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EQUALLY SPACED POINTS FOR FAMILIES OF COMPACT
CONVEX SETS IN MINKOWSKI SPACES

by
HORST KRAMER and A. B. NEMETH
Cluj

In a recent paper [3] we have considered the problem of the existence
and the unicity of a point in the n-dimensional Euclidean space, which is
equally spaced from the members of a given family of convex and compact
sets. The same problem presents some particularities in the more general
case of the Minkowski spaces. For example, as far as we know, there was
not approached even the problem if for n + 1 given independent points

in an n-dimensional Minkowski space there is or not a point equally spaced
from these points.

In the particular case of the family of hyperplanes the Chebyshev point
of the family (see for definition [5]) is also an equally spaced point, but
these two notions are in general different.

A somewhat related question has been investigated by pErNATEL [1],

in considering the locus of the equally spaced points from two closed sets
in the plane.

Theorem 1 in our paper concerns the problem of the existence of an equally
spaced point for a set of n + 1 independent points in an #z-dimensional

Minkowski space. This problem is related to a conjecture stated by

P. TURAN :
If ¥ is a closed , sufficiently smooth” (n — 1)-surface in the #-dimensio-
nal Euclidean space R"-and ¢ is a nondegenerated xn-dimensional simplex,
en there exists a simplex ¢’ similar to o, inscribed in ¥. This conjecture
Was proved by . g. STRAUS and his students for the case # = 2 and 5 — 3,
Unpublished). For our purposes it is essential for the inscribed simplex to
€ of a given orientation and with faces parallel to given hyperplanes. But
this restriction modifies essentially the problem, and the method of E. G.
traus seems to be mnot applicable.
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We need the following lemma: |
Lem ma l. Suppose that ¢ and o' are two nondegenerated simplexes iy

e m '

the vertices pr, P - +» Dus1 AN i, D3, - - -, Pt vespectively and the ceyy
€ ] y sy

' ts cp; and ¢'p; are parallel and of the same orieyyy,
}ogaz_d _c .11 ]; the fegfj’_‘ 1, ;}'}zm o and o' have the same orientation land ;ﬁarall?z;

- i lize that ¢ and ¢’ coinc;
two translations we may realize that ¢ and ¢’ coincid
thé3 :;Z%int’f the space R”. Then we have by the definition of the ¢

ez.‘i=1»2:"""’+1'

e with
entrojd

(1) prtpt .o TP =0,

and because of our condition we can write p; = AP >0, 0=1,2
...,n+ 1. Again by the definition of the centroid

(2) 7‘1151 + ;\2ﬁ2 + . e + >\n+1pn+l == 0
Now, multiplying (1) with —2, and adding to (2), we obtain

3) ()\2 = )\1)1)2 + v + ()\n-{-l - )\I)PH—H = 0.

From the condition that ¢ is a nondegenerated simplex, it follows that
P2, - .., puy1 are linearly independent and therefore from (3) N — n=0
v =2, ..., n 41, that means that the simplex ¢’ is centrally homothetic
with the coefficient %, > 0 with . This proves the lemma.

Proof of Theorem 1. We define a mapni f Co(Z) tl rex hullof £
into itself in the following way : HOW J 0 Lo} thee cinroes b

; : Suppose ¢ € Co(X) and consider for an
1 (1 = 1 S 7+ 1) the ray p; starting from g parallel to c¢p; and having the:
?ﬁghoge?:?&g{ a{md deno;e by $:(g) the intersection point of p; with X,
rom ¢q. From tl ity it , ,
depends continuously 01({ g. Put e convexity of ¥ it follows that p(g)

1
0= 5 00 + 240 + .. 4 prnle)).
and continuou

Then fis a well defined i .
by Brouwer’s fixef1 point theorem thSe e i o) e e pre

! i i ' 'such
= ¢'. This mea: , Ciere exists a point ¢’ CO_(E) suct
with the vertices () :Spfha.t ¢ will be the centroid of the simplex 0

P =5 7 + 1. We shall show that

in R |
1, Baving i 0 |
d Pamllel faces with the faces of o, which is MScribeg i;"ge

TOids !
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o is inside X. Suppgse the contrary :

erplane in ¢’ to . At least one of t
;1 the opetl halfspace defm(_ad by H, th
But then the point P;,(C,') will be in the
a1l the other points bile') are in the clos
cannot be on H. Th1’s contradiction pro
1, it follows that ¢’ has the required
of the theorem.

