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Abstract: Stochastic processes and dynamical systems in measure spaces are defined
as classes of random variables in the Doob sense. Markov processes which
are ergodic iato o "strong” sense are shown to be suitable models for the
thermodynamic irreversibility. These processes are isomorphie, in the Doob
sense, with Kolmogorov dynamical systems into the space of trajectories.
In this approach, we show that the Misra-Prigogine-Courbage theory of ir-
reversibility can be formulated as a change of representation, from strong
ergadic Markov processes to dynamical systems into the space of trajec-
tories. The physical meaning is that all strong ergodic Markov processes,
describing experimentally observed irreversibility, can be formally presented
as unitary "superdynamics”.

: 52 RECENT DEVELOPMENTS OF THE
MPC-THEORY

The paper of Misra, Prigogine and Courbage, entitled From Determin-
istic Dynamics to Probabilistic Description, [18] was followed by many at-
tempts to obtain thermodynamic irreversibility using dynamical systems as
models of physical processes. Herein after, such approaches will be referred
to ags MPC-theory. The irrevesibility models are given by "strong” Markov
semigroups of operators (i.e. with an unique fixed point attracting the
whole definition function space and, consequently yielding H-theorem and
increasing entropy law). The aim of the MPC-Theory is to find suitable
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("unstable” or "chaotic”) dynamical systems whose evolution group of op-
erators (Frobenius-Perron or Koopman), {U; iep, may be related to strong
Markov semigroups, {K¢}y>0, by the intertwining relation

K;@ = @U;, ¢ 2 U

In [18], pp.13-17, @ is an invertible mapping between the corresponding
L? function spaces and {U; }ter the Frobenius-Perron group of operators
corresponding to a Bernoulli shift (the symbolic dynamical system associ-
ated with the "baker mapping”, i.e. a Bernoulli translation on a space of
double infinile sequences). The relation (1) is said to be a nonunitary sim-
dlarity. When @ is not invertible, (1) defines a coarse graining projection,
which was proved for the larger class of K-systems (i.e. dynamical systems
carring a given partition into the finest one-point partition for + — oo and
into the coarsest one-cell partition for ¢ —+ —oo). The model example is a
square mapping obtained by projecting "baker mapping” onto the cells of
a K-partition [3, 7, 19].

While the coarse-graining rises no problems (irreversibility obtained by
projecting a dynamical system could be interpreted as a loss of information
in passing from microscopic to macroscopic description), the ”similarity
seems 1o be paradoxical because all dynamical systems preserve the en-
tropy constant ([14], chap.9). To avoid that, we note that the irreversible
evolution operators K act in L?(Y) (a space of functions defined in a state
spaceY’, where the usual reversible description is done by Liouville equa-
tion). ‘The reversible dynamical system acts itself in a function space (for
instance the space of real functions Y'®) and the corresponding operators U,
in L*(Y™) and does not provide a model of any classical statistical mechan-
ics system. Through (1) only a formal "dynamical” representation (in ¥'®)
of irreversible process is aimed, which does not contradict the entropy law
of classical system evolving in Y. That is why, most recent developments
of MPC-theory go backwards, from probabilistic description lo determin-
istic dynamics. So, Antoniou and Gustafson [2] try to answer the more
physical relevant question ”when experimentally observed strong Markov
semigroups, like diffusion or chemical reactions, can be lifted to some uni-
tary superdynamics”. These approaches are made, following the theory of
Sz.~-Nagy and Foiag [24], in terms of "positive unitary dilations”. Results
are obtained for "exact Markov semigroup” associated with square maps
(using also the Rokhlin theorem on "natural extension of exact dynamical
systems” [21]) in [2] and for more generally stationary Markov processcs
(by the extension of probability measures) in [5, 6].

In a previous paper [23], we have proved the existence of positive uni-
tary dilations for all stationary Markov processes. This result comes from
the idea that unambiguous comparation between dynamical systems and
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stochastic processes is possible when both are defined as random variables
in suitable "phase” spaces. Now we prove that nonunitary similarity also
exists for all strong-ergodic Markoy processes defined by Gardiner [9].

2. DEFINITIONS AND PRELIMINARY RESULTS

Some definitions and three Lemmas from [23] are necessary in order to
prove the Theorem from the next section.

Both stochastic processes and dynamical systems are equivalence classes
of random variables. The spaces necessary to define random variables are:
the complete probability space (£2, A, P), and the measurable space (X, B),
where A and B are the corresponding o-algebra and P is a probability
measire.

A random variable is a (A, B) measurable function i : @ = X . The
measurability condition is, usually, written as {n € B} € A, VB € B,where
{ne B} = {w € Q| n(w) € B}. Hence the preimages through 7 of the
elements of B are elements of A. A measurable function is, necessarily,
surjective because {n € X} € A.

The distribution of the random variable 1 is the measure on B given by

P,(B)=P({n € B}), VB B.

The space (Q, A, P) is nsually called the basic probability space and the
sets A € A are referred to as events [26]. Since the measure Py satisfies the
equalities Py(X) = P({n € X}) = P() = L, it follows that (X,B,Py) is
also a probability space, called the phase space. For the sake of simplicity
X is also called the phase space. The sets B € B are called the realizations
of the random variable.

The useful probabilistic description is done by the ezpectotions of quan-
tities defined by composed functions of random variables, i.e. the Lebesgue
integral

M f(n) = [ﬂ F(n(w)) P (dw) . (1)

Due to a change of variables formula, it follows that the random variables
whose distribution are identical have identical expectations 16}, p.180.

Two probability spaces are isomorphic, (4,41, 1) ~ (S22, Az, P2), if
there exists a bijective and bimeasurable mapping © : A; ~— Az which
preserves the probability measure, i.c. Pi(4;) = P2(0(4,)) ([8], 8§1,1).

Let A, = a{{n€B} | B € B} be the c-algebra on {) generated by sets
{n €B}. The (A, B) measurability of ) implies A, C .A. The set 2 endowed
with the o -algebra A, and the measure Py, defined as the restriction of P
to A, is referred to as the minimal probability space, (€2, Ay, P4, ), of the
random variable 7. By the construction of the minimal probability space the
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mapping 7 : B+ Ay, #)(B) = {n€B} = A, VB € B, is bijective, bimea-
surable and measure preserving, thus we have (2, A;, P4, ) ~ (X, B, F,).
From this isomorphism it follows that an equivalence class of random vari-
ables is defined by a given phase space (X, B, Pg). Consequently, when a
random variable is defined by "a probability space called phase space” [3],
pp.178, 188, its meaning 1s this equivalence class.

A random function in the Doob sense is a random variable valued into
a functions space,

7 YA, niw)e ¥, wel.

For fixed w, the graph of the function 3 : A — ¥, j(w) = ¥, is a
trajectory and its values, y*'()\) = y,, are points in Y. In order to avoid
misunderstandings, we call Y the state space and use the "phase space” for
X = Y* only. Thus the realizations of the random function 7) are sets of
trajectories in ¥'*. For fixed ), the function 7, :  — Y, nalw) = y*(A),
is a random variable whose phage space coincides with the state space Y. If
A C IR and A means time, then the random function is a stochastic process.
If A € R? the random function is a d-dimensional random Jield.

In order to define the distribution Fy in infinite dimensional function
spaces one uses the joint distributions of finite dimensional random vectors
(Mays - 7a,) on Y™, They are called finite dimensional distributions and
are measures on the g-algebra B™ of Y™ defined by

P‘\l_“)\“ (B) =2 P({:"M] = Bl,...,'.’)’\“ = Bn}), Be Bﬂ, B; c B (ZJ

When (2) satisfy the consistency conditions P_\a.l _____ A, 08 %0, 2.8 ) =
Prr.aa (B % ... x By) , for any permutation {4y, ...,4,} of {1,...,n} and any
By, ..., By € B,and Py, aurny 1 (BiX. . .XBpxY) =Py 5 (B X ... x By),
the "Kolmogorov Theorem on finite dimensional distributions’ ensures the
existence of a probability measure obeying Py (Cp) = Py,..a, (B), for any
Cyn € BA, where BN is the smallest a-algebra containing all the cylindri-
cal sets, Cn = {yal(ya,, . ¥r,) € B, B € B®, Af,..., A\ € A}, and B" is
the o-algebra in R*. Then an equivalence class of random functions in the
Doob sense 7 is defined, up to an isomorphism by the space (RA, BA, Pn)
[12], p.166.

