LE CALCUL APPROXIMATIF DES EXTRÊMES D'UNE FONCTION

F. RADÓ

à Cluj

1. La méthode de calcul approximatif des extrêmes d'une fonction à une variable réelle, que nous donnons dans cette note, est applicable dans les cas où il n'y a pas ou il est difficile d'écrire effectivement la dérivée.

Nous supposons pour fixer les idées que la fonction f(x) ait un seul minimum d'abscisse x_0 dans l'intervalle $I_0 = [a, b]$, la fonction f(x) étant

décroissante dans $[a, x_0]$ et croissante dans $[x_0, b]$.

Soit c, $d \in I_0$, c < d. Si f(c) < f(d), on a $x_0 \in [a, d]$; si $f(c) \ge f(d)$, on a $x_0 \in [c, b]$. Notons par I_1 l'intervalle [a, d] dans le premier cas et l'intervalle [c, b] dans le deuxième cas. L'intervalle I_1 contient dans son intérieur l'un des points c, d et choisissons encore un point $\xi_1 \in I_1$; ainsi l'intervalle I_1 se trouve divisé en trois intervalles partiels. Par le même procedé que nous avons appliqué à l'intervalle I_0 , on trouve que x_0 appartient à un intervalle I_2 , formé par la réunion de deux intervalles partiels voisins. En continuant de cette façon, on obtient une suite d'intervalles

$$(1) I_0 \supset I_1 \supset I_2 \supset \ldots \supset I_n \supset \ldots,$$

qui contiennent le point x_0 .

On voit aisément que les points $\xi_n \in I_n$, $n=1,2,\ldots$, peuvent être choisis de telle sorte, que $I_n \to 0$. Par exemple, si on prend pour ξ_n le milieu du plus grand des deux intervalles dans lesquels I_n est divisé, on a $I_n \to 0$. Les extrémités de l'intervalle I_n sont des valeurs approchées pour x_0 par défaut et par excès respectivement.

2. Nous nous proposons de déterminer les points c, d et ξ_n de telle manière, que la suite d'intervalles (1) tende aussi rapidement que possible vers zéro. Il est nécessaire de préciser:

172

3

a) Les points c, d et ξ_n ne déterminent pas la suite (1); c'est la fonction f(x) qui montre quels sont les deux parmi les trois intervalles partiels de I_{n-1} , qui forment l'intervalle suivant I_n . Nous nous situons dans l'hypothèse la plus défavorable pour la rapidité de la convergence: nous supposons qu'à chaque pas on mette de côté l'intervalle marginal le plus court (si ces deux intervalles sont égaux, on met de côté n'importe quel d'eux). Dans cette hypothèse notre problème devient indépendant de f(x).

b) Nous disons que le choix des points c, d et ξ_n a nsi que la suite $\{l_n\}$ des longueurs des intervalles, qui résultent de ce choix et d'hypothèse faite plus haut, sont optimales, si la condition suivante est remplie: pour tout autre choix des points c, d, ξ_n et pour la suite $\{\lambda_n\}$ des longueurs des intervalles correspondants, il existe un nombre naturel N_{λ} tel que $l_n \leq \lambda_n$, lorsque $n > N_{\lambda}$.

THÉORÈME 1. Il existe une seule suite optimale, que l'on obtient en prenant pour c et d les points qui divisent l'intervalle I_0 en moyen et extrême raison $((d-a)^2=(b-a)\ (b-d),\ c-a=b-d)$ et pour ξ_n le point symétrique, par rapport au milieu de I_n , du point de division situé dans l'intervalle I_{n-1} .

Considérons pour la démonstration l'intervalle $I_0 = [0, b]$ et les points c_0 , d_0 , qui divisent cet intervalle en moyen et extrême raison (fig. 1).