Let X" denote the n-dimensional real Minkowski space
sphere with the surface S, having the elements x — x1
i=1, ...., n. In what follows we shall use the therm
centrally homothetic and translated images of the su
sphere in i

The unit sphere in X" determines a norm ||-|| in this space. The distance
p(x, ) between the points x and y will then be defined by
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¢’ € T and let be H the tangent

e closure of which contains Co(Z).
Same open halfspace, and because
ure of this halfspace, their centroid
ves that ¢’ is inside ¥. From Iemma
property. This completes the proof

iwith a unit
aa, 29, 2f e R,
,»Sphere” to denote
rface S of the unit

p(x, 3) = |lx — 9|

Definition 1. There will be said that the Jamily & of sets in X" has
a supporting sphere, if there exists a sphere S in X", having common points
with each member of &, and the interior of S contains no point of any member
of K.

The centre of the supporting sphere will be said to be an ‘equally spaced
point for the family 3.

Definition?2. The family & of sets in X" will be said to be independent,
if for any n 4 1 pairwise distinct members K,, K, . .., K, 1 of &, any set
of points Py, ..., puy1, where pie K, i=12,...,n+ 1, determines a
nondegenerated simplex in the space X", i.e. the vectors p, el vy P
— P are linearly independent.

From Theorem 1 follows the

Corollary. Letbe P, P2, o, Pusr tndependent points in the Minkow§ki
space X" with a unit sphere with surface S which is of class C'. Then there exists
@ centrally homothetic and translated image of S, denoted S with the property

that p, € S’, i = 1,2, ....,n + 1. This means that if we denote by p the
centre of S', we have

(4) o(p, p1) = p(p, p2) = ... = p(p, Pus1).

If n = 2, then from Theorem 2 in [4], it follows that the point $ with
this broperty is uniquely determined. For » = 3 this may be not true.

Definition 3. The independent family & of sets in X" will be called
Sirictly independent if for any pairwise distinct members K;, Ko, ..., K41

he rays g, say p;, will have points -
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n + 1, there exists a single po;.. | ;o : ’
+ 8t poiy i — rp(¥’, #”") = ¢. If k denotes the distance from the point 7z’ to the hyper-
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; K;
d any points p; € Lo
apﬂwitk the property (4).

PRI T ,
=1 | |
! plane H, tangent in the point 7%’ to (6), then we have
t sets in
If M’ and B 1 gre compac

Xn, we denote i
: i h

i ropt e M ! 1 =

pte M, P } o o

P(Vx’n :rx") p(xl‘ xu) ’

o, ) = min {o®77)

(3"} a point 2 < M’ for which
oM, ") = (8" 2")

In the case M" and if we fix p(rz’, 7x") to be f, then p(x', ") = L je. o(x’, ") —» 0, if
4

i _

7 . y — o0. But Zis the distance of %’ from the hyperplane H,, which is tan-
int of M' to p"- r

is called a nearest poin | h

, strictly independent, convex ang X

. Kﬂ « A § ’ =

rrporey 2. Let be 'K;;, 5:; s'p.ac’c X: with a strictly convex umit sphey, =~ gent in X to (5), and therefore we have ——— — 0 as p(x’, #") —» 0 and
compact sets 1 the M"é 101%]16” this family of sets admats at least one suppor. . i p(,x' 3
with the surface of class C. from (7) it follows that b 0 as 7 —> o0, ie. h >0 as 7 - co. Because
" 2. L] .
ting spher 0 B B and denote by S(py, p», ... the surface S is compact, we may assert that % converges to 0 uniformly

P”;"f- %eiﬁejgﬁ;efgi'ge;rn;iﬁeé by these points having the centre ~ With ¥ = .
ey rtl e
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clpr P Pasr). We will prove that Denote now by ¢ the diameter of the set | K. Suppose that the set Q
1> P2 ca I8 i=1

peKi i=12 ..., n+1}is

(i) the setdﬂtil—‘aéﬁ(ﬁn pa voor Prri)? ©is not bounded, and let {¢’}i>, be a sequence of centres of spheres, which
boa?)didi’s a‘f continuous function of 21, P2 '*"ff""“' . tends to infinity. Let pi € K;, 1=1,2, ..., n + 1 be the points deter-

For proving (i) let us consider a piece of S, which can be represented in mining the sphere with the center ¢¥. Without loss of generality we may
the form: ‘ suppuse, that {j)‘,-’}.f’i,, i1=1,2,...,n+ 1 are convergent, and the limits
» %, = f{%1, s Bnm1)s are ¢, € K;, i=1,2, ..., n+ 1. From our above considerations it
(3) " o ' follows that the points ¢/, 7 =1,2, ..., # + 1 tend to a hyperplane, ie.

. o - 9 ; ; : : s

where (%5, %2, +.-, %a—1) € V, and V' is a .11e1ghbc?ur.hood of the ?;1g1n %}’-]_):)ihesl.i's,dlt o ,K’_’;,—i; Lalf,ez,m- .9:’1;3’3_&11)12?: ,in%g)e’ﬂ:.ilznzo151(':;d1cts the
in R-1 ={x e R*: %, = 0}. Fora d1§ferent1ab1<? fitis knc:wn that i ’we (i) Suppose that p; = Kii=1,2, ...,n+1and p} € K,, Y s e
denote by H the tangent hyperplane in the point x' = (xh Xy v Hyp AL L I S R I s
J(% % s % _))tof andif 2" — (%', %), ... 2 f(x % e %)) = ¢(pr, pa, ..., pur1). Because the sequence {c,}*, is bounded by (i),
is an other point on f, then if we denote by (x"’) the distance from x" toH, it has'a clufster point ¢’. Without loss of genefality we may suppose that
then - 0 wh ' " 0 wh ¢ o is the distance from I A I[ e & g, t]}en the sphere with cent(?r ¢’ and the.radms p = lim pv

M when p(#', #”) - 0, where p(x', 2”) is the dista " where ¢” is the radius of the sphere determined by #i, i =1,2,...,n+1,
¥ to x"'. Consider now a homothety with the centre 0 € R" and with the  Will contain the points $y, P2, ..., pus1. This is a contradiction with the

hypothesis that X, 7 = 1,2, ..., #n + 1 are strictly independent sets and

coefficient 7. This homothety transforms our surface in a surface of the form . (i) is proved.

" = Let be B a ball which contains Q. A mapping ¢ of B into itself will be
(6) X, =1f [—‘, ok g —E) (%1, %2, ..., Xu—y) € 7V ~ defined as follows: If ¢ € B we denote by #;(g) the element of the best
i i approximation to ¢ from the set K;, 1 = 1,2, ....,n =+ 1. It is well known

S hat ¢ p " ) i from the theory of best approximation (see for instance [2], Proposition
uppose that £ is a given positive number, We shall show that if the co€ 1 2.3), that p;(g) is uniquely determined and depends continuously on g¢.
cient 7 in the above homothety tends to infinity, then any piece of the i Let be

face (6) of diameter < { tends to the tangent hyperplane in one of the

points of this piece. Iet be ra', rx" two POintS - (6) N e p(?x’; ?’x”) = (P(q) = C(Pl(q)! ]’2(‘]). o & asy Pn-,Ll(q))
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f the sphere determined bY the points $(g), =1, 2, ..

t 5 5 1 ’ 2 .
glrirctflziir) it f°11°“17f t&f}ﬁ (2;3 i g. By Brouwers fixed point the
1 and ther

one fixed point, say

o(p) = P

n et p,ie. a point for which
will have at 1€3

The point p has the property

a y Lgt <]l 2, ’ nt+l () (

s in R, the n-dimensional Fuclidean space. Then this family of cony,,
£ sels It !
s:t; admits @ Supporiig sphere. | |
Proof. Really, an independent family of sets in the Euclidean space pr
r0of. ;

i strictly independent. . |
mghilsgozlary 1 is in fact the existence part of our Theorem 1 in 31

The second part of this theorem asserts the unicity of the supporting

sphere.
{ ) dent convex and compact s
e 5, Lot By Ka Ks be indepen : sal
e'n’[;g;: Rlﬁgowski spacelz X2 Zvith a smctly convex unit sphere of class C. They
this family admils exactly one supporiing sphere.

of. In X? the independence and strict independence are equivalent
noﬁzt:ng. This follows froxln Theorem 2 in [4], which asscrts’ t,haft if pipapy
is a triangle in X2 then there exists exactly one trlm_lgle_ P j’)gj)‘ne W1t_h the
same orientation as p,pyps and with parallel sides, which is inscribed in the
unit sphere S of X (S was supposed to be a strictly convex an d closed arc
of class CY). If we suppose that the independent points py, po and pg deter-
mine two spheres, S, and S,, then because S, can be obtained from §;
by a translation and a central homothety with a positive coeflicient, py,
$, and p, will be mapped into pj, p; and p; in S, and the triangles ppapy
and ppyp, will then be of the same orientation, and will have paralld
sides and are different. But this is a contradiction.