Lemma 1. If n : Q v+ Y' I C R, is a stochastic process, defined on
the state space (Y,B),Y C R, density of the n-dimensional distributions
are functions p € LY(Y™), Y C R, given by

Py AL i Yny An) = M[8(y1 — nxy ()6 (ga — 0y, (w))]. O (4)

In (3). 4 is the the Dirac functional and M the expectation defined by
(1). The generalization for YCRY, d > 2 is straightforward ([13], p.209).
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The conditional probability density is defined by

P s U b | Yrats Erits i Uno ) =
. p(y1 2815 -5 YUns tn)/f’{yr—fla tpg1;eees Uns tn).

Markov processes depend only on one of the earlicr states and not on the
whole process history. By the Kolmogorov Theoremn 1.1, Markov processes
are uniquely defined, in the sense of Doob, by the l-dimensional density
and the two states conditional density (called transiiion pro bability density).
Transition probabilities obey the Chapman-Kolmogorov equation

plyrh | ws ts) = f‘p(‘yhh | 2, t2)p(ya: t2 | ya, t3)dy2. (4)
! R
Stationary Markouv processes are defined by plyry b | y2,t2) = palyr tL—

ty | ya) and p(y, t) = ps(y)-
The stationary Markov operator of kernel iype is the linear operator
K™ : LMY) — L'(Y') defined by

K f(y) = /p(y,’r | y0)f (vo)dyo, where 7 =t —tp, 72 0. (5)
¥

The operators K™ preserve the positivity and are isometric, 1.e. they have
the properties: (M1) Kf >0,V f >0, f € L'(Y) and (M2) | K7 Fllp =
W, ¥ F € L'(Y). The evolution of densities is given by p(y,t1) =
Jyplyrsta — t2 | 2, t2)p(ya, ta)dys = (K ~p)(y1,t1). By the Chapman-
Kolmogorov equation (4) the operators (5) have the properties Ky, 7,/ =
K K. [, Kof = L, VI E LY(Y) and ¥V 71,72 > 0, which define the
semigourp { K }+>0¢ of Markov operators. ] _

A stationary Markov process is strongly ergodic ([9], p. 60) if ps(y1,t1—
ta | ya) — ps(y1), lor 1 —f2 — oo. Correspondingly, the strongly ergodic
Markov operators obey

| Kp = psll ;2 — 0, for 7 — o0, i (6)
i.e. they are just the "strong Markov semigroups” [13] or jrreversible semi-
groups” [1] used as model of irreversibility in Misra-Prigogine-Courbage
theory. For them it was casy shown that the Gibbs enlropy, — f oy, t) log

p(y,t)dy, (and, also, any convex functional of p) monotonically increases
to the maximum value corresponding to thermodynamical equilibrinm [18].

Lemma 2. The strong Markov semigroups {K;}.>0, have the properties

of mizing,
1 1

i
/g(y)(ffo){y)dy-+[9(y)dy /.f(y’)dy’.
0

D a




218 Nicolee SUCIU, Adelinge GEORGESCU

and eraclness, :
| &rf — 1|z =0, for 7 =00,

for any f.g € L'(Y, B, '), where

Y CR, u(Y) < oo, p'(B) = (1/[} dy) [de,

is the probability measure in B, and ps(y) =1 is the stationary density
with respect to p'. O

Usually, measure dynamical systems on (Y,B,p) are defined as one-
parameter groups of transformations of the state space, {5t St : Y —
Y }er (or 7), Which preserve the Lebesgue measure, i.e. u(B) = u( S-¢B),Y
t € R (or Z) and ¥ B € B. They are groups of automorphisms on a measure
space [8]. Semigroups of endomorphisms on measure spaces arc called semi-
dynamical systems.

