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TRANSPORT PROCESSES IN POROUS MEDIA.
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Abstract:s A coiwse prained spocc-tine: wooraee of ouenntilics wssigiad o the paleesles
of w conpusenlor physical svystem 35 defined. I is shown that these aveeages are al-
nest evervwher contipuous space-time. incticons sod Ehey sati=fe idontitics =ik o
the Lalanes coquations from continmun mechunics, Further, throush wverages over e
stafistical easeadlo. L."t-'l.'!'_"-"l-'.lih."'l.'l_' conthsous fAolds. amed Badiones: |;~.r|_||.|1.|;.ir_:|;|'|:-i s ederivaed
Tt is slwown that a L.Jl,gnmgj.rm :I::.-&imirithm of the transport '|;|:l.' an advection=rlithusion
L"I!'.|I!I:Hi-':.'ll.'|. can b obtamod. In this frmmne. a I]J.m:'l'-‘.:titn'_lpi-c com s el of miokion i
porons milin is propossd, the Damcy-Buckiugham Moy Loy and the porusity depenceont
pebveiion-cliffesion couation ae derived.

1 INTRODUCTION

The adequary of the diffusion eqmation as a model of the transport in porois
modia s a vory nch commented question l.lspuljﬂih} ot all., 1988). The attempts
to derive it in & stochastic framework, based on the cquivalence between the Tro
stochastic differential equation and deterministic Fokker-Planck ecmation, did not
take into arcount the porosity. Moreover the validity of the effective diffision cqua-
fion af large scales is only an assertion, not A rigorons mathematical result [Surin
ef all., 1995]. The methods based on homopenization or renormalization give good
mathematical results but assume nonplysical hypotheses on the structure of the
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porous medin or skatistica of velocity, For instance, the Darcy law providing the
Altration velocity is mathematically founded by homogenization method onder pe-
risdicity assumptions on the porons media structore. [Sanchez-Paleneis, 19580).

Sposita [1978] gives a statistical mechanical derivation of both balanece egquations
amel Davey law, The approach is In the spirit of the statistical mechanics transpaort
theory of Kirkwood [1967), An additional spare average over the pore spare intio-
dnees contimons fields but the porons medin strocture is not explicitly takon into
account, The utility of this theory s limited by the necessity of the knowledge of
the probability density finction which deseribes the microscopic dynamics of the
porous media as a physical system.

None of the proviously dismssad methods pive a continnons madel of the porons
rnedia entively based on a microscopic deseription. We try to B this gap as it follows.
We describe the porous media at the microscopic scale as a physical system of an
arbitrary and fnite nuimber of moleenles of the solid matrix and of the components of
the fuad filling it. Using the method of Vamoy et all. |1996a,b] we derive contimons
fieleds and balanre equations and we propose a continnous medel of the porons media.

In the section 2, a coarse-grained space-time average s defined.  We prove that
if the microscopic physical quantities are desen |_:|r:|:l Iy analytic functions then their
roarse-grained averages are almost everywhere continnons and satisfy identities sim-
ilar to macroscopic balance eguations.

It the section 3, we describe the physical system by a stochastic process defined,
in the sense of Doob, as random variable valued in the space of the frajectories of
the constituent particles. The expectation of coarse-grained averapes pives smooth
contimuons fields. This approach enables us to improve the insight of the classical
statistical mechanics definition of the continous fclds [Kirkwood, 1967]: contin-
nous Helds are the limits, for small space-time scales, of the expectations of the
coarge-grained space-time averapes. By averages over the statistical cnscmble of the
identities derived in the previous section we obtain balance equations, In this way,
the macroscopic balance equations can be derived for any microscopic quantitics,
not only for conservatives anes, as it is usnal in statistical mechanics. 5o, nsing
the balanee equation corresponding to the positions of the microscopic particles, we
can write the roncentrafion balance equation i the advection-diffision form. This
resnlt suggests developments in data analysis and oumerical algorithms.

