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BALANCE EQUATIONS FOR A FINITE NUMBER
OF PARTICLES

C. VAMOS, A OBEORGESCL mnd N, STICTU

Tn this artscle an abstract discress system is considersd, consisting of an asbirary,
finite number of pirtales modelled ns mathematical pomts 1o which analytic lun<tions
of time are attsched. We prove thisl o spoceime avernge of these analytic lnctons
canl b defned sarislving a relodon of the same form with the balonce eguabon m
poptinking meclifiics.

1. INTRODUICTION

The balance equations are postulated relations for fundamental phisical
quantities {mass, momenium, energy, entropy ete.) valid for all continuous media
[11]. We take over the differential expression of the balance equations from [9].
Let ¥ be a physical quantity additive with respect to space, associated (0 a continuonus
medium. That is, there exists a function y of space {7) and time (£, called fhe
volume density of W, such that, for any volume F, the integral _F WdF represents

the: amount of F contained in . The di flerential form of the balance equation at a
regubar pount {1.e. without shocks or other disconfinuitics) is

(1) E',"-F+Ei.ﬁa{m,+\|”q]—{ﬁ’+-5}=ﬂ'

where &, is the teraporal derivative, &, iz the derivative with respect to the o component
of 7, @ is the ¢ eomiponent of the flux density of ¥, v_ is the o component of the
veloeity, pis the production density of V' due to inferior processes and s i¢ the supply
density of *F controlled from the exteriorof ¥. Thequantities @, p and s are expressed
by the constitutive equations charctenizing fhe considered matenial,

The statistical method of derivation of the balance equations for a macroscopic
pliysical system from its microscopic structure was initiated by Boltzmann {e.g. [1]
~ |31} This method relies on the evolution equation of the probability density in fhe
phase space for the system consizling of all the microscopic componenis of the
pheysical system (Lisuville equation}. Even for the simple case of the ideal pas,
because of mathematical difficultics, the derivation of the balance equations and
constifutive equations iz possible only using certain hypotheses, approximations
and simplifications [4]. So far, these results have been extended to hard sphere
fluids, also a very idealized molecular model [5].
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Fora more complicated microscopic structure, the existence of the balance equations
iz implicity postulated and the problem of the statistical mechanics is reduced o
the calculation of the constitutive equations.

In this article we show that the existence of mathematical relations of the
form (1) can be proved in the more general framework of the kinematic description
for the microscopic evolution of an arbitrary corpuscular physical system. The
position and motion of the microscopic particles can be modelled as mathematical
points, and the physical quantiies charecterizing the particles (mass, momentum,
acceleration, kinetic momentum ete.) can be modelled as functions of time,
Thus, the differential equations (the dynamic systern) corresponding to the
microscopic evalution of the corpuscular physical system are notl Enown, bui
the cxistence of itz solution 15 postulated

In the following we shall consider an abstract mathematical model for the
kinematic microgcopic deseription discussed sbove. This mathematical discrete
system consists of an arbiteary, finile number of mathematical points to which
arbitrary functions of time are associated and it has an abstract nature becanso there
is no physical specification for these time finetions. Certainly, fora given corpuscular
pliysical system, the functions of time can represent the mass of the particles, their
momenium or any other phiysical queantity, bul in geneml no speci fic physical quatity
15 assigned to the mathematical points. To be more concise, we shall use the name
of “particles” or "material points™ for these mathematical points topether with the
aszigned abstract funclions of ime,

The particles can appear or disappesr a8 a resull of cerain instantancous
processes. Bvery piarticle has o temporal interval of existence which can be different
from the temporul interval over which we stedy the discrete systent. We assume
that a single existence inferval comresponds to 4 gi1ven particle, i.e. its disappearance
at one time precludes its reappearance. Even if 2 particle of the same type appears
later om, it ia considered as a new particle. For the abstract discrete system we do
not impose any connection betveen the disappearance of some particles and the
appearance of others, Certainly, in the caze of processes like chemical reactions,
such connections exist and mass, momentum and energy must be conserved,

The enly dynamical requirement iz that the evolution of the abstract diserete
system (both the vanation of the particles position and the associated fimetions)
should be given by analitic finctions of time. Under these circumstences we shall
prove that a space-time average of the arbi trary functions of time has 2., continuous
partial derivatives, We emphaszize that the averaging is an ordinary mathematical
one, not & statistical average on an infinite ensemble of identical copies of the
physical system, Although these averages preserve the discontinuities agsociated to
the particles as disconfinuity surfaces, they satisfy a relation of the form (1), To
climinate and posibility of confusion, we shall call the relations oblained for the
abstract disorete system, the “discrete analogue” of the relations of contimuum
mechanics having a similar form.