If Y C R, P is an absolutely-confinuous measure with respect to the
Lebesgue measure fi, if p( Sy B) =0V B € B with pw(B) =0, and P(B) =
P( 8 ¢B), ¥ t € R, then the dynamical system {S:}ter defines a random
function isomorphic in the sense of Doob with the state space (Y. B, P).
Thus, the phase space of dynamical systems (i.e. the space of trajectories)
is isomorphic to the state space. More generally, this isomorphism defines
the deterministic processes [11], in opposition with the genuine stachastic
processes (where the state space is a projection, at given time value, of the
phase space).

Dynamical systems are degenerated Markov processes, in the sense thaf
a point yp of every trajectory of the process is transported forward, on
the same trajectory, at the point y. The degenerate transition probabili-
ties are given by p(y.t | vo) = &y — S (y0)). The corresponding Markov
operators (8), called Frobenius-Perron operators, are defined by U, f(y) =
fyc)' (y — Si(yo))f(yo)dyo. The adjoint of the Frobenius-Perron operator,
acting on bounded Lebesgue integrable functions on Y whose norm is
given by the essential supremum, ie. g € L®(Y) ([14], p.43), defined by
T F@)Ute()dy = [y a(y)Uef (u)dy, for any f € L(Y) and g € L=(Y), is
the Koopman operator,

U7 g(y) = 9(S(y)), ¥ g € LZ(Y). (7)
The measure preserving property u(B) = p( S-¢B) implies
(U) I (y) = F(S-4(y)) = U (w),

i.e. the operator adjoint to U] is also its inverse. Thus, a measure dynam-
ical system in (Y, B, ) induces an unitary group {U,; }iew which invariates
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the Hilbert space L?(Y) (Lemma at p. 26 in [8]). This result allows for the
thermodynamic behavior of dynamical systems to be described in terms of
unitary groups of operators [18].

Lemma 3. A stationary Markov process can be embedded into the equiva-
lenee elass of dynamical systems defined by the phase space ()"R,BH.PH),
where Py is the extension by the K olmogorov Theorem of the measure de-
fined on cylindrical sets by

PT]{C'H,+]J = PLU,"- i (_Bg AR Bn) =

-~

= / ps(yﬂ)d’yaf ps(y1,t1 — 2o | yo)dyr - - (8
Bo By

: / Ps(y-n;tn Rl | Yn— l)d?fn- O
The natural representative of this class of dynamical systems is the shift
along the trajectories of the Markov process, {Zr}rem, Y7 : v — Y7,
S (y*(t)) = y*(t + 7), which invariates the measure of cylindrical sets

P’a")(cu-t—l} — Pﬂ(zrt("n-i—l)) — Pﬂ(E—T(Cﬂ. |-1))‘

So, the phase space of the stationary Markov process, is also the siale space
of this dynamical system.

3. THE EXISTENCE OF NONUNITARY
SIMILARITY

Following the definition given by Sz.-Nagy and Foias [24], pp.10, 31, the
group of operators {U; }-cr, defined in Hilbert space L2(Y'®), is the unitary
dilation of the semigroup { K }5>0, defined in L?*(Y), if they are related by

K, = PrtlU,, >0, (9)

where Pr is the orthogonal projection of L?(Y®) on L?(Y) (by its construc-
tion L2(Y) is a sub-space of L?(Y®)). The Theorem 8.1, p.31 in [24] proves
that any continuous group of contractions can be dilated to a minimal uni-
tary and continuous group, uniquely defined up to an isomorphism. The
property (M2) from § 2 shows that Markov operators are isometric (and
thus, contractions) the quoted theorem ensures the existence of unitary
dilation.

The dilated group of MPC theory acts on probabilities densities (which
are positively defined), so it is also necessary that the dilation preserves
the positivity, i.e. for any positive function from LY(Y™), the value of PrUs
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must be a positive function from L2(Y). By the Theorem proved in [2],
Markov semigroups induced by exact dynamical systems possess unitary
dilations to groups induced by K-systems. In [5, 6] the result is extended to
constant preserving stationary Markov semigroups (obeying K1 = 1). The
dilations groups are obtained by Rokhlin theorem [21] on natural extension
of exact dynamical systems in [2], and extending probability measures in
[5, 6].

Now we prove that all stationary Markov semigroups possess unitary
dilations. For strongly ergodic and constant preserving Markov processes,
we also find the results of Antoniou ct al. Moreover, for these processes,
we prove the existence of the ‘nonunitary equivalence’ of the MPC theory.

Theorem 1.

1) The adjoint Markouv semigroups {K*}s>0 corresponding to o station-
ary Markov process possess positive dilation to unitary groups;

2) For strongly eryodic and constant preserving Markov semigroups, both
{K7}r>0 and {K:}r>o0 possess positive dilations to unitary groups induced
by K-systems;

3) Between the operators K, of strong ergodic semigroup and those of
the dilation group there exists the intertwining relation K.® = oU,.

Proof. 1) From the definition of the adjoint K7, in L*(Y), of the Markov
operator (5), using the Lemma 1 and the form (3) of the finite-dimensional
distributions, we have

(K@) = [p 7 lu)f()dy = 55 [ e/ i+ 75 98 flW)dy’ =
b rly) 5
= ;,(‘?Jf(y’)dy' I8y =t +7,w))d(y — 1t w)) Pldw) =
0
= gy [ Fnte )iy — n(t ) P () =
{
= o5 [ FyP (0)8(y — n(tw)) Pldw) =
0
= 7l [ UH @ O)5 — b)) Pldo)
!
where y“(t) = n(t,w). From Lemma 4 it follows that the Markov shift 3.
preserves the measure from the space of trajectories. Thus, the Koopman

operator, defined by (7). U f(y¥) = f(X;y*). is a unitary operator in
L2(Y*). The previous relation becomes

(K5 f)(y) = (PryUz f)(w), (10)
where Pry : L2(Y®) — LA(Y), (Pryf)(y) = o f(4*)Py(dw) is the condi-
tional expectation with respect to the measure

Py(dw) = 5350y — n(t,w)) P(dw).
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Hence, according to the definition (9), the group {U-}er is the unitary
dilation of the semigroup { K }r>0. Because U7 are also Markov operators,
the property (M1) implies the positivity of the dilation.

2) Strongly ergodic Markov processes (6) are mixing, according to Lemma
9. Then the Markov shift {2, }rex which preserves the measure (8) is a K-
system (see [8], p.18land [22]). Measure preserving property and (10) also
imply (K, f)(y) = (PryUrf)(y). Here, Pr, has the meaning of a projection
on the cells of the K-partition consisting of all the trajectories containing
the point (y,t) [2].

3) We define the canonical injection I, LY(Y) — L3(Y™),
Lf(y?) = fly). Vo e{y? |y’ () =y, for fixed-t} (so that I, f takes con-
stant values on cylindrical sets of the K-partition). Obviously, Pr,l, = 1.
For each set of the K-partition the relation I,Pr, = 1 also holds. By rep-
resenting the corresponding L2 functions as limits of linear combinations
of step functions one finds that I, = (Pr,)~' : L2(Y) +— L*(Y™). Thus
the projection relation (8) becomes (K- f)(y) = (PryU. 1, f)(y), f € LYY
and renaming Pry by @, it just the intertwining relation of the MPC theory,
K.o=9oU, W

The formalism of the ergodic statistical mechanics deals with abstract
irreversible dynamical systems [1-6, 18]. The use of the unitary opera-
tors formalisim seems to be a "technical” requirement in developing present
day statistical mechanics. The previous theorem shows that realistic ir-
reversible processes with strong ergodicity property (as Brownian motions
with reflecting boundaries [11, 15, 20], modelling ideal gases or Ornstein-
Uhlenbeck process, useful in, and model example of fluctuation-dissipation
theorems [9, 25]) also may be represented by dynamical systems and unitary
operators.
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