f,) in C* for which the functions
fi .o, f, form an UCS, is open in the space C. From this and from the
locally convex structure of PN), it {follows that if fi, ..., f, form an
UCS, then in a sufficiently small neighbourhood of (f,, o0 s [y in Cy, all
the elements (g,, ..+, &,) have the property that they form UCS-s, and
IMOreover, f, ..., f.and g, * -+, §n aT€ composable in the sense of Defini-
tion 5 in [8]. Thérefore from Theorem 5 in [8], we conclude that it may
be constructed an UDnF with the tangent spaces L(f,, ..., f,) and

(&1 .. -» &). But the condition of composability has an implicit formula-

tion and we do not have simple methods to decide that two UCSp have
or not composable bases.

In this paragraph we will give a construction similar to that in the
Iheorem 3in [5] (or Theorem 5 in [8]), in which we will use some results
n the nonlinear disconjugacy theory of the nature of those obtained by
?.1 ]LASOTA and z. op1aL [3], [4] and by . A. BESSMERTNVH and A. YU, LEVIN

We begin with a general disconjugacy theorem which follows directly
from our theorems 1 and 2 and from Theorem 2 of A. LASOTA and z. OPIAL
In [4].

Sup

foll pose that the nonnegative functions P;(x), i =1, ..., n have the
ollow;j

Ing property : there exists a positive number € > 0 such that each

ws that Y generates an UDnF, which
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1i differential equation of the form (2) which has the coefficients sa
inear kL |
fying the inequalities |

Ia,.(x)lgP,-(x)—I—s, xe[a’ B]r 1::1,...,’?!, !

: ith this property will be called
.« Jisconiugated. A set of functions wi :
ﬁliim;:?al.;f:pﬁ an admissible system of functions.

iven the differential equation (1) and let P, fol, 4

3. Let us & : ;
_TIHEORE;Ime an admissible system of Sfunctions.

(i) If G is a continuous function on the set [a, Bl X R* satisfying g,
Lipschitz condition ‘

during

|
o]

"

|G(x, o, H1, - -+ Po=ii) ~— G(%, Vo) Y15 -+ s 1)l = =0 Pu-i(x) |t — v,

then the integral variety Y (%, a) of (1) parametrized by the Cauchy type cong;,.
tions in a point of [a, B], forms an ‘UnP.‘.

(ii) If G has combinuous partial dertvatives on the set [, B] X R”, wit
respect to its last n variabies, which satisfy the inequalities

0G(x, g 1y, oo .,

Ou;

y—1) glpn_’.(x), =0, L sveilm — 1,

then the integral variety Y (%, a) of the above differential equation, parametrized
by the Cauchy type conditions in a point of [«, B], form an UDnF.

We shall give in what follows a constructive proof of the following
theorem :

THEOREM 4. Let (e,) and (e,) denote two differential equations of the form
gi_&) with the coefficients a;, respectively b;, © = 1, ..., n, satisfying the inequa-
1ties -

|2:(2)] < Pi(x), |Bs(2)| < Py(x), i =1, ..., m,

. '
where Pi(x), i=1,...,n form an admissible system of functions. Suppost
also that (e,) has a nonvanishing solution with nonvanishing derivatives of
orders 1 y oo — 1. Then tl;ere_exists a disconugated differential equalion
_(1)' _thle wnbegral variety of which is an UDnF, and which has the linear difft
rezim ;qulczzons (ex) and (es) as equations in variation in two distinct pornis

roof. Let y, be a solution of (es) which is ishi X

. g8 s : 3 no hi @ d has non
va;:)nshmg der{vatlves of orders 1), . n‘\ﬁr;lemsm;;g ;Eppose that
lyo'(2)] > 1, i=0,1,...,0n—_1. Denote ¢, — son i) 1=0,1,.-4
-+.,n — 1. Then we have i =sgnyi(a), 2=0,L i

(11) Y >1,4i=0,1,.. . 0_1.