From Theorem 2 follows then the existence of a supporting sphere §
for Ky, K, and K,. We shall show that S is the only supporting sphere. Suppo
se thg can’;r{ary, ézhere exésts two supporting spheres S’ and S”. Denote

= ;and ¢/ =S"MN K, 1 =1,2,3. The segments g¢;q;" are i
fiaxi(l:s 1,2, (31-_ S and " have at mots two common points. Consider that
) » are distinct common points of S* and S”. The straight line deter

mined by s, and s, will intersect the segments ¢q'q!’, 1 = 1, 2, 3 and there-

fore also the sets K;, 1 =1, 2 3 ich i icti imi Y

: , 3=1,2,3, which is a contradiction. Similarly %

be obtained a contradiction also in the other relative positions of S’ and 5"
This proves the theorem. .

THEOREM 4. Let & be

the M'mkowsk@ Sj)acg Xz, a fam'ily Of Compact, indgpeﬂdgnt Convex sets 1':1

with a strictly convex unit sphere S of the class U~

continuous function of p;(q), 1 =1, 2,4.~ 1
Orem"q;

required by the theorem and the proof is com. |
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(ppose that the number of members
,i:%? is=5. If for any three members
in O there exisis a supporting sphere
a given radius 7, then there exists a
suj);/wﬂiﬁ'g sphere of radius r for all
the family .

This theorem is a generalisation of
Theorem 2in 131, a_nd it will be pro-
ved by an appropriate extension of
the proof in the cited paper. We begin
with the proof of the following lemma :

Lemma 2. Let K' and K" be two
compact, disjoint, convex sets in the
space X%, such that o(K', K") < 2r.
Then there exist at most two supporting spheres of radius v for these two sets.

Proof. Suppose the contrary: There exist three distinet supporting sphe-
res Sy, S», S; of radius 7 for K" and K”. Let S, and S, be given and ask for
the possible positions of S;. Suppose that S, and S, are as in the Fig. 1.
and ask for the possible positions of S;. If S; and S, have a nonvoid intersec-
tion the proof is amnalogous.

Suppose that ai=K'NS;, a'=K"'NS;, i=12, 3. From the
definition of the supporting sphere it follows that a; and a;’ (see Fig. 1.)
must be on the arc p, aq, and a; and a;’ must be on the arc p,3g, (where
$, and p,, respectively g, and ¢, are the contact points of the common exte-
rior supporting lines of S; and S, having S, and S, on the same sides). The
sezments | ai in K’ and a}’ a3 in K"’ are disjoint because K’ and K" are
disjoint. Denote by (T}) (respectively, by (77)) the tangent to S; from
a; (respectively al’) as in Fig. 1. From the definition of the supporting
sphere and the convexity of K’ and K", it follows that a; and a;" must be
in the domain between the lines (T))ajeaa;(Ty) and (Tg)asp ay’(Ty).
The segments aa; and ay’ay’ determine the domains D,, D, and D,;. If
a) € D,, then the segments ay aj’ and a;' @y’ in K' intersect either the
segment @, a, or one of the spheres S, or S, in a point distinct from ai{g = 1,
2), which is a contradiction. Similarly, aj cannot be in Dy,

It is obvious that if S, has a common point with the domain D determi-
ned by the line segments p,p,, ¢,¢. and the arcs p,a; aay'q, and p.a; Bay'q,,
then S, or its interior has common points with the set p,9. U ¢1¢., If Sz N
M pips # @ and S, ¢:q. # @, then Sy is tangent to pp, and to gig,.

Suppose now that a; € D, and aj € D, U D;. Then ag or a;’ is in D,
because p(a;, aj') < 2r. The line segments a, a; and a} a; belong to K’
and because K’ has no points in the interior of S;, it follows either that a;
is on the line a] a} or that S, is ,,above’’ the triangle a; a; az. But in the
second case S; cannot have points in D, {J D,

By a similar reasoning it follows that if a;’ € Dy and @; € D; U D,,
then af is on the line segment ai’ a;’.