We shall apply these results to i Hamiltoman system formed by a=ingle type
of parlicles which neither dizappesr, nor appear, Every particle is characterized by



1 Halince equntians | J)

e ——

4 constant mass, For s case we shall write the discrete anplogue of the balance
pquations for mass, momentum and energy. We shall briefly discuss the relation
with the approach in noneguihbrnum statistical mechanics.

1. THE DSCRETE AMALOGUE OF CONTINUOLUE FIELDS

We shudy the evolution during the lemporal interval £ = [00,T] < R of an
pbstract discrete syztem consisfing of i particles (i.e. mathematical points with the
assigned functions of time), We deneteby [ = {.r..',:; ]: [ the existence inteval of
the i-th particle {1 ¢ = N), Obviously 0= ¢ <Tand 0< & = T. If { =1, then the
i-th particle exizsts over the whole interval [ If [+ [ for one particle at least, then
there are moments when the number of particles 18 emaller than the total number of
particles N, Denoting by #ii} the number of the particles existing at the moment
¢ & I, we have n{f) < N for each £ & [ The equality holds only if] =T forall i S N,
ie. if no particles are generated or destroyed over the interval 1.

Let g £~ IR be an arbitrary function of time characterizing the i-th particle,
If £ = 4, then ff =0 for all £ & \d, We assume that the restriction @, | I can be
mepiesented as a Taylor series, ie it is an asalytlc finclion. In the interval [ the
function o, may take any real value, including zer (e.g. the velocity components of'a
motionless particle). Hence ¢, is discontinvous at &7 and £ if 4 (t°y# 0 and
o, (¢ w0, respectively. Similuty, the dedivatives of g at ¢ and  may becontinuous
or discontinuous. 'I'hi: o eomponsniz of the radius vector R Sl 2R l:-n:. LE‘..E]
and of the velocity £ , £t —+ R (o = 12,3) may be treated s particular cases of
functions g, The ﬁmr.tmmx and & supply a kinematic descripfion of the motion of

the discrete systen.
Definition. For two arbitrary positive real parameters 1< 772 and o, we define a

ﬁm-:.liun_{.'-":ll?.‘x[t, 1) Ras

e
() D, (7.) = 1-}1} E _[ w ¢ }H*(f _{ﬂ,e]_;}"]dg
where F'=4ma’/3 iz the volume of the open sphere of center F and radiug o denoted
by S(F ,a) and £ 7 is the left continuous Heaviside function.

Since ff [-ﬂ { |[I } }d) vanishes if the i-th particle is lecated outside the
sphere S{ F &) ind I.‘:I.[I }I vamishes if i & N\J, then a nonvanishing contribution to
ﬂ i due only to particles which [ie in 5 F ,a) over the interval {¢- 1, 1+ 7). Therefore

D, (-' I:i characterizes the mean distabution of @ about the peint of radius vector
F at the moment £, and it 15 & spatial average on the sphere 5(F ,a) and a (emporal
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one over the interval (f-1, t+1). Dbviously, it also depends on the parameters
1 and a, hut we are not interesed in this dependence.

The function H*[nl (&) F}l) in (2) takes only the values O and 1, The

jumps occur when the i-th particle enters or leaves the open sphere S F ,&). These
moments are among the solutions u, of the equation

® )= () 7)o =0

where |.‘||rl'i‘-,::||||"1 is the distance at the moment { between the i-th particle and the

surface 831 7 a) of the sphere S{F ). Sincax_, and hence ki, are analyfic functions
with respect to u, and [ is a closed interval, then either equation {3) has a finite
number of solutions or 4, vanishes identically ([10], p 78L In the latter case the

particle moves along the surface af S(F ,a) and does nol enter the sphere, hence
H [af - {r;.{s}—r-}" is identically zero and has no jumps, Since 7(w | is a known
finction, then the iselated zeros of (3) are implicit funcrions (7). The implicit
function theorem can be applied only at interior points and it does not ensure the
cxistence of w(F) for w =¢ ic Fe a&{i}{!f}.u:] . This case will be discussed
separately. For 1, E{I:.!'.'}I f

(4) % = 2(iifu) ~F)-E, (1) 0

then the finction u, = F exists in a neighborhood of Fand has the denvatives

(o7 i, Eﬁ.(-
5 el S = all i = 1] C
3) i, E:fﬂll'r Fl.lit.li}-i’ 'ﬁ.,(ur}. i

where x, are the components of 7. According lo (4), the function u(F)is not
diffesentisblet he points ofthe discriminantsursco ofthe family {a5{7(1).a)it e1,}.

We denote the moments when the i-th particle enters {leaves) the sphere S(F a)
by £ <, <, <.<u -:.—;{.rr* <ull <l <., {{Tﬁ.sjmﬂ-.:sﬁnm.ﬂ:?‘.a}
I5 open, H'[a"‘ - {i}{r}—?ﬂ as 4 function of £ is left (ght) continuous when the
particle enters (leaves). Hence for £ € [, we have

(&) w'(a' (1)-7))=H '(a‘—{ﬁ{:;]—Fﬂ +

(e, o l-)
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where 7 is the night continuous Heaviside jump function. The first term in the
right-hand side of (6) vanishes if the i-th particle iz generated in the exterior of

(7 .a) and equals | otherwise, [f w =r', then the particle can only enter the
sphere after its generation, hence ), = 1 and relation (6) holds. If u =1, then
the particle could only leave the sphere before its disappearance, hence n::.-r =f
and relation (6) holds again. So (6) contains all the possible situations if we tuke
4 <uy and #, <4 . The following notation will be used:

N YR T R VAL

FROPOSITION 1. The function 0 defined by (2) hay partial derivatives
contimons a.e, fn IR = (r, T-1).

Proaf. To study the differentiability of O, we consider the fusction
g B xx, T-1)—IR

(%) g.(7.1) =I{p,{:‘ }H*{a’ -{r;{r‘] = F}I]dr \
Fora fixed 7, the integrand

© Gi(r.t)=wf)tr (o~ () - 7))

i5 @ continuous function, except a finite number of jump discontinuities
{rr*,tl' }UU:UU‘”- Henee G is Riemann integrable and g has partial derivative
with respect to fa.e. in {1, T-1), equal to

(10) B lFt)= G i +1) -G (Fe-1).

The discontinuities of & g with respect to (7 1) are related to those of 7. From
(9) it follows that G, is discontinuous when @, is discontinuous and H°
nonvanishing, or conversely, when 5 is discontinuous and ip, nonvanishing.

In the firet case the i-th particle appears or disappears in $(7 ,¢), i.e. =t and
Fed (F,{tf}.ﬂ . and in the second case the i-th particle fiez in the surface of

S(F ). teland Fe E:'.S‘{a';[:],a .
Hence the derivative (10 is not continuous over

(11} o= {{F,r][r 1= {’: =T+ 1:}['1[1,1"— 1) and F ES(ﬁ(ﬁtlﬂ}]{j
U{{F,:].'r E[r;' tx,e rr]n:r,f"-t_] and 7 E@.S-’{F‘I (e ¥ 1), a}} ;

The sef €3 has null Lebesgue measure in IR = (t, T-), hence & g is a.e. continucus.
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In the appendix we show that the derivative of g, with respect to.x, exists and
ia continuous a.e. in R? x (1, T-t). Using definition (2) and rebations { 10, (11}, (A3)
and (A4), it follows the ae. continuity of the partial derivatives of D, given by

M
(12) a,ﬂq{f,rj=ﬁﬂq[ﬂﬂ}-sj{ﬂr—1}]
=l

for (F.1) <18 x (1,7 -\ U], and

[ i ¥

- Al sy
for {F.FJ el’ 1':[14'1" - t}\gfi:"_

1. THE DISCRETE ANALDGUE OF BALANCE EQUATION

PROPOSITION 2. Fhen the derivatives (12) and (13) exist, the function D
satisfies the following refation

3
(14) 80, +3.8.D, =D, +{E‘D'}’
a=1 =

where {&rﬂp] is determined by the pariicles generation.

Proof. We use a theorem siating that every function with bounded varistion
may be uniquely split into a sum of two functions: one confinwous and a jump
function ([8], p331). We apply this theorem to G, given by (5) comsidered as a
function of t. But excopt a finite number of jump discontimuities, G, is analytic on [
and then its eontinuous part G:" is also absolutely continuous. Hence we may wiite
G, =G +G", where G'is the jump function. Replacing this relation in (1Z), it
follows that 8,0 can also be written as a two term sum

09 20,(00) *(on)
According to Lebesgue theorem, the absolutely continuous part of G is equal to
(16) G (Ri+1)-GF.t-7) =J]'t¢i{¢f} i [: R (F‘ (:“}- 9]1) dr’ .