Applying this continuous modeling to porous media, in the section 4, we find an
expression of the porosity similar to that introdweed by Hilfer [1991). We also de-
rive the Darcy-Buckingham law and the porosity-dependent: advection and diffusion
EC|Atinns,

2 COARSE GRAINED AVERAGES

W consider a classical mechanics system consisting of & molecules, The micro.
scopic discrete desceription of this system s given by a set of analytic finctions

(0]
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i l— R, = [ﬂ,T] C R{l 1  N) Thea components of the comresponding
position vectors 1y, z, - J +— B (a = 1,2, 3), and of the wlocities £, £, : T +— R
(o= 12 3), can be treated as partioular cases of functions w;

We define the coarse-gradned avernge of the physical quantity 4 as a hooction
':I':i::'.l:' R x inT—7)—R,

i

(e)iet) = — Z [ ottt e = ity —xP)a (2.1]

:=If i

where v < T2 and o are arbitvary positive real parameters, ¥ = dra?/3 is the
volume of the sphere S{r,a) and H* is the left contimios Heaviside function. Since
H(a? —{r(# ] —r)%) vanishes if the i-th particle is located ontside the sphere Sr, a),
then a nouvanishing contribution to () is due only to particles which lie in S{r. &)
ovar the interval (¢ — ¢ + ). This average characterizes the mean distribition of
the physical quantity « about the point of position v and abont the momont £,

Proposition 1. A5 o function of r and £, {¢) prssesses parfial derovatives ne.
condinuows m RY % (1, T —1).

Proof: The function H*{a® — (r:(") — r)*) in (2.1} takes anly the valnes O and
1. The jnmps ocor when the i-<th molernle enters or leaves the open sphere S{r, n)
These moments are among the salntions o, of the equation

hi{r, ;) = (rilw)—r)? —a® = 0, (2.2)

Here | i (r.t) |Y* is the distance, at the moment #, between the i-th molecule and
the surface 05(r, a) of the aphere Sir,a). Since the functions x,, and hence 4,
are analytic with respect fo w;, and taking into account that [ is a closed mborval,
it. follows that either eguation (2.2) has a finite munber of sohtions or h; vanishes
ilentically [Sveshnikov and Tikhonov, 1978, p.78]. In the last case the molecnle
maves along the surface 85(r, ) and doss not enter the sphere, hence H*{a? —
(ri{t)—r)*) is identically zero and no jumps ocrur, Since ri{u) is a known fiunction,
then the isolated zeros of (2.2) are implicit funetions w (r). The implicit function
theorem can be applied only at interior points of the ranpe of &, the same with the
ranpe of (2}, Therefore it does not ensiure the existence of w;(r) for o; = 7 and for
ty = T — 7, Lo ¥ e 89 (rdr),n) and v € 88(r; (T — 7),8). For n; € (7T — 7},
and for every finite r, the function 8h/dr, = 2( 25 {w) — =,), where @, are the
romponents of r, s continnons on every neighborhood of the point (v, r). T

gl = 2(rdu) — 1) &) # 0 (2.3)

then the fimetion w{r), given by the implicit function theorem, exists in a neigh-
borhood of r and possesscs the derivatives

I ¢ —
glﬂ - 3!1 I.I"ah.l e mnl{-ﬂl} Ay L a=1,23 (2.4)
Loy

(i) — r) « £ ()
[T
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Lot Uf = {u wlgs o uly ) and U = fudf), ufh, ., 080} be the sohitions of [2.2)
whirh denote the moments when the i-th molerile enters (loaves) the sphere S(r. &),
Sinee the sphere S(r,a} is open, H*{n? — (ri{t) — r)?) is loft {right) rontinuos
function of ¢ when the molecule entors (loaves) the sphere, Henee for any + £
{t — 7 ¢ +7), we have

H*(a® — (rif) —e)) = H*(a® - (r:ft ~7) — 1)%)
" (2.5)
* E.: HT (3 — ) — E H[t— g ]y
Ll L=l

whore A is the right continmuous Heaviside Jubnp function,

Let U = (U{ UL} N (t — rt 4+ 7). The integrand of each term in (2.1 s a
continuons function of ¢ on (¢ —r, t+7 )\ U, with the exception of a finite munber of
jump discontinmities; hence it is Riemann integrable. Talking the derivative of cach
term in [2.1) with respect to £ we gef,

il
Al (rt) = g Tladt+7) BHo? — (rft +7) —£)7)
- (26)
(=) H*(a? = (rift — ) — 1)2)].

ninee ¢ is A contimious fonction in (v, T — 7), the time derivative (2.6) 15 not
continuous when the Heaviside funetion B is discontimons, ie, on the set

N
U{{r, t)|te (nT—7) and re dSrit 7))},
Lme]
which has mull Lebesgue measnre in R% % (7, 7 — ), henee, & (i) is ae. contimones.
In arder to study the space differentiability of {) we write the terms from 12:1)
nsing (2.5} as

B e — (et —7) o) | e de+
i—7r
12.7)
n bie a  f4r
+ 2 [ et  — )iy - 3 [ el H(F — it
M=lt—= k=l i—r

The terms from {2.7] depend on v through the fimction H*(&®— (r(t— 1) —r)?) (with

zero derivatives, excepting the points where it has jump discomtimutics ] and the

functions wi,, uf., j.mp]ir?it:-lg defined by (2.2). When v, and uf}. are not egual ta

the integration [imits and if the conditions required by the implicit functions theorem
interior poins of the range of (), and (2.3}) are fulfilled, the only nowvanishing
erivatives of the terms from {2.7)] are

[z ]
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My |l
- Z ff:.{ﬂ’yil [‘*“ Z it ) ;“" ;
E'mill
Summing over ¢ we get
_ Tailte) — wn :
ETTERES 33 (ral) — o) £ | (28}

i BB TSV
Frmn the previons no-jump conditions far 4 and 5 and the two conditions 1o
gueived by the implicit fimetion theorem, it follows that the space derivative i not
contiomons on the set

!'.l
Ui {zt)|te[nT —r)and re 85(r(tF7),a)}
i=l

e, )| te (T —7) and r € 85(r (), a)}

W{{r, 2} |t € {(r,T — ) and r € F(r(T — 7).a}}
L{{r. 2} | there exists some ¢, ¥ ¢ {7 T — 7} such that
redSivdt).e) and [r(#) —x)-E(¥) =01}

This set is of rall Lebesgne measure in B« (7, T'—1), henee @, {0} is ae. continnons
funetion. O
The ae. confinuity of the partial derivatives ensures the continiity of {2 with
respect to (v, t) € B? x (v, T — 1) and then {5} is an ae. continnons feld.
Proposition 2. [f the partind derfvatives exist then (@) safisfies the identity

Bule) + Buleta) = [ S (29)

Proof: From (2.1} and (2.5}, it follows that the average {jﬁfn,c} can be written as
i L X - b
LEPiEt)) =g EI{H*W — (vl —7) — ¥ limlt) B35 + E wilt) [

{H*(a® = (et — 7} — r)*yuld’) i1

=

= E wlt) [0 =5

1
—

' — "yl + 1) + E T i () (muln) malta(a) )
i=1wnLl ||1'-[":|--FJ- o]

; {2.10)

If the first term in (2.6} is expressed by (2.5), the sum over the first two terms
nnder brackets in (2.10] gives the time derivative 8 {2} . The produst of the analytic
functions  and £, is also an analytic function and, from (2.8), the second term in

(2.10) is 8, {ipta}. O
The integrand in (2.1) is an analytic function except for a finite mmmber of points

(8]
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where it has finite jumps; thus, it is a2 bonnded-variation function. There exists some
theorem stating that all bounded variation functions can be mniguely spited infa a
sum hetween a jump function and a continuous one [Kolmogorov and Fomine, 1974),
Due to itz analyticity, the continnous part s also abselutely contimmous, According
to Lebespue's theorem, the absolutaly continmons part is then given by an integyal
from the derivative of the bounded variation funetion,

tFT%H"'I:rJE —(r{t) — Pt = [T HH e — (it + 1) — 1))

—u{t— ) H o = (reft = ) — 1))
(2.11)
GUIII.PETJ'.HE. {E.ll:l with I:E.E-:I we et that the ab&nllrttfj.r contimious part of the time
derivative is given by (H{y¢) e = {dig/dt). Thus the advection-like term in (2.9) is
the time derivative due to jumps, (800} ) jumps ™ =8, {1955 ). Indeed, we have seen in
the proof of the proposition 1 that the space derivative is expressed with the aid of
the derivative of implicit space functions of the time moments at which the moleenles
enter in (or leave) the sphere, Tt acconnts for the balance of the molecular quantities
i into a sphere and a time interval on which an imaginary measurement is performed.
This 15 the physical meamng of identities {2.9) as "microscopic” balance eguations.
Althongh they are ae. contimmouns, the fields defined by (2.1) and balance equations
[2.9) give a continuous description of the physical system equivalent to that given
by the corresponding N-dimensional dynamical system. In order to formmlate &
boundary- and initial-value problem for them we also need the whole microscopic
information enclosed in the sets on which the fields {2} are not defined.
In [Vamog et al., 1996a,b] the Propasitions 1 and 2 are proved in the more general
case when the functions ¢ are only piece-wise analytic and when the particles of
the physical svstem may be creatoed or destroved.

3 CONTINUOUS FIELDS AND BALANCE EQUATIONS

Let us compare the approach based on coarse-grained averages with the statistical
mechanics one introduced by Kitkwood [1967) and used by Sposito [1978]. As a
fimction of r;, H* from [2.1) is the characteristic (or indicator) fimetion of the
sphere S{r,a) : H¥(a? — [t:{t") — r)*) = 1gp0 (ri(¥')). For o = 1, the definition (2.1)
can be written as

(1)) = 5 f &(r, 1), where
; . Ir—r

i=] el
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The relation (3.1) looks like the Kirkwood's statistical mechanical defimition for the
roncentration field, where, similarly to [(3.1). a linear functional defined as a sium of
Dirac distribations is ronsidered. The difference is that in statistic mechanics a prokb-
ahility density {ronsidered to be a vl:'ﬂ“" hnetion) i= nsed instead of the characteristic
funetion, The probability densities satisfies the differential (Lionville) or intepro-
differential (Boltzmann) equations. Tt is by the use of these equations that the
marrascopic balance equations are derived. In our approach (1) may be considered
as a linear combination of Heaviside distribiations. The identity [2.9) is a relution
between the time and space derivatives of these distribmtions valid in almost all
points (r.t). An average with a snitable smoothing kernel of the ae fields (2.1) and
of the identitics (2.9) 15 suffirient to pravide bath everywhere rantimnous fields and
balance equations. Thus only the existence of a probability density, as a smoothing
kernel, is necessary: the knowledge of its evolution eqgnation is not needed. We shall
prove this in the following by the nse of a peneral stochastic averaging procodure.

3.1 STOCHASTIC DESCRIPTION

Let (£t 4, P) be a probability space. We consider the stochastic process
n:— Y, where ¥ =R™ and T CR. {3.2)

The sfates space V' is the usnal position-velocity space of statistical mochunics and
v'7is the phoses space (the spare of the samples, or trajoctorices of the stochastic
process whirh describes the physical system ). For a fived value w £ £, we note by
¥iw) = mlw) the sample ¢ — v w), where vyt w) = (vlhw) ELhw]), rihw) =
(vt e}, et w)), and L[t w) = (£, (Lw), ..., Exltw)). So, this stochastic proress
is defined in the sense of Doob, as a random variable into a phase space [Doob, 1953,
chag, 1, losifesen and TRia, 1972, p. 164, The distridbution of this random variable
is defined by Pp(B) = P({n € B}),¥ B € B", where B is a o—algebra in the phase
space Y7, The measure space ( ¥, BT, Py is also a probability space, isomorphic to
the basic probability space ({1, 4, P}. The srpectalion, M| f], of a physical guantity
described by a fimction f{nlw)) is defined as a Lebesgoe integral with respect to
the probability measure P and, due to a change of variables theorem, it equals the
Lebesgue Integral with respect to the distribution Pﬂ []'l.-fa.l]_i.m"in, 1995, p.]E?}

Malf] = f Fllw)) Plaw) = f () Pyldy) (33)
i1 ¥l

Arcording to Kolmogorov theorem [Wentzell, 1981, p.81], the distribution is uniguely
definod by consistent finife-dimensiona distrabdions:

B, [By %+ x Bp) = Pl{n,, (w) € By ---q,, (w) € By},

where i, = ¥(ti;-);-- -9, = ¥{ts; -) are the projections of the random variable ¥
for » fixed time moments, £ ---#,, B, = (B %---x By) € B" and B" is the Borelian
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a—algebra in ¥'". The densities of the finite-dimensional distributions, defined Ly
the Radon-Nikodym theorem throngh fﬂn Pl - ¥abuldyy - dys = By oo (Ba),
are given by [Sucin et al., 1096):

P{Fhil' ".'Fh.zn} e Mﬂ[ﬁr}r] = 'l']',;, [tlru]_:l' "t':"ill-'n e "Tﬁu{rﬂh h-?']::l] [E'I-,:I

From (3.4}, the l-dimensional density of the process defined by (3.2, piy, 1) =
el £it), py RS ] — R, gets the form

pulre, o £y t) = fﬁl{n —riftw))e - 6{€ — Enlt w)) Pldw). (3.
7

Using (3.5) the "one-particle” density from the statistical mechanics becomes

N
2 [rrﬂ N Enﬁ-{—u F'"'r{rl' et FLER P AR T ,Emi:ldr, RN JURT: | JPREE 'd'E."..
! N
= {_ZI:‘{E[P—I';'{E,LU}}P[M}= JWnIEﬁfr—ri[glu,}}]_

{3.6)
Statistical mechanies deals with dynamienl deseriptions of the physical svstem at
the micrescopic level, given by functions defined in the states space, FilTy, o B t),
Lide [0 N Kickwood [1967] defines eontinuons flelds Fir,1), associated to micro-
scopic quantities fi, by counting the contribution of all particles to the value of the
field in the point r at the moment ¢:
N
Fir t) = E (i T ey Biys Oy Tipny s Epe tdry « - - dry_yilry g ~d€ .

L) | REV-1

(3.7)
Using the definition (3.4) of the 1-dimensional density py, we get the equivalent
EXPIEESion

i
Flr,t) = Mﬁ[z Jiry (), rt—I{tr“"'}:ral'iﬂ [t e), - :-f;ﬁ.rf"hﬁ-':l.-ﬂ'ﬁ{r = r:'[-!‘f-'-'-']}]-

i==]
(3.8
If the density py 15 a smooth function and £ are Riemann integrable functions then
the field defined by (3.7) is a smooth space-time finction, everywhere in B* » [
For f; = 1, (3.7) becomes the definition of the concentration fiedd which, from (3.6],
equals the one-particle density: ofr, ) = p(r, ).

The coarse graining approach from the previous section uses a knematical de-
serepion of the physical system by time functions ¢ {t). The connection with the
dynamical description of the statistical mechanics can be established if one defines
i, using the stochastic process (3.2), by

wilt) = @lr(tw), £t w), ), (3.9)

(5]
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the functions defined by {3.9) are analytical or, at least, piece-wise anaalytical time
functions, then thecoarse-grained averages (21.1) are ae. continuous fields, by the
Praoposition 1, and, by The Proposition 2, these felds verify the identity (2.9), Us-
g the previows stochastic description of the physical system we shall prove the
fallowing proposition.

Proposition 3. [f the funclions (3.9) are af least picce-wise analylival, then
the expectation of the space-time coarse-gramed averages (2.1) egquals a space-fime
average of the conbinucus field F,, defined by [3.7), given by

[ AT o

Malllltr, o 7) = oo fdf’ J[ FL #)de, (3.10)
t—  Bijra]
and @ verifies the identily
f .
8 Mof{eh] -+ B Maf(pEa)] = m[( Ew.a>1. (3.11)

Proof: Using (3.9), and the obvious relation H ¥ (a?— (v, (#, w)—7)%) = Lgjpu(0:(, w),
the expectation (3.3) of the coarse prained averages (2,1) becomes:

Mallel] = [ Plasllgly 2 T ilettio0) 6501 0) B - () — 1) ] =

=l t=r
= 'F!ﬁt— t‘q"fﬂ!.i;é!: ':l':"' Iy ':tr'll""'}: "'1r|la-""r'EN{fr1 |"'"',:||tl}]-.5'-:'r.|:|:b[r.l:l"ﬁ[.-[‘|I vy I',[f,h.-']'::ld'l"fl
47 i~
= ﬁil—lr df.ﬂf _| WMH[F—EI. Ipif.rl-[.ﬁ:-"'""'h o '-.,I."‘, ¥ "1£.'i"|:'t| I"'I:I:l F:I'!E{Tr - r‘l:[fl """’:I}]:-

where the integrand in the last equality 35 the continnons field defined by {3.8), and
also equivalent to (3.7). This proves (3.10). Beranse () are at least picce-wise
analytical functions the coarse grained averages (2.1} verify the identity (2.8), The
expectation is a Lebesgne integral with respect to P{dw) and it commutes with the
time derivative & and space derivative &,. Thus the expectation of the terms in
(2.9) gives (3.11). O

The Proposition J relates the usnal approach of sfatistical mechanics, based on
dynamical microscopical deseriptions, with the coarse-grained appreach, based on
kinematical descriptions. If we consider the limits, for & — 0 and + — 0, of the
expectations [3.10) of the coarse grained averages, we get

limM )] (ry ti @, ) = Fix,£). {3.12)