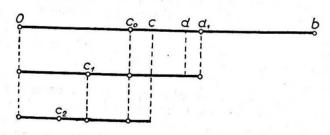


Fig. 1

$$c_0 = \frac{3-\sqrt{5}}{2}b, \ d_0 = \frac{\sqrt{5}-1}{2}b.$$

Nous prenons dans $I_1^0 = [0, d_0]$ le point $c_1 = d_0 - c_0$, qui divise avec c_0 l'intervalle I_1^0 en moyen et extrême raison; dans $I_2^0 = [0, c_0]$ on prend le point $c_2 = c_0 - c_1$, etc. $l_0 = b$, $l_1 = d_0$, $l_2 = c_0$, $l_3 = c_1$, ...

Considérons d'autre côté les points arbitraires c, d, ξ_n , qui déterminent des intervalles de longueurs $\lambda_0 = b, \lambda_1, \lambda_2, \ldots$ Nous distinguons deux cas:

a) Si $c \notin (c_0, d_0)$ ou $d \notin (c_0, d_0)$, alors on a évidenment $\lambda_1 \ge l_1$.

b) Soit maintenant $c, d \in (c_0, d_0)$. Il suffit de considérer le cas

$$\frac{c+d}{2} \geq \frac{c_0+d_0}{2},$$

car nous pouvons appliquer, s'il y a besoin, une symétrie par rapport au milieu de l'intervalle I_0 . On a

$$cd = \left(\frac{c+d}{2}\right)^2 - \left(\frac{d-c}{2}\right)^2 > \left(\frac{c_0+d_0}{2}\right)^2 - \left(\frac{d_0-c_0}{2}\right)^2 = c_0 d_0$$

ou

$$\lambda_1 \lambda_2 > l_1 l_2$$

et

$$\frac{\lambda_1}{l_1} = \frac{d}{d_0} > \frac{\frac{b}{2}}{\frac{\sqrt{5}-1}{2}b} = \frac{\sqrt{5}+1}{4}.$$

Dans tous les cas on a

$$\lambda_1 > \frac{\sqrt{5}+1}{4} l_1$$

et

$$\lambda_1 < l_1 \rightarrow \lambda_1 \lambda_2 > l_1 l_2.$$

Notons

$$\alpha_n = \frac{\lambda_n}{l_n}, \ n = 0, 1, \ldots$$

En appliquant le même raisonnement, par lequel nous avons abouti aux relations (2) et (3), pour l'intervalle I_n de longueur λ_n au lieu de I_0 , on voit que ces relations restent valables si on change λ_1 par λ_n , λ_2 par λ_{n+1} , l_1 par α_{n-1} l_n et l_2 par α_{n-1} l_{n+1}

$$\lambda_n > \frac{\sqrt{5}+1}{4} \alpha_{n-1} l_n$$

$$\lambda_n < \alpha_{n-1} l_n \to \lambda_n \lambda_{n+1} > \alpha_{n-1}^2 l_n l_{n+1}.$$

Donc $\alpha_0 = 1$,

$$\alpha_n > \frac{\sqrt{5}+1}{4}\alpha_{n-1}$$

(5)
$$\alpha_n < \alpha_{n-1} \to \alpha_n \ \alpha_{n+1} > \alpha_{n-1}^2.$$

On déduit de l'implication (5) que si $\alpha_n < \alpha_{n-1}$, alors $\alpha_{n+1} > \alpha_{n-1}$. Il résulte qu' au moins l'un des deux termes consécutifs de la suite $\{\alpha_n\}$ est au moins égal à tous les termes antérieurs et aussi

(6)
$$\alpha_{n+i} < \alpha_n \rightarrow \alpha_{n+i-1} \ge \alpha_n, \quad \alpha_{n+i+1} > \alpha_n, \quad i = 1, 2, \dots$$
Soit

$$(7) n_1, n_2, \ldots, n_k, \ldots$$

les indices n pour lesquels $\alpha_n < 1$. En tenant compte de $\alpha_0 = 1$ et de (6), on a

$$\alpha_{n_1+1}=\theta>1.$$

 $\alpha_{n_2} < 1 < \theta = \alpha_{n_1+1}$, donc $\alpha_{n_2-1} \ge \theta$ et, en utilisant (5),

$$\alpha_{n_2+1} > \alpha_{n_2-1}^2 \cdot \frac{1}{\alpha_{n_2}} > \theta^2.$$

En général,

$$\alpha_{n_k+1} > \theta^k.$$

Les relations (6), (8) et $\alpha_{n_{k+1}} < 1$ entraînent $\alpha_{n_{k+1}-1} > \theta^k$ et, en tenant compte de (4), on a