Dividing (16) by 2t¥, summing up with respest to 4, taking into sccount (9), (1)
and (2) we obtain

(7 (8,) =1,
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From {12), the discontinwous part of E;D' ciam be written as

(18) {a_ﬂﬁ}”{rr,:} - g{ﬂf{ﬁ: +€) -G (P —1)].

It containg the discontinueus varations of G, during the temporal interval [r-7, 1],
As proved in the preceding section, ¢ 0 exists if (7, is not discontinuous at t+e
and -1 (zes expression {11)), therefore we consider only the jumps occunng al the
interior points of [f-1,0+1], Le in (x,41), From (9) it follows that such a vanation

can take place if the particle is gencealed inside the sphers S(7 o) during Lhe
lemporal interval (-5,041). Hence the jump of 7, is equal to

A, = o }HI: ~(aler }—r)){ﬁ*{:+1 £)-H{-v-1)).

Similarly, the discontinuous varation of & related fo the destruction of a particle is

AG = -.pr{r;}ﬁr(a‘ ~{7(s)- F}l}{H eve—g)-br(e-1-1)).
The function &, also has discontinuous vanations when the particle eaters or leaves
the sphere S F a)
W9 Gt +) -G (7 -1)=8G+86G,+ T ) Tl
wel¥] vy

where W =0 r—v0+1) and W' =0 fi—1,6+7). The sign of gfu) is
positive (ncgative) if the particle enters {leaves) the sphere S( F ,a), and it is given
by the sign of the expression -{ 'nl':! F} ﬁl.[u}wlunh 18 proportional (o the
inferior normal component of ;ﬂ to the surface of S{(F ,a) at the moment w,
Hence we may use a single sum in (19) if we denote [/, = ¥, LW, . Replacing
(19 in {18} we oblain

{20} {ﬁ" .Dq }” = [ﬂ‘ﬂu]r = E:.F"' gé Tr{"}IE:;E:;:::;;:E:;J
whert

(1) (8.0 }-—-ﬁ{:&r} FNG).

Since gy and £ 1) are snalytic finctions with respect (o tfime, then their product
iz alzo analytic and relation (20) can be written as

(22) (apur = —Eﬂ_aﬂ_ +{ain_]: |

The physical quantity ©& rcpresents the tmnsport of g by the i-th particle, and the
space-tine avernge in represents the mean flux of .
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Relation (14) follows from (15),(17) and (22),

In contrast fo balance equation (1), relation (14} does not contain a quantity
cquivalent to the velocity ¥ . The velocity is not a volume density, but an average
guantity. To define a discrete analogue, we must divide D, by the number of the
particles contributing to [t . Let ﬂ'l be the density ﬂ' comesponding to l.PI,{F}" 1 [or
all v & £ and i < N. Since li characterizes the average number of particles per unit
volume, the discrete average of o is defined as

(23) olF, r} = ﬂ'{ﬁ,r]fﬂl |[r-, r}

if DF.t)»0 and it vanishes if D(F.t)=0. It is casy to show that

@=9, 9 +p, = p +@, and Lp=2g, where & is a real function of F and 7
The mean motion of the particle is given by the disercle avemsge of the

velocity £ with the components E_. To introduce E

E, n(14), we wrile
e ﬂqr_-tn.-i.n =E,D, *{ﬁ'ﬂn

where '-."_l.i!':;l 1% the discrele analogue ¢f the kinctic part of the flux density

- ]- -
D = ﬂwfl.-E.JE“

L]
]

€, being the unit vectors in ordinary three-dimensional space. Then (14) becomes
= i
(24) ﬂrﬂp+?-(ﬂqa+‘ﬁ'-¢t_Di+{a‘ﬂ'}l

This i= the discrete analogue of the balance equation (1),

4. THE HAMILTONIAN 8YSTEMS

In thiz section we consider a Hamiltonian system consisting of a single type
of particles. The abstract particles considerzd tll now become real particles with
mikss #, galisfying the principles of elassical mechanics, Obviously, the mass m is
constant in lme and the same for all the parficles, Since we have a single type of
particles which are not generated or destroyed, the generating term (21) vanishes,

The relation (24) for mass is ebtained il () =m forall 1 & f and i < V. Then
D =D =mb, is the discrete analogue of the mass density. Moreover, §=m,
E]’L =0, ¢, =0 and (24) becomes the discrete analogue of the conlinuity equetion

(25) an + v-(ﬂ_E] =0.

