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Introduction. In the continuum mechanics and the nonequilibrium thermodynamics
the balance equations are the main instruments for modelling the macroscopic bodies as
continuous media [5]”. The derivation of the balance equations is possible using Liouville
equation. The kinetic and the balance equations for the collisional invariants (mass,
momentum, energy) can be deduced under some restrictive conditions [2]-[4]. But Liouville
equation is a conservation condition for the probability in the (microscopic) phase space,
which is a particular form of balance equation. Thus, the microscopic derivation of the
macroscopic properties of the thermodynamic systems is equivalent to an establishing a
relation between the balance equation in the phase space and the balance equations in
tridimensional Euclidian space. The existence in the phase space of other balance equations
in addition to the Liouville equation could simplify and generalize some of the results in this
domain. We shall show that a balance equation exists in the phase space for any scalar
physical quantity. We consider the general case of a time-dependent vector field defined on

an orientable manifold.

§ 1. Definition. We take over the definitions and the notations from [1]. Consider an
orientable n-dimensional manifold M and a volume form Q€ Q" (M). If R is the temporal
axis, then the extended phase space is the product manifold R X M. The mappings

Ma: RXM — M ; (s,m)—~m Js: M — RXM ; m— (s, m)

are defined so that mej is an identity on M. A smooth map X : RXM — TM is called a
time-dependent vector field if o X (¢, m)=m for any (s, m)€ RX M, where 7, is the
projection of the tangent bundle 7M. A vector field X e ¥ (RxM), called a suspension of
X, can be constructed by means of X in the following way :

(1) X=t+TjseX: RXM — TRXTM ; (s, m)r ((s, ), X (5, m)),

where 10 RXM — TRXTM ; (s, m) — ((s,1),0).
For a smooth real function f € F (RX M), define fy=foj,€ F (M) for any s € R.
Using the additive property of the Lie derivative, we obtain from (1)
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(2) F=Lif =0 +(Lxfs)om,

where the notation 9, is used, and f € F(RXM) is the variation rate of / along the

integral curves ol X.
Since the temporal axis is an orientable manifold, the extended phase space is also

orientable with the volume form O = dt A m¥*Q, where
i RXM —> RXM; (s,m)—(s,0)

and d is the exterior derivative on RX M. Taking into account that L, (dt)=0 and using
(1), we have the relation

(3) L#§i=dt A (Lgf),

which can be also written as diva X = (diva X))o’

§2. Classical mechanics. In the classical mechanics M is a symplectic manifold
with the structure given by a closed nondegenerate two-form . In this case M is orientable
with the volume form Q=@"? For a Hamiltonian function H € F (RX M), the time-
dependent Hamiltonian vector field is defined as Xy: RXM - TM ; (s, m)— Xs(m),
where Xs=(dH;)* € £ (M). Liouville’s theorem states that O is invariant with respect to X

(4) Ly Q=0 or divoX:=0.
From (3) it follows that Liouville’s theorem can be also written as
(5) Lz(=0.

The probability density is a positive smooth function p € F (RX M) which, integrated
on a domain DC RX M, supplies some quantitative information on the probability so that
the state be included into D. Liouville equation expresses the condition that the form p{) is

invariant with respect to X
(6) Lz (pQ)=0.

For given X and 0 and for some initial appropriate conditions, the probability density o can
be determined from (6). Therefore Liouville’s theorem (5) and Liouville equation (6)
describe different properties and they must not be confounded. If X is Hamiltonian, then (5)
holds and we have L (pf})z(L;zp)ﬁ. Because of (2), the Liouville equation (6) takes the
usual form

(7) ,Ol: azp+(Lsts)°7f2:0-
Since pQ is an external form of maximal rank on RX M, then (6) becomes
(8) diz (p1)=0.

Integrating (8) on a domain DC R x M and applying Stokes’ theorem, we obtain that the
probability flux through the boundary of D vanishes. Hence, Liouville equation is equivalent
to the probability conservation and it takes the form of the balance equation (8) in the
extended phase space.

Consider a smooth real function f € F (RX M) and assume that a probability density
o satisfying (6) is known. Then we have
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JoQ=(Lzf)pQ+ /L7 (o) =Lz (foQ).
Since fp is an exterior form of maximal rank on RX M, it follows that f satisfies the
balance equation

) foQ=diz (fod).
In this case the contribution of each state to the integral on a domain DC R X M is weighted

by p. In contrast with (8), the flux of f through the boundary of D in (9) does not always
vanish and it is balanced by the generation of J inside D.

§3. Statistical mechanics. In the statistical mechanics only balance equations in the
reduced phase space M for a given moment s € R are considered, and not those in the
extended phase space like (8) and (9). The terms of (5) can be written as

Ly (fpﬁ) =dt A 5 { [at (fp)]sﬂ+ Ly, (ﬁpsﬂ)}v fpﬁ: dt A\ st (fs050).
Then (9) becomes a balance equation on M :
(10) (atf}sp.rﬂ+dixs (ﬁ'()sg):[fsps*fs(atp)S]Q-

The meaning of these terms follows from the integration of (10) on a domain DC M constant
in time. The first term in the left-hand side is equal to the variation of the amount of f
contained inside D. The next term gives the flux of /° through the boundary of D owing to
the flow defined by X,. Note that in (10) the microscopic flux from the thermodynamic
balance equation is absent because no average allowing the definition of a thermal motion
has been made. The right-hand side of (10) gives the amount of f* which is generated inside
D owing to interior or exterior causes. If we take /=1 in (10), then

(11) (8i0)s+ dix, (0s0)=0.

This is Liouville equation (7) written on M.
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§ 1. Introduction. A projective transformation of a pseudo-Riemannian manifold
M " is an automorphism of the projective structure which transforms the geodesic lines in M "
again into geodesics. The projective transformations systematically occur when we search
some symmetries of equations of mathematical physics. It suffices to mention that Lie algebra
of infinitesimal point symmetries of Korteveg-de Vries equation is a subalgebra of the
projective (more exactly, affine) Lie algebra, and Riccati equation, by Iboragimov’s expres-
sion, is “an original realization” of the projective group on a straight line. This property may
be explained by the fact that the maximal group of point symmetries of dynamic Newton’s
equations is a projective group acting in a 4-dimensional flat space-time. This result has been
obtained within the frame-work of a geometrical approach based on Lie and Cartan’s ideas.

The goal of this paper is a development of the method of the theory of automorphisms
of some geometrical structures and also a special technique of integrating equations on some
manifolds and their application to the group analysis of differential equations of the
mathematical models of physics and mechanics. The main idea is a consistent consideration
of the symmetries of differential equations as automorphisms of some geometrical structures,
in particular, as automorphisms of the projective structures, i.e., projective transformations.
This approach would make a contribution in the geometry of the differential equations and
group-invariant methods in physics, unifying and reviving on a new level E. Cartan’s and S.
Lie’s ideas and continuing the fundamental investigations of T. Levi-Civita, G. Fubini and
A. Z. Petrov.

Lie was seeking to give an explicit geometrical character to the symmetries of the
differential equations. Cartan has created his theory of the projectively connected manifolds,
persistently stressing its significance for the investigation of the differential equations [5]V.
The methods of differential geometry, in particular, the methods of Cartan’s theory, give a
systematical approach to the determination of the local and non-local symmetries for a wide
classes of ordinary and partial differential equations and finding their solutions.

The newest geometrical methods in theoretical physics have been inpetuously penetrated
in last ten years. The modern physical field theory acts in multidimensional curved Lorent-
zian manifold (space-time). The paths of motion of test bodies which are a main source of
information about the structure of the physical fields are defined by the geodesic curves.
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