(9)
$$1 > \alpha_{n_{k+1}} > \frac{\sqrt{5}+1}{4} \theta^{k}.$$

Parce que $\theta^k \to \infty$, lorsque $k \to \infty$, la relation (9) est possible seulement pour $k < k_0$, où k_0 est un nombre naturel; ainsi la suite (7) contient un nombre fini de termes. Si $n > N_{\lambda} = n_{k_0}$, $\alpha_n \ge 1$ et $\lambda_n \ge l_n$. Nous avons démontré que la suite $\{l_n\}$ est optimale.

Pour démontrer l'unicité de la suite optimale, nous observons d'abord que, si les suites $\{l_n\}$ et $\{\lambda_n\}$ ne coïncident pas, alors il y a un indice ν tel que $\alpha_v \neq 1$; on a $\alpha_v > 1$ ou $\alpha_{v+1} > 1$ et il résulte de (6) que pour une infinité d'indices n $\alpha_n > 1$ ou $\lambda_n > \hat{l_n}$.

Supposons qu'il y ait deux suites optimales $\{l_n\}$ et $\{l'_n\}$. On peut déterminer le nombre naturel N'_i tel que, pour $n > N'_i$,

$$l'_n \geq l_n$$
;

mais $l'_n > l_n$ pour une infinité d'indices. Cette contradiction démontre l'unicité de la suite optimale.

3. On peut appliquer le procédé d'approximation décrit au no. 1 sous la forme modifiée suivante:

Supposons de nouveau que la fonction f(x) définie sur $I_0 = [a, b]$ admette un minimum au point x_0 , qu'elle décroît dans $[a, x_0]$ et croît dans $[x_0, b]$. Nous choisissons le point $c \in (a, b)$ arbitrairement et le point d comme l'abcisse du minimum du polynome d'interpolation de la fonction f(x) sur les noeuds a, b, c

(10)
$$d = \frac{1}{2} \frac{(b^2 - c^2) f(a) + (c^2 - a^2) f(b) + (a^2 - b^2) f(c)}{(b - c) f(a) + (c - a) f(b) + (a - b) f(c)} .$$

Déterminons, comme au no. I, l'intervalle I_1 ; l'un des points c et d se trouve à l'intérieur de I_1 . Considérons le polynome d'interpolation de la fonction f(x) sur ce point et sur les extrémités de l'intervalle I_1 et notons par ξ_1 l'abscisse du minimum du polynome d'interpolation. En continuant cette construction, nous obtenons la suite d'intervalles $I_0 \supset I_1 \supset I_2 \supset \dots$

Il y a une analogie entre ce procédé modifié et la méthode des parties proportionnelles utilisée pour le calcul des racines d'une équation $F(\hat{x}) = 0$. Si F(x) est une fonction convexe ou concave dans l'intervalle considéré, on sait que la racine est plus grande respectivement plus petite que l'approximation trouvée par la méthode des parties proportionnelles. Il y a une propriété analogue pour notre procédé modifié.

La fonction $\hat{f}(x)$ est convexe d'ordre 2 dans l'intervalle [a, b] si la diffé-

rence divisée

5

$$[x_1, x_2, x_3, x_4; f] > 0$$

pour les noeuds distincts $x_i \in [a, b]$, i = 1, 2, 3, 4. Soit $L(x_1, x_2, x_3; f[x])$ le polynome d'interpolation de la fonction f(x) sur les noeuds x_1, x_2, x_3 . La condition (11) est équivalente à la propriété géométrique suivante: pour $a \le x_1 < x_2 < x_3 \le b$