UNRESTRICTED DIFFERENTIAL n-PARAMETER FAMILIES 97
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Let be the function G in the right hand side of (1) defined by the equality

n—1

GlE oy w1, -y thy) = 3 i, w),

=

where
(12) F(x, %) = Sf,(x, %) du
0
is a primitive function with respect to u; of
a""i(x)’ E; U; S 0,
(13)  fi(% %) = § 4 bni(%) + (1 — w)a,_i(x), 0<eu<l,
bu—l'(x)l E; U; ; 1,

1=0, 1,...,n¥1.

We prove that y, is a solution of the differential equation

n—1

(14) ym = }_:Fa(x, y).

1=0
Because of (11) we have according (12)

fil®, 9'(%) =bua(x), i=0,1,..., % —1.
For e;u; = 1 we have by (13)

Fi(x, %) = b,_i(x)u;, +=0,1,...,n— 1

’

and then
Fi(x, y0'(%)) = bui(x)3(x), 1 =0,1, ..., n —1,

and therefore (14) for y = y, becomes the differential equation (e,) in which
1s substituted y,, which proves our assertion.

From the above construction it follows that

= 1A% #)| < Pu_i(a),

G (%, wg, 1y, ..., Uy_,) i __ | 9Fi(x, u;)
Ou; ‘ Ou;

2=01...,n—1,

and according to Theorem 3, the differential equation (14) will be discon-
Jugated and its integral variety forms an UDnF.

Suppose that a = (yo(a), y4(«), ..., ¥o "(«)) and that the integral
Zanety Y(x, a) of (14) is parametrized by the Cauchy type conditions in
he point «. Then in a neighbourhood of the point a all the solutions of
(14) will be also solutions of (e,) but this means that the equation of
Vatiation in ¢ of (14) will be (e,).

7 — "
Mathematica wvol, 15 (38) — Fasc. 1/1973
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i 14) it also follows that y = 0 is itg
T fﬁ?;n()fof( (1)4) in the point a = (0, .

according our cons

Corollary. If (&)

s , salisfyin ot Fe
;;},;d ;ogfgg:;ntsi i: ISd. fyn gform an admissible system of solutions, 1f
' f ’ l

'« a differential equation with constant coefficte is |04 i(#),i=1"7
;;_:c}:gizcteristfcqgguation of which has a real, nonzero 700t, then theye exz"s?'
a disconjugate differential equation with the inlegral variety an UDnF, whz'c]i
has as equations 1 variation 1t (wo distinct p?mt:s‘ the equations (e,), ang )

Proof. In this case (¢,) has a solution satisfying the conditions ip Th:u:

rem 4.

is a differential equation of the form,

4. A diseonjugacy criterion

Consider the differential equation (1) witI'_L G having partial derivati\-es
with respect to the last # variables, continuous on the direct product
[a, ] X R* If Y (%, a) is the integral variety of (1) parametrized by athe
initial value conditions (8) in the point o, then in any point 4 e R
is defined the equation in variation of (1) and the functions (9) for
a fundamental system of solutions for this equation in variation, apq
satisfy (10).

Suppose now that Y(x, ) is given and suppose that the set

vy

9R(G)={(BG (x.Y,....Y(”'”)“ 36 (xY, ..., y("=1) 4R
ayn=1 ay

has the properties:
(i) ;M(G) C M, where M denot 5 . :

tial equations of form (2); enotes the set of all disconjugated differen.
(i) M(G) is compact. !
We will define the mapping i

g2 Cp = C*

as follows: if g = ‘ :

bt theovajn:ifaam en(taali - . a,) is an elerpent of Cy, then let (315 «+ > ¥a) = 09)

(with these coef1°icien1;y Stem of solutions of the differential equation (2
S 4;) which satisfies the initial value conditions

(- ;
¥ l)(a)=8{, Li=1... »

e .+, 0) Willsollltion._
The equation of Vfl_l sction. This completes the proof of the thEOrenf e:),f

the inequalities |a;(x)] < P;(x), 1 = 1(2) w?'ih?