Fer the ¢ compenenl of momentum we have ¢, = p =mE , and
ﬂ& = E*_,;_ =D E_ . The discrete analogue of the kinetic part of the flux density
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takes the form of a symmetnc tensor

ot

(26) o= qu,= zﬁ'r 2 JEf) R el ) -5)

(- (o)) o

The denivative §, iz the 2 component of the force _.Ir acting on the i-th particle and
relation {24) becomes

- ] i ]
(27) ACRATH WALRANE ?:ap.j;p .
=1 =1

Making additional hypeiheses on the inleraction between particles, one can
prove that equation (27) is the discrete analogue of the momentum equation in

contimmum mechanics [7].
Choosing as phivsical quantty the kinetic energy of the particles P, = E = —mﬁz

we obiain

mﬂ. + == mﬂ‘.

[l:ﬂ:H]‘ 2 B J 2 f
whnmu.tnlnndﬂwlmemt}rufﬂ with respect to 4, e o mt—ﬂ'“ +DF.T11E

second term of the expreszion vanishes EL il E, -0 g .';_ (ﬂ; - ﬂzj =0.The

last term is the discrete analopue of the hm:hn unerg].r dms;ty of the thermal motion,
I

since %H{E -l'_;} represents the kinelic energy of the relalive motion of the i-th

particle with respect to the mean motion of the particles in the sphere 5( 7 ,a), over
(r-T, 1+ 1), We denole this term by
3

£= —n.rﬂ
e "2
the last equality following directly from (26). Similarly

{ﬁ::}u - 'lmﬂr}.[;_—ﬁ,j =%ﬁ‘5pniup "'{‘IJ.J

where the flux of the discrete analogue of the kinetic energy of the thermal
motion is
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The time derivative of the kinetic encrgy-can not be writien in 2 simple form, so the
halance equation (24) for kinctic energy becomes

(28} ﬁ';('lz'ﬂ“? _,_5] +?1[[%B_EI +5]E:;]+'i’-ﬁ-l-l ;:?JE::J: D, .

In addition to relations (25), (27) and (28}, discrele analopurs of balance
equations for any physical quantity are possible.

$, CONCLITSION

Relation {24) is not a balanee equation, but an identity af the same form with
u balanee equation. It has been derived under genesal conditions, for an arbitrary,
finite number of mathematical points to which analytic functions of times were
attached. Due to this very general approach, the results can be applicd to a large
number of corpuseular physical systems. For example, the discrete analogue of the
balanee equation (24} is valid for an arbitrary physical quantity, and for an arbitrary
number of particles {even very small). Also, gince the dynamical cquations for the
microscopic evolution have not been used explicity, relation (24) halds for any
microscopic inferaction forces satisfying the analyeity condifion, In this article we
have considered the case of the Hamiltonian systenys consisting of a single type of
particles which can not be generated or destroyed.

To transform the fimction 2 defined by (2) info a co nfinuons field, and
relation (24) into a halance equation, & stalistical average on an ensembie formed
by a very large number of identical copies of the considered corpuscular system is
needed. Although, if the sumber of particles contributing to the velue of L3 iz lmge
enough, then D approximales closely the continuous Geld comesponding to the
physical quantity ¢. Thal is, if the physical system gatisfles the local equilibrium
principle [6], then the parameters a and ¥ ean be chosen o that the particles lying
in the sphere 5 F ,a) over the interval (i-T, i+ 1) should form a near-equilibrizm
thermodynamical system [12]. Obviously, in this case the tofal mumber of
particles N can no longer be arbitrary, but it must be large encugh to ensure the
validity of the thermodynamical limit,

The balance equation in continuum mechanics can also be eblamed as the
limit for @ — 0 and © — 0 of the statistical average of relation (24}, Both methods
to obtain the balance equation (1) from (24) will be discuss in another article.

