Romanian Jouwrnal of HYDROLOGY L WATER RESQOURCES, Val. 5, No, 1-2, 1998

TRANSPORT PROCESSES IN POROUS MEDIA.
2. NUMERICAL MODELING

C. VAMOS®, N. SUCIU®, U. JAEKEL"®, H. VEREECKEN*
a) "Tiberin Popovicin®™ Institute of Numerical Analysis, Romanian Academy,
P. O. Box G8, 3400 Cluj-Napoca 1, Romania,
e-mail: nsucinf¥ictp.math.ubbeluj.ro, evamosfictp. math, ubbeluj.ro
b Forschungszeentrum Jilich GmbH, [nstitut fiir Chemie und Dynamik der Geosphiire,
1CG-4, Da2425-Jiatich, Dentschland,
c-mail: H.Vereecken®@ifz- juclich.de, U, Jackel@fz-juelich.de

Abstract: The paper proposes a numerical model for transpon in heterogensoms
porous meedia, built on the background of the continnous modeling from the first part
of this work. The macroscopic behavior of a microscopic particles ensamble is obtained
by numeerical simulation of their mieroscopic modbon, in the moleealar dynamics manner
[Koplik and Banovar, 1995]. The particles motion is governed by a random walk on a
grid, similurly to the cellular antomaton presented by Nishbdate and Baba [1996], The
mmneroscople description is given by spice-time coarse-grained averages which provide o
continuons description of the system [Vaows et al., 1996, our first paper, in this jssae).
A first st was achisved by an aocurate oumerical solution of the ocoe-dimensional Jdif-
fusion equation. The munber of particles and the aveaging space-time scale noeded
for & macroscopical description of the diffusion process with a given precision and the
behmvior of systems with small concentrations are diseussed in [Vames of al., 1997h).
The mode] for diffusion in raodom eovironments was obtained by embedding the par-
tiches system into n random advection field. Numerical results are in good agresment
with analytieal ones obtained by Matheron and de Marsily [1980], using their modsl
for statified aquifers.

1 THE MICROSCOPIC DEFINITION OF THE CONCEN-
TRATION FIELD
To discuss some problems related to the microscopic definition of the concen-

tration, we present a method often used in thermodynamics [Landan and Lifchitz,
1988]. Consider N molecules in a volume V. The concentration at the point of the
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position vector r at the moment ¢ is defined as the mumber of particles per unit
valume in a domain of volume V < V' centered at this peint, The demain should be
spherical, otherwise the concentration would depend not only on the position but
also on the orientation of the domain. We denote by S(r,a) the sphore of center v
and radins a. Then the concentration is defined as the function ¢ : R « R — R.,

given by i
clrt) = 5 3 (e — (1) — ). (11)

i=l
where rit), ¢ € R, is the position vector of the molecnle i N at the moment
t. The left continuous Heaviside function H*(a® — (ri(t) = r)?®) is equal to 1 if the
molecule ¢ is inside the sphere S({r, &) and vanishes otherwise. The fanction defined
Ly (L.1) for given a and r;, is a finite lincar combination of Heaviside functions
having null derivatives except when their argument vanishes and the derivative docs
not exist. 5o (1.1} defines a step function which can not satisfy a partial derivative
equation of the diffusion equation type. In thermodynamics one considers that
for a large enongh N the function ¢(r,t) given by (1.1) is well approximated by
a continnons field. To obtain the condition that N should satisfy we analvze the
simple case of the thermodynamical equilibrium state in absence of the exterior
fields. Then the molecules are uniformly distributed in the V' volime aned. taken
as a continmons field, the concentration has a constant value at any point in the
vohune and at any moment, c,(r,¢) = N/V. If we want to verify this equilibrivun
distribution by definition (1.1), we connt the mimber of molesules n at the moment
t in the sphere S(r,a). It is obvious that the result is affected by fluctnations
and the measured concentration ¢ = n/V differs from ¢,. In [Landan and Lifehitz,
1988, section 114], one shows that n satisfies a Poisson repartition with dispersion
o = /7, where i = NVW/V is the mean number of moleenles in V. S0, the dispersion
of the concentration fluctuation is equal to o, = /N/VV. If N is laxge enough,
Ac = ¢ — ¢, has a normal repartition of zero average and dispersion #,. Arcording
to the "three sigma™ rule of excluding rongh errors [Rumshinski, 1974), we impose
that the relative error should be smaller than a value £ fixed with a confidence level

of 0.997 and we obtain v g
DT, EE“.I:*FEE!H 1
For a large enough N, this formula gives the minimnum volume V {or the minimum
rading a) necessary to measure the concentration with the precision £, i.e. the space
scale for which the measured concentration behaves like a continnous field with
approximation . If (1.2) is satisfied, we can write c(r,1) ~ ¢,(r,#) + Oe), for

e— 0.

The classical definition of the concentration is not applicable when N or V is too
small. To exemplify, we consider the case when there is a single molecule in the
volume V. Then e(r,t) = V! for r € S(r(t), a), and in the rest ¢ vanishes.

(1.2)
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Therefore the concentration is completely different from the equilibrinm concentra-
tion which is as well ¢,(r,t) = 1/V in the entire volume V. These difficulties ocour
hecause in definition (1.1) one implicitly supposes an instantaneons measirement
of the moleeules number in the volume V. The actial measurement has a duration
which defines the temporal scale as the volume V {or the radins a) defines space
seale, Tf we denote by (t =7, t+7) the averaging interval, we define the concentration
by
l M 4T
o A TR SR Y .
)= 53 [ B~ (n(e) — 1. (1.3)

=l

In [Vamog et al. 1996,a,b] one proves that, if the functions r;(f) are at least piece-
wise analytic, then the function defined by (1.3) has a. e, continmous first order
partial derivatives, That is, the temporal averaging transforms the step function
(1.1} into a continmons field even if discontinuitics remain in the first order partial
clerivatives,

The new definition (1.3) is meaningful even when V or N is very small and the
classical definition (1.1} can not be applied. Consider again the thermodynamical
equilibrinm state with an uniform distribution of the molecules in the volume V. The
mmber of molecules in V' is measured at each moment over the interval (§—7, ¢4 7)
and then it is averaged. We attach to this continuous temporal average a discrete
one, to which we can apply the same Poisson distribution. We denote by 4d the
mean time interval over which the molecnle remains inside the volume V. Consider
the averaging interval (£ —+, ¢+ 7) divided into 2r /At subintervals of At length and
suppose that the existence of the molecule in volume V within an subinterval At is
independent from its existence in the same volume within another subinterval At
Then the concentration Auctuations (1.3) for N molecules over a time interval of
27 length, are equivalent to the fluctuations of 2N7 /At molecules in a At interval.
Therefore instead of formnla (1.2) we have

Q¢
Vr = 2 (1.4)
This formula expresses the relation between the space scale (V) and the temporal
one (1), necessary to obtain a contimwous description of the concentration with a
precision £. The increase of the temporal scale can compensate the decrease of the
space one. Unlike (1.2}, the relation (1.4) is valid for any N and V.

2 THE CELLULAR AUTOMATON NUMERICAL ALGO-
RITHM

We consider a one-dimensional space lattice {zp = kéx | —m &k m}, where 8z
is the space step of the lattice, On the lattice there are N noninteracting particles
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which move according to the random walk law. If the i-th particle is at the site & at
the moment. ¢, then at the end of a time step 6t the particle will be either at the site
k=1, or at k + 1, with probabilities equal to 1/2. So in the time interval (t,# 4+ &¢)
the k particle moves with —&z /6t velocity, respectively 8z /5t, to neighboring site,
These rules define a " random walkers cellular auntomaton”, similar to that proposed
by Nishidate and Baba [1996], is done.

We denote by ng the number of particles at the site & at the moment ¢ and by
n, (vespectively nj) the number of particles which move at the moment ¢ + ¢ to
the site k — 1 (respectively k 4 1). Then the number of particles at the site k at the
moment ¢+ & can be written

ng(t + 0t) =mi , +nf_;. (2.1)

If we note [

5:‘1_* - %I’.tl. = ‘H.L =1 — _:I.—:I'F'-l.,|'_I
then, the number of particles at the site k and the moment ¢ + dt, (2.1}, writes

e 1
ﬂ.kft +-Iﬂ-} = ﬂ:LH + Ty = E{TI*_| -+ ﬂ'—Hi} - 'l'-|-:|"!t+| + ﬁﬂ‘k. i+ {2.2]

For a large enough number of particles in each site, the last two terms in (2.2) may
be neglected. Indeed, for a large enough iy, according to the law of large numbers,
the frequencies nl /n; = nf/ng tend to the jump probability 1/2 and #ny tends to
zero. If it is assumed that the concentration ¢ exists as a smooth enough function
of x € R and ¢ £ R, then ng can be approximated by elz, t)éx, and (2.2) can be
approximated Ly

elz,t + ft) = %c{.’: — 1) + ;c{.'r + B, ), (2.3)

where = = kfx. We have to emphasize that (2.3) is only an approximation of the
exact relation (2.2). The difference between the two relations is a fluctuant uantity
which, for a large ng, can be neglected in comparison with the dominant terms.
Relation (2.3) can be written as

elx, t + &) — e(z,2) 15_1" clx -+ b, t) — 2e(z, t) + ez — fz,¢)
bt 24t bt
Which is the expression in finite differences of the sne-dimensional diffusion ol
tion, if the diffusion coefficient has the value given by

bt
D= (2.4)

Since the concentration coincides with the one-particle probability density, ¢ = p,
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using (2.4), the relation (2.3) can also be expressed as

& plz,t) = Eﬂz{p[t + &2, t) — 2p{z, t) + plz = bz, 4],

i. e the master equation of the one-dimensional random walk, with the transition
probability per time unity £2/6z*. One proves that for éx — 0 the master equation
solution approximates the diffusion equation solution ([Gardiner, 1983, cap. 3, T,
van Kampen, 1981, cap 9, 10).

To verify that the algorithm described by (2.2) approximates the diffusion equa-
tion one considers the concentration of N non-interacting particles in Brownian

motion,

clz.t) = L f:'Tl'ITi s T E (—oo,00), £ 0. (2.5)

VirDi
To avoid the initial condition used in deriving (2.5), given by the Dirac function,
¢z, 0) = §(=), we take as the initial time moment £ = & and the initial condition
given by (2.5) for ¢ = §¢. If the total number of particles is N, then one estimates

ne(to) = [c(ze, 6t)da], (2.6)

where by [r] we note the integer part of the real mumber r and ¢ is considered as given
by (2.5). Because of the truncations, the actual number of particles N* = 30 0,
is smaller than N, but the difference is very small, N — N* < N. To do the time
step according to (2.2) one acts as it follows. For cach particle ¢ laying in =, a
random number g € {0,1} is generated with the probability 1/2 for both values.
One consider that, if ¢; = 0 the particle 1 moves to r,_y and if q; = | then it moves
to T4, - Repeating this operation for all N* particles, the new values g (t + &) are
obtained according to (2.2).

The probability density is the solution of the diffusion equation in an infinite do-
main. Since the numerical spatial mesh is bounded, it is possible to obtain a realistic
simulation of the Brownian motion only if the concentration at the extremities of
the mesh is negligible, i.e.

c(méz, t)bxr < N, (2.7)
This inequality must be satisfied both at the initial moment ¢ = & and at the sub-
sequent moments of the simulation, therefore the time ¢ is limited by the condition
(2.7). Thus the influence of the boundary condition will be negligible. To keep
the total number of particles constant, one considers that the particles getting the
extremities of the mesh remain in those points, i.e. (2.2) becomes

At +8) — gy =1l § Mem(t+8)—nom=n__ . (2.8)

For the proper simulations the spatial range [—1, 1] has been chosen. Then, for a
m given, §x = 1/m. The diffusion cocfficient been fixed at D = (0.5, From (2.4)
it follows that the time steep has to be 8 = 1/m®. Simulations have been done for
different values of m and N.
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In this way, the cellular antomaton governed by (2.2) ean be use to perform a
numerical computation of the one-dimensional diffusion equation, whose theoretical
solution is (2.5). We note here that it is possible to solve mumerically other partial
differential equations in a similar manner. To achieve that one assign to continons
fields mumbers of fictitious particles, similarly to (2.6), and one look for the corre-
sponding cellular antomata rules (for the diffusion equation the rule is expressed by
(2.2)).

To obtain a quantitative hint on the nmumerical approximation for the solution
of the diffusion equation, we have compared the theoretical probability to find a
particle in the site k, e(xy, t)éx /N, where ¢ is the theoretical solution (2.5), with the
numerical one my,/N*. We have defined the global indicator [, given by the sum on
the whole mesh of the absolute values of the differences of the two quantities, for a
given moment,

(2.9)

‘ L{Ip; E:Iﬁ:t.'

h=—m

The nearer [ is about gero, the bettor the numerical solution approximates the
theoretical one. The maximum value of T i 2. In the Table 1 the values of I for
different values of m and N are given. One notices that, in agreement with the
theoretical results, the larger m and N, the better the approximation. We have to
emphasize that, for D fixed, relation (2.4) imposes the existence of a relationship
between dx and &, so to get the mesh denser i.mp]im the decrease of the time step.

Table 1. The maximum and minimmm values in the first 10 time steps of the
indicator [ with respect to the spatial mesh dimension

N=10® N=10' N=10° N =10°

i w00 0.062 0.031 0.022 (1.024
=% 012 onz 0106 0104

L o_gp 0027 0020 0010 0013
0.133 0052 0013 0017

o _gg 0053 0019 0009 0003
0120 0038 0015  0.007

o 0062 0028 0008  0.003
0137 0.039 0.015 0.005

Also, using the discretized form of the Fick's law, J = —Dde/dz, it is calenlated
the numerica (i diffusion coefficient approximating the chosen coefficient D = 0.5 of
the theoretical solution. The icle flux between the spatial sites & and £+ 1 is
expressed by Ji = (nf — my,, }/8t. Since the number of particles varies very much
from a site of the mesh to another, an averaged diffusion coefficient is caleulated,
obtained by summing discretized Fick's law over the whole mesh, The results are
presented in Table 2.
ED
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Table 2. The minimiam and maximnim values in the frst 10 steps of the numer-
ical coefficient with respect to the spatial mesh dimension

N=10" N=10' N=10° N =10¢
04873 04506 04861  0.4953
06870 05548 05141 0.5044
0.3347 046093 04795  0.4987
0.7077 05247 05142 05018

gy 05650 04087 04944 05012

06212 05203 05041 0.5035
o 05659 007 04944 05012
Ll 0.6212 05203 05041  0.5035

i = 1)

o= 20

3 THE COARSE-GRAINED SPACE-TIME AVERAGING

The random walk hypothesis is a simple kind of microseopic evolution law of the
type of those nsed in the molecular dynamic. There, the macroscopic evolution law
of the particles ensamble, taken as a contimmm in which the particles loose their
individuality, is obtained by space-time averaging [Koplik and Banavar, 1995]. In
comparison with other methods of molecular dynamics type, this approach is differ-
ent by the use of the coarse-grained averages with particular propertics introduced
in [Vamos et al., 1996a,b, and Suciu et al. 1998].

The macroscopic interpretation of the results is made by the space-time averages
(1.3) as it follows. Consider N* particles which move on the straight line, over a time
interval [0, T]. The motion of each particle i consists of a sequence of jumps between
the spatial mesh sites {x, = kfz | —m |k m} at the moments equal to the integer
muiltiples of the time step 8. Over the time interval 8¢ the particles move between
two neighbour sites of the spatial mesh, at constant speed 8z /8. Each particle can
be introduced or extracted from the spatial mesh, therefore we denote by £ the
moment of its appearance and by {7 the moment of its disappearance. The position
of the particle i is given by the function x; : [t},4] = [£_m, ] C R, which presents
discontinuitics when the particle changes the motion direction at one of the sites of
the spatial mesh. The particle velocity & = & : [tF,¢]] — {—8z/&t, b2 /5t} is a step
function undergoing jumps with the amplitude 282/6t when the motion direction
changes. Thus, both position and velocities are piece-wise analytic functions, as
required by the the continuous modeling method from [Vamoy e al., 1996a,b).

Particularizing (1.3) for the one-dimensional case, for the real parameters a and
7 < T/2, we define the coarse-grained average of the particles number at a point
(z,t) € R x (r,T — r) becomes

i s BbT
W@t = 3= [ B )= . 3.)

::ltt_r
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In [Vamog et al. 1997a] it is shown that (3.1) verifies the balance equation

& (1) + 85 (£} = g, (3.2)
where
1 e T
(£} (z,£) = = z ff.-l[t']lH' fa— | zlt') —x |)at’ (3.3)
1=1l--f
is the particles Alux density and
A= LT
glz,t) = ﬂ—,gtilﬂ*tﬂh | mlti) — 2 NEHr— | £ — 2 [)- (3.4)

—H*(a— | 2:(t7) — = JH*{r— | £ —t])]

describes the variation of the particles number in the spatial mesh. The functions
{1}, (&) and g have a.e. continuous partial derivatives of the first order.

For 2a = bz and 7 <& & /2T, from (3.1) and ({3.3), estimations arc obtained for
the concentration field and fiux density, given by

':1} [Ikrtr} =E|::l.'|tl}| {35}

respectively,
() (2 + /2, & + 8t/2) = J(z, 1y). (3.6)
The improvement of the random walkers numerical algorithm, described in §
2, consists in the possibility to caleulate the terms (3.1), (3.3) and (3.4) of the
balance equation (3.2) at the points = % x, and ¢ # #;. Also, as discussed in section
1, the time averaging reduces the mumber of particles needed to approcimate the
concentration field with a given precision and, implicitly, the computing time,

4 NUMERICAL MODELING OF DIFFUSION AT SMALL
CONCENTRATIONS

The concentration field and the particles flux have been obtained by space-time
coarse-grained averages, from the trajectories of the particles of the one-dimunsional
cellular antomaton. There was obtained a good correspondence between the mumer-
ical results and the theoretical estimations. This proves that, under the hypothesis
of the independent motion of particles, even at very small concentrations, Fick's law
is still verified, if the space-time scale is big enough. In the following we present a
few results which show the effectiveness of this numerical approach.

The coarse-grained average (1}, given by (3.1), is the sum of the contributions {1}
of the N particles from the mesh, during the averaging time interval; (1) = Efi, (1}
The smooth concentration field is the average of (1) over all particles evolutions,
from the center of the mesh to the extremities, (1) = N {1);. (This correspones to a
numerical simlation of the average with respect to a statistical ensemble.] The



corresponding dispersion is & = +Neoy. The condition that the relative ervor of (1)

with respect to (1) be less than £, 37 g(1)}, with a reliance level of 0.997, allows
the estimation of the necessary number of particles, by

2
3N, eN{I);= N2> ( '5..'.'.".) . (4.1)
el{ly
Using (4.1}, relationships between the particles pnmber N, time scale 27 and space
seale a, needed for a given precision of the simulated concentration field, can be
obtained [Vamog ot al., 1997b].

The Table 3 presents the time scale, measured in 10%5 nnits, necded to get the
concentration at the mesh sites with a relative error £ = 0,01, as function of the
tatal number of particles A, used for the computation of {1}, and o, for a fixed
space scale a = 0.1256x and N = 100 000.

Table 3.
N =100 N =200 N =400 N =500 N =1600 N =3200
=00 4431 4.98 4.74 4.t 183 171
=[] 4.84 b 517 5.36 0:11 5.02
r=0.2 547 .11 5.90 6.09 a.76 5.65
r=03 598 65.99 6.7h 6.90 6.47 6.3
=04 .55 B.13 .87 .45 7.50 7.53
=00 8522 9.37 9.12 0.28 9.05 011
x =0.6 10.9 11.2 11.1 1.4 114 11.5
w07 15.3 15.0 1.9 15.3 15.2 15.2
r=08 220 22.3 22.5 220 2.2 22.1
=09 460 443 413 45.1 435.6 4.0

One finds that 200 particles are cnough for the estimation of the time seale.

The time scale can be obtained for any space scale 2 and any point in (-1, 1).
For instance, Table 4 presents the time seale, measured in 10%5t units, as function
of x and a, for fixed A = 200 and ¢ = 0.01.

Table 4.
a==8xf8 a=bx/d a=6zf2 a=8r a=2UWxr n=4ér a=8b
x = 0.000 .98 4.98 4.98 4.98 2.549 145 0.95
r = 0.025 10.1 101 6.24 4.16 2.40 1.41 0.95
=000 101 11 10.1 3.91 2.36 140 0.95
x = 0075 10.1 101 f.64 4.20 2.46 1.43 055
= 0.100 o 5.39 5.30 5.39 2.74 1.49 18]

(%]
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As we can see, as space scale rises, the time scale decreases significantly, but only
for a > &x. For a 0 8z, one finds that between the sites the needed time seale is
twice larger, which indicate a larger variability of roarse-grained averages,