Tig. 1.

s e

e e O S R e

St

o e AR A

o




/ ‘

|
|

and A Hi NEMETH ‘?

HORST KRAMER o]

78 o nie 0 B Because S; cannot cont

u that a; and @ 0 2, aj or ay'ay, it follows that we

my
men st
ts of the sleg a’ = q1 ay = s 1.€- D, = D. MOI@OVEI
P o ar 5
[ 2
have &; = }’?

3 ! in the i i v
l,tlf: interior of the segment 12 and ag 11 nterior of tp, |
in
a, must be

segment ¢ife syonld contain a P

If Kl (OI I{ ) Plpz a}]d qlqz,

ain in

.1t p in the infinite strip determ;, ‘i
'(c);;én jf)rom the fact tl;.(ellt S; are of clrs% ‘
lines ivel ﬁa;’) wou contain pO-
by the parallel ; - O espectively cont i
C}l, it would fo(])lfog thigjzcbﬁ is( not possible. But then p(K', K'') = 2 |
interior i o i . |
:lflethliﬁlnmz is proved by C.Odlgr?itgtigzmbers of : Ky, Ko, ..., K. The
Dl gt oo T i, B S ok
2:?v{3{1é’£ 2f'ollgws that either p(Ky, (1%) ?{ %”<01'21’P(T1ién lgy<the} 'Ilel;:;?;l;t
i ' - 4 ¢ ] £ . ) =
loss of generallvty,t“ 1; ;J;:{v:glggppoftin;; spheres S, and S, of radius . For
K, and K, ha\-e.a< 5 the supporting sphere of Kj, K,, K; must coincide
a g}llven :a£h3§§;r=with S,. We may suppose then that S, is the supporting
either wi i 2

ting sphere for K, K, K.,
sphere for Ky, Ko, i’ga. }{{4) 2;“(12?52;59‘2111&5}1})50; éf S]uppose bt e oK
We ha\;e e]}_‘t};eg, szn (f s "be the only possible supporting spheres of radius
Kic) '1'<tl;(:'se‘fs 2 K, (szee Lemma 2.). As above, one of these supporting
;pt(x)eres say S;, ;‘lus‘t be a supporting sph(fre fm:.Z t<he' sgt.(% : ?l’B{;{”tﬁzﬁ 1{\1. _

] ! ond 7 are two given different indices, 2=7, 7 = = or
}}herle('@ aarild g{a are sup%orting spheres both S; and Sy By Theorem 3 it
foﬁowé that these spheres coincide and because S; is a supporting sphere
for K,, K., Ky K, and S; is a supporting sphere also for K,, it iollows
that these five sets have a common supporting sphere. The same holds for
K,, K., K, K, and K;, with each K; in & and the theorem follows,
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SOME REMARKS CONCERNING THE MINIMALYATTRAC-
TORS OF CONTINUOUS MAPPINGS

by
R. KURTH

Edwardsville (Illinois)

1. Let (X, §) be a topological space, ¢:X — X be a given continuous
mapping from X into itself, 4 be any subset of X, ¢, be its characteristic
function (so thate,x = lifx€ 4, ande,x = 0if x € X — A), and define,
for any point of X, the real set functions $, and 4, by

n-1

P A =liminf 3 2 g4 (o* %),
- H— D n k=0

for any subset A of X.

n—1

P, A = limsup L E eq (¢* x)

no o B k-o

If p,A = p,, the common value of both sides can be interpreted as
,the probability of finding the moving point ¢*x (with x fixed, and k = 0,
1, 2, ...) in the set A”. For similar concepts in topological dynamics, see
[2], pp. 361 —362.

A closed subsct I, of X will be called an attractor of the point x if
VG eQG2F=p,6=1]

An attractor F will be said to be a minimal altractor of the point x if it does
not contain any attractor of x which is a proper subset of F.

These notions can be generalized. A closed subset, F, of X will be called
and atlractor of the arbitrary subset S of X if F is an attractor of ea_tcl} point
% contained in S. The set F is said to be a minimal attractor of S if it is an

attractor of S and does not contain any attractor of S which is a proper
subset of F.