APPERDLIX

Here we study the differentiability with respect to 7 of the function g, defined
by (8). Although (6) holds only for I & [, it may be substituted in () because o,
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vanishes for ¢ & I\, and we oblain

{Al) E‘,{F.l}=H'(ﬂj—[F,{f })Inp dr +ET¢;|-r .! ~u|de’ -
—E I[ﬂr{ .! —u}drr

where IL-"I" and U7 are defined in {'?}. First, we consider 2¢ <] —1' . The following
cases gre possible:

(8) 1<t =1. Then {.r —1.f+t}nf|. = @ and g, vanishes in the integration
intervils in (A1), such that g {r“,:} -0 forallF el .

b} l‘E{!'I.+ —'[.ll' +-rl_ Then {'I'—'I,.!+1}nj" =[.E:,.‘.+1'} and the micgral in
{Al) have the same kmits. The first termin (A1) depends on 7 through the finction

I
i (n’ —{if.{:lf}—F] ) which con lake only the values 0 and 1. Henoe, when this
finction s continuows with respect to F | its denvative exists and equals zero. Then
¥

the first term in (A1) is not differeatiable if H‘(a‘ o [FI.{:..*:] = f} J is discontinuovs,
Le e 6.5{1'}[::'}‘.:} . The others terms in (A1) depend on F through the moments «

defined by (3). These terms are not differentiable either iF w is not differentiable
(1.e, relation (4) is nof sabzlicd) of if the moments & coincide with the integrabion

Fimids - {L.8, F Eﬂs{q }I ] or FE-E"-S'{ I+ r}.n}] In thiz case the infegrafion

mlervils have dlsmu'r.muuus vanations with respect to 7 .
{c) '—{-l'* b 1'] - Then (e—1,t4+1)1f, = [t =%,4+ ) and the integrals
with u = i- T are equal to the inlegrsl of the first termy. Using the expression

i (fr(e)-7) )+ TH i) Eﬂﬂ--p-"}lﬂ-(a=-(¢{=-t]-r]‘]

where 1 = U{N[i 1~ ] and 1" = U] Nt} 4 — <], relation (A1) becomes
(A2 g(F.0)= H*[:u’ ~{7(t- t}a-F}I]T{p:.[r' Jar' + Zl:j':pr{.r’ Jert (e — w)ar’ -
-7 e B
- Z TIFI{I’}H' I:r' —ujdi’

e H;.r U"n{! T'Ir] anil H,.-n':_!'}'"-’ﬂ( ok I As for (b), the first term 5

not differentiable if 7 EﬁS{J;{I %), } and the other temms if 7 E-ﬂ.'i'{ Fir+T) .n}l '
if relation (4) is nol sabisfied,
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(d) ¢ n‘{.tr‘ = -r-t} Then (-1 +-r]|'"|f, = [: - r,.r;] and the expression
for g, {FJ] is identic with (AZ), except the upper integration limitis 4 . 5o gr{F. f]l
is not differentiable il F Eﬂ.ﬁ‘[ﬁ{! —1), u} or F EB.S{:F'{[J.- :l,:':} or (4) iz not satisfied.

{¢) r2¢ +1. Then (-7t +1)(1f, =3 and g (F.f)=0.

If 1<t —1 <2t , then the possible cases for (Al)are 151/ —%.1 i n-)
.!-r-.‘[.f{— T,.I'J_+t'].IE{I'r.' kT +1:} und rz1 +1 and the discussion is similar.
Finally, if 7 - =7, then other five intervals for £ exist, Taking into account that
{ & (v, T-t), the set where the function g, is not differentiable with respect to F is

(A3) 0= {{?,:j}z i ! +1P'|.[:,T-:} and F eﬂ}'{@[:;},u}]u
U[{FJP E[.t; -1, +-:}|["'||[t,T—1] and 7 EBS‘{I;{I; }.#)IL,F
I__I{I[F,.IHI E{Er* L T}I']:t,'i" —1)and F Eﬁi‘{i‘r{t:ﬁ_'],a} ;L,I
U{{F,.:],r ez, T =), exists 1 et =+, such that

Peas(r{)a)ana (1)) 5¢) -0}
This i= a set of null Lebesgue measure in R x (x, T-1).

Only the terms in (A1) which contain u in the integration interval have a
nonvanishing contribution to the derivative of g, with respect to x, denoted by
f_g Using (5) and taking into account that the sign of the terms in (A1) coincides
with the sign of the expression —{Fr{u]—F}-f; (1) , we obtain

o 2wl 2y )

where UI.={L:’UU:" }F‘[:-r,rﬂj. It is obvious that & g, i3 confinuous over
(N R e
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