In [Sucin et al., 1998], a numerical estimation of the diffusion coefficient Was
proposed, by D = [{z} - (€) — (z- £}]/c. To check this relation, we simmulated the
one-dimensional diffusion for 21100 particles, moving inside the space range [—1, 1].
A variable space step mesh was used so that, according (2.4), D({k < 0}) = 0.05
and D({k > 0}) = 5.0. We also imposed that the particles undergo elastic collisions
with the "walls” of the space interval. The coarse-graimed averages were computed
for a = 0.56x and v = 106t. For example, the Table 5 gives the values of the
concentration ¢ and the computed diffusion coefficients D*, at the time moment.

b= 1942,
Table 5. Numerically derived diffusion coefficient

T ex 108 o
—0.9 1478 0.04997
-0.7 1.835 0.04942
~(.5 2.926 0.04842
=03 4.8493 0.04837
-{.1 7.853 0.04885

0.0 4.885 (.62864
0.1 L.0GS 4.96512
0.3 1068 4.96512
0.5 1.061 4.96478
0.7 1.054 4.49644
0.9 1.054 4.49644

One finds that D* is a good estimation for the diffusion coeflicients, Also, for
deterministic and uniform motions of the particles, the corrclation-like quantity is
{z - £}/ {x) - (£) = 1, and the coefficients [* identically vanish, as it is expected.

5 DIFUSION IN RANDOM FIELDS. THE MODEL OF
MATHERON AND DE MARSILY

In a similar manner, we built a 2-dimensional random walkers cellular antomatan
inside the mctﬁgu]a: mesh {z, = kéz, gy = by : —m [ ko 1] m)}. Onit, we
s11 an advection given by the samples of a random field and we computed
ensemble averages. For horizontal advection and constant velocities in each layer
kil I+ 1), we get the numerical simulation of the model proposed by Matheron and
e Marsily [1950],

[54]
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dzlv) (t) = V{y(t), w, )dt + Dduw (t), dy (t) = Dduw (1), (5.1)

where w is the Wiener process, D is the diffusion coefficient, w,, labels the real-
izations of the random field V. This model describes the transport of polutants in
stratified natural porous media. Due to the heterogeneity of hydranlic conductivi-
ties (which through the Darcy law give the flatation velocities in porous media) the
advection velocities look like the sampels of a random field and the two-dimensional
random walk describes the mixing between horizontal layers. The authors’ aim was
to answer to the question when transport of polutants in such heterogeneous media
can be described by a diffusion-like equation. Diffusive behavior corresponds to lin-
ear time dependence, o2(t) ~ ¢, of the longitudinal dispersion o2 (defined by mean
sepuare displacements) [van Kampen, 1981). In their paper, Matheron and de Marsily
show that situations ocour when the transport is not diffusive. For instance, if the
correlation fimetion of horizontal advection velocities has a Ganssian shape (~ e ij
the dispersion behaves as o2 ~ %2 i, o. the the transport is superdiffusive.

Using the method from [Schwarze et al.,, 1998] we produced several random ad-
vection fields with different correlations (first picture). The second picture contains
the corresponding dispersions curves given by mumerical computations. Unbiased
ranclom walk {"ubrw™) obvious has diffusive behavior. For Gaussian correlated lon-
gitudinal field we get nondiffusive behavior reported by Matheron and de Marsily
[1980], a2 ~ ¢32 ("ubrw+vx(y)") and, when a constant transversal velocity is added,
diffusive long-time behavior ("ubrwv" ). For random fields with identical values in a
given number of neighbor layers (the last eurve correspond to a 2-layers correlation),
o2 poes to ~ 1 dependence for increasing correlation length.

| . - - .

CORBELATIONS

EEm e dm e
i
CEFERSONS

arl  ——
L]

Concentration fields for the simulated situations can be estimated by coarse-
grained averages, similar to (3.1). When the values of the advection velocities
and diffusion coeflicients are associated with an advection-diffusion equation like
in [Tompson and Gelhar, 1990] the coarse-grained averages give the numerical solu-
tion of the partial differential equation. Thus our numerical method is very similar

K
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to the " particle tracking”™ method of Tompson and Gelhar (the main difference is that
the particles move in a grid not in continnonus space). But this method is also useful
in analyzing more complex diffusion problems in random fields (like those discussed
in [Matheron and de Marsily, 1980] when no transpot equations are available). In
stich cases the existence of balance equations of form (3.2) could be a powerful
numerical tool.
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