Hemee, the Kirkwood's continuous fields {3.7) correspond to expectations of some
fictitions measurements, on small space-time scales, modeled by coarse grained av-

erages [2.1).
Eid
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3.2 BALANCE AND DIFFUSION EQUATIONS
For =1, 1 10 N, (3.10) gives the roncentration field
elr, t) = Mp{(1}](r. 1), (3.13)
We assign to sach "particle” of the continuons medinm e mean value of the physical
aquarifity 2 by
@lr,t) = 7 ]

elr.#)
For o = &4, (3.14] defines the a— component of the Eulerzan welocity feld, u, of
the contimumm mediom by

Ma[(@)]{r. 1) [3.14)

U (1, t) = Ealr, 7). (3.15)
With (3.13-15), the identity (3.11) takes the nsual torm of a balance equation [Miiller,
14845]:

B )+ Bule Pun) + OnloelEs — ) = ¢ T (3.16)

Berause in the Proposition 3 only the analyticity requirement and the existence of
the stochastie description were sufficient. to prove the identity (3.11), such equations
can be derived for any physical quantities ¢ not only for conservatives (or " collisional
invariants”) ones as it is usual in the methods bassd on the Liouville equation
[Shinbrot, 1973].

For oy = 1 we get the concentration balance equation

Ge + Aufou, ) =10, (4.17)

i. e a continnity equation. With £, = da,/dt in (3.15), we get u, = dx, fdf, and,
using (3.11), (3.17) takes the form

the + da(cvy) = 8adsle Dag). (3.18)
The euantity 1, in (4.18) s defined by

wa [, 1) = B (r, t) + ugthTa(r, i) = %. {3.19)
If we consider the "fuid particle” consisting of the system of particles lying into the
sphere {r, &) during the time interval [t — 7, t+7] we have a Lagrangian description
of the mass transport process and ¥, is the a-component of the center of mass of
the flnid particle. So, the material desivative (4.19) defines the a-component of the
Lagrangian velocily field, v. The meaning of Dag is that of a diffusion fensor and it
laoks like = e,
ﬂn-ﬁ'{r- )= $_|-.,.{I'. Il]':l-'i'.l-i[r-l !'] = ‘rn'f-.ﬂl:rl f:}' [S'EUJ
Thus, we proved
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Proposition 4. If the diffusion fensor (3.20) is positivelly defined, then the
concerdration balonce equation takes the form of the advection-diffusion equation
(3.18). O

If we define the correlation-like quantity corlz., £5) = (2.8a3)/ (Tana) (the corre.
lation corresponding to our averaging procedure: the ensemble average, (3.3}, of a
coatse grained average (2.1)) the difhsdon tensor [3.2) becomes

Daglr, t) = Talr, thugr, t)]1 — cor({za, £a)(r, 1)]. (3.21)

For a deterministic movement of the constituent particles eor{z,, £5) = | and, from
(3.21), D, =0, i.e. & first test of this formmla.

The averaging procedure from this paper also constitutes the gromnd of a cellular
sutomata rmmerical method for diffusion processes [Vamos ef al., 1997, Suciu at al.
1997, 1998]. Using this algorithm, it was easy to check that for a diffusion process,
simmlated by random walkers ecellular antomata, the relation (3.20) gives the true
values of the diffusion coefficients

The diffusion-like eqguation (3.18) was derived without any approximation and
it. is equivalent to the continuity equation (3.17). The positivity of the coefficients
(3.20) i= a criterion to say when there exists a diffusive description of the transpaort
process, strictly equivalent to the advective one given by (3.17). Thus, we expect
that the positivity of the diffusion coefficients {3.20) could be an 1seful tool ta cheek
if the measured, or simulated, transport processes may be described, at a given
gpace-time scale, by an advection-dithwsion equation.

4 TRANSPORT PROCESSES IN POROUS MEDIA

With the results from sections 2 and 3, we try to derive a comtinnons model of o
fluirl flow in the void space of a consolidated porous medium.

We consider a system of N molecules, NV = "™ 4 N¢' + N + .. ., where N™
is the mumber of molecules from the solid matrix of the porons medinm and N“l=
N7 .. are the numbers of molecules of the fuid components. To each molecular
species we assipn a volume V'™, respectively ¥, ¥ ... and a molecular mass S
respectively 71 gl P, Lo

4.1 CONTINUOUS MODEL OF THE SOLID MATRIX

For the contimuous maodel of the solid matrix we first congsider & time scale - mnch
greater than the period of the molecular vibrations and a space scale & murch greater
than the molecular dimensions and much smaller than the mean pores diameter, 4,

(V™ < a < d,. (4.1)
Because, at the considered time scale 7, the molecules of the solid matrix have
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fixed positions, the coarse-grained average of AM™, by (2.1}, becomes

N
AM™ 3
{M™) () =—- ;jfmu’ — (i —x)") (4.2)
The value of the function defined by (4.2) is zaro if inside the sphere S(r,t) there
exists no molecule of the solid matrix species. The expectation of (4.2) is given by
(3.10) as
Lo

Mol ) = 5 [ Pt (43)
f—r Sir.a)

Following (3.12}, for small scales, closed to the lower boumd of the range (4.1), we
can estimate have Ma|{M™)] ~ Fy. Then, the expectation (4.3), for small scales,
appraximates the contimwous mass field Fyw, associated with the molecnles of the
solid matrix. This is a bulk density. If r is a position in the interior of the solid
matrix, then Faem = p™, ie it is the density of the solid material, Because (4.2) is
zero In void spaces so is its expectation (4.3). We define the characteristic function
of the solid matrix by the ratio between the bulk density Fu= and the true density
"

() = T (4.4)

i

The function defined by (4.4) is contimions, excepting the points on the surface
of the solid matrix, which have zere Lebesgue measure. Thus 1™(r) is Riemann

integrable,
At a scale much greater than the mean pores diameter,

3 dy, [4.5]

we define the local average porosity by the ratio between the volumes of void spare
and solid matrix contained in S{r, ),

Blrl= L [ (1- 1))’ =

Flrym)
= & -1 EHa? — (- ). (4.6)

]
Here (1—1™) is the characteristic function of the void space and H+{a® — (r' —r)?) is
the characteristic function of the sphere. For the modelling consistency, we remark
that, for amall o, given by (4.1}, we have 8 ~ (1 — 1I'"). The parosity 8{r}, defined
by (4.6}, at scales (4.5}, much greater than the pores dimensions, is a positive
continuons function. The definition (4.6) rorresponds to the local poresity introdieed
by Hilfer [1991], where, instead of sphieres of radius o, a cubie cells (" Bravais lattice” )

were considered.

The solid matix volume ratio, ©™, has an analogous definition and we have
8™ + 8 = [. Generally, at secales much greater than the pores dimensions, we have
the following relation for the components of the porous media,
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Fa..p-- 5o . ol
= 4 A M .. =1, 4.7

g o et
In the framework of the theory of mixtnres the relation (4.7) "reflects the assumption

that the mixture does not contain void spaces” [Bowen, 1084, p. 67]. Thus, under
the scale assnmptions (4.1) and (4.5), the definitions (4.4) and {4.6) can provide
rontimmous models for the salid matiix and, respectively, the "mixture” formed by
the fAnid aned solid matris

B 405 487 4.

4.2 DARCY-BUCKINGHAM FLUX LAW

Now, consider a space scale obeying (4.5) and a time scale corresponding to
experimental measrements. The volume fmction of the component . &, can bhe
defined as a contimuous field by the expectation of {V°), according to (3.10), as

6 (e,2) = VMl (U] (r, 2} = VoeS(r, £), (48)

ware o is the apparent, or bulk, concentration of the molecules from the c-species.
The identity (3.11) becomes

B8° + a (u58°) =0, (4.9)

where cfuf, = Mu[{£5}]. Hence, (4.9) is a continuity equation for the volinne feaction
of the ¢ component. The center of mass of the fluid particle corresponding to the
c-component of the porous medinum has the components B = 7% = Mp[{z!]/c
and the corresponding Lagrangian velocity is +¢ = 472 /df, Then, in the condition
of Proposition 4, the contimuty equation (£.9) takes the equivalent form

8" + Buf187) = | Ko 67, (4.10)

whoere o
Kt t) = Rous (I = I:'E:*). (4.11)

Res
From (4.9-10) we get the following definition of the flux of the volume fraction £ -
Jo =8y —13) = —Gs( Ko ). (4.12)

Let us consider the case when #° represents the water content of a soil or aquifer. Tf
we define the filtration velocity by up = (u® — v7)&, then (4.12) is the weall known
Darcy-Buckingham fluz law, writben for the volumetric water flux density [Sposita,
1986). For instance, when the saturated acuifer case is considered, the water cantent

hias the form
0 forz = flz,3.4}

f, 3, 7, ) ={ 0 forzD flzut) °
where 2 € R, y € R, = € [0, nc}, © is the parosity given by (d.6) and flx p,t) is

[F1]
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a function describing the free sarface (the water level in porovs medinm]. If we
suppose the coefficients (4.11) to be constants and we integrate (4.12) with respect
to = we obtain the following expressions for the components of the volumetric flux,

Tlzut) = E]?ﬁ;,._[rr:,y.$,t]5‘{r¢,-g,z,t]ldz = K08, f(z,y, ) — KO8, flz,y 1)
Jylz oy t) = Elf'-ujrv{a:, v, 2, 0 (e, 2, de = <K 08, flz, 0,8 — K,,0d, flz,y,1)

Thus, (4.12) takes the usual form of the Darey law for saturated aquifers [Bowen,

1984}, ~
J=-KWVf

4.3 POROSITY DEPENDENT ADVECTION-DIFFUSION EQUATION

Now, we consider that the c-species molerules constitute a solute of a fluid con-
tained in a saturated porous medium. Then, the fwid volume fraction eguals the
porosity ©. The true concentration, ¢(r, 1), measured on Buid samples, is

elr, t) = ‘ﬂﬁ,; ) (4.13)

Dividing the equation (4.10) by V° and using (4.13), we get the porosity dependent
advection-diffusion equation

Odhe + B, (ucB) = 8,85( Koy 0O, (4.14)

The equations (4.9) and (4.14) are usnally taken as the starting point in modeling
the transport of non-reactive dissolved solutes through soils and aquifers [Sposito et
all., 1986, Shvidler, 1993].

5 CONCLUSIONS

The model of transport in porous media we have proposed here is based on & mi-
croscopic kinematical description of the physieal system. No dynamical proporties
were assumed. Also, no statistical assumptions and evolution equation for the prob
ability densities were necessary, This is the distinctive feature of our method with
respect to both stochastic and statictical mechanical approaches. The stochastin
theory of transport does not use kinematic or dynamic descriptions of the system
but it starts with the study of some abstract stochastic process, The associated
Fokker-Planck equation becomes the diffusion equation and the constitutive lmws
tor the diffusion coefficients are expressed through statistic correlations [Suein of.
all., 1996]. The statistical mechanical approach of Sposito [1978] uses the dynamical
microscopic description in the states space of the physical system and the evolution
equation of the probability density function.

(52]
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The macroscopic balance equation for the water content 15 inferred and the conati-
tutive law is fonnd as a function of the velocity correiation. The Darey law follows
for a simplified model of neninteracting fluid molecules {the so called "darcions™ ).
Thus the utility of statistical mechanical approach is conditioned by the knowledyge
af some stochastic guantities.

The relationship between the model and the measnrement scales represents the
highest diffieulty in modeling continuous media, mainly heterogencous ones as mix-
tures and porous media. If this refation is disregarded "the develapment of trans-
port erations ... may result in field variables that ave nothing more than nowanted
noise” |Cushman, 1986]. Or, more categorical, " If the scales of measwrements asso-
ciater] with experimental methods are not accounted for in theories of transport in
hierarchical porous merdia, then the theories are metaphysical and of little practical
comsequence” [Cushman, 1990, In subsurface [soils and agquifers) transport theorics,
the controversial questions are the existence of the "macrodispersion” and the "seale
effect”. Cushinan expresses his doubt that such effects really do exist and shows
that they can be explained by the inadequacy between the model and measmrement
seales. In our approach. the definition of contimions fields by the expectation of
the coarse grained averages and the identity (2.9), which coarse grained averapes
verify, leads to macroscopic balance equations, The explicit use of the space-time
parameters o and + into the definition (2,1} of the coarse grained average answers
to the criticism of Cushman that field variables and constitutive parameters have
unamnbigionus meaning only for specified space-time scales,

As dismissed in sub-section 3.2, we expect; that this approach may be developed
towards the analysis of the experimental data and, also, it may be useful in the
implementation of the cellular antemata simnlation methads for transport processes
mn porous media,
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