1
(ez) 1
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The mapping ¢ will be animbedding of C}, in C?. We have also with our
above notations

) el W i i 0] 36(x Y, ...,Y‘”‘”)) (o ay
(15) @ ayn=1 ’ dy T gt Tt a—aﬂ)'
Let be now  a natural number 1 < m < n, let ,, ..., %, be distinct

points in [«, B], and let be &y, ..., k,, natural numbers with the property
that E ki = n. Let J be the functional on C defined by the relation
1=1

S A

(k—1)

— det ||y,-(xl), YT (E) e (%) e T (5) ”,

where the determinant in the right hand side is represented by the 4t
columil. o :

Because the set M(G) is in M it follows that for any element a < M(G),
p(a) is an zn-tuple of functions y,, ..., y, which form an UCS. But this
means that the determinant in the right hand side of (16) is different

from zero, i.e., for any a in IM(G) we have J(¢(a)) # 0. From the conti-

nuity of ¢ and of J and from the compactness of M(G) it follows then
that there exist the positive numbers § and M with the property that

(17) 0< 3 <|Je@@))| < M.
Consider now the mapping
(18) o: 1" - R”
which has the coordinate functions defined by the equalities
(19) () =Y0(x,), t1=1,...,m, §=0,1,..., °k —1,

where r =1+ k, + ... + ki_; +j and k, = 0.

_From (15) and (16) it follows that for a given paraméter a, the expres-
sion

7 l " (ac;(x, Y, ...y 1) _

3G(x. v, ...,y("“)))
aytn=1) B ay

Will be the value of the Jacobian of the mapping (18)—(19) in the point
@ of R*. From the relation (17) we have

0 <3< |J(e(MMGEI < M,
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and from this relation and the global implicit function theorey, -
(for a different proof of this theorem see also [10]), it follows 1%1 1
mapping ® is a diffeomorphism of R” onto itself. According the Theg
in [8], it follows that Y(x, a) forms an UDnF. We h

the following

THEOREM 5. Suppose that the differential equation (1) With G hayiy

derivatives with respect to its last n variables z_wﬁzk are continuous gy o
Set

A X R", has the properly that the set ?J?(G), where IMN(G) Bear
s[:t Ef:" all the equations in variation of (1), is compact and is otes 4

e
I'Em

Then the differential equation (1) is disconjugated and its integral Varig

Y(x, a) obtained by the parametrization by the initial value conditiong (S)y‘

ts an UDnF.
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OB ACUMIITOTHUYECKM X CBONCTBAX COB
CTBEHHBI
PYHKUHH OITEPATOPA JIATIJTACA §

A. T. IOCTHUKOB

MockBa

O6osnaunM uepes D eliuHMuHBIH KBagpaT ua naockocTH 0 € 2 < 1
?
0<y<1 awuepes B ero rpauuny. PacemorpuM kpaesyio 3ajauy

u 0%u
ax=+a—yi+ M =0, (x,y9) €D

(1)

=0 (x,y) = B.

Cob6cTBeHHbIE YHCJAA 5TOH 3aJlauH BBIYHCASAIOTCS HEMOCPENCTBEHHO
@) A = n¥(n? + m?),

raen> 1, m > 1 yensie yucaa. KpatHocts co6eTBeHHOrO UHCAa paBHA KOJH-
yecTBy ero npeacrasJsenuit B Bue (2). O6osnauum uyepes N(T) KosxuyecTso
COGCTBEHHBIX 3HAaueHHil 3aJa4H, He NPeBOCXOAAWMX pacryuiedl rpaHuusl T

3) N(T) =} 1,

N, <T

Fle Kaxnoe coOCTBEHHOEe 3HayeHHe A, 3aCUHTHIBAeTCH CTOJbLKO pas, KaKoBa
€ro KpaTHOCTb. Jlerko BHJAETb, UTO

y = T N(T T
4) N(T) = l~_1(_12__1_[~g12+>_~/? + o),
rie N,(T) KonnyecTBO IeJbiX TOYEK, JeXKalHX BHYTPH H Ha paHHIe Kpyra
JT\?
2+ ¥y < (j‘ '