(12)
$$L(x_1, x_2, x_3; f|x) < f(x), \text{ lorsque } x_3 < x \le b.$$

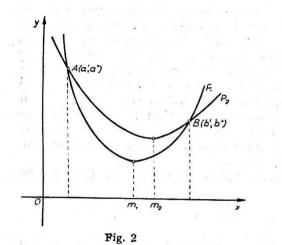
La propriété (12) entraı̂ne que la différence $L(x_1, x_2, x_3; f|x) - f(x)$ prend dans les intervalles $(a, x_1), (x_1, x_2), (x_2, x_3), (x_4, b)$ les signes +, -, +, respectivement [1]. Si f(x) est une fonction dérivable dans [a, b], cette propriété reste valable si deux des noeuds sont confondus, en entendant dans ce cas par L le polynome de Lagrange-Hermite.

THÉORÈME 2. Soit f(x) une sontion convexe d'ordre 2 et une sois dérivable dans [a, b] et a < c < b, f(c) < f(a), f(c) < f(b). Dans ces hypothèses la fonction f(x) admet dans [a, b] un seul minimum, d'abcisse x_0 , et $x_0 \ge d$, où le nombre d'est donné par la formule (10). L'égalité $x_0 = d$ est possible seulement si d = c.

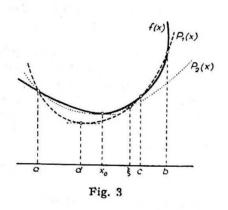
L'existence d'un minimum est évidente. Supposons qu'il y ait deux minima dans [a, b] aux points x_0 et x_1 , $x_0 < x_1$. Dans l'intervalle (x_0, x_1) $P(x) = L(x_0, x_0, x_1; f|x)$ se trouve au dessus de f(x), ce qui est en contradiction avec le fait que le polynome du deuxième degré P(x) croît dans cet intervalle. Nous avons donc un seul minimum dans [a, b], disons au point x_0 .

Pour démontrer que $x_0 \ge d$, nous nous servirons de la propriété élémentaire suivante des paraboles P_1 et P_2 , dont les axes sont parallèles à Oy, les branches infinies sont dirigées vers y > 0 et qui se coupent aux deux points A(a', a'') et B(b', b''): parmi les paraboles \bar{P}_1 et P_2 , celle qui entre A et B est s'tuée au-dessous de l'autre a son minimum plus proche du point d'intersection à l'ordonnée plus grande.

Sur la fig. 2 la parabole P_1 est située sous P_2 dans (a', b') et a'' > b'', donc $m_1 < m_2$, où m_1 et m_2 sont les abscisses des minima des deux paraboles.



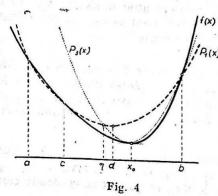
176



Supposons que les points a, b, c, d soient situés dans l'ordre: a < d < $< c < \hat{b}$ (fig. 3). Si $x_0 \ge c$, il n'y a rien à démontrer, donc nous pouvons supposer que $x_0 < c$. Notons

$$P_1(x) = L(a, c, b; f|x)$$

$$P_2(x) = L(a, x_0, x_0; f|x).$$



On a dans l'intervalle (x_0, b) $P_2(x) <$ $< \underline{f}(x)$, donc $P_{\underline{a}}(c) < \underline{f}(c)$; mais $\underline{f}(c) =$ $=P_{1}(c)$, donc $P_{2}(c) - P_{1}(c) < 0$. D'autre part dans (a, c) on $a P_1(x) < f(x)$, donc $P_1(x_0) < f(x_0)$ ou $P_2(x_0)$ — $-P_1(x_0) > 0$. Il existe, par suite, un point $\xi \in (a, c)$ tel que $P_1(\xi) = P_2(\xi) <$ $< P_1(a) = P_2(a)$. En appliquant la propriété des deux paraboles, il s'ensuit que $d < x_0$.

Supposons maintenant que a < < c < d < b (fig. 4). $P_1(x) =$

 $=L(a, c, b; f|x) > f(x) \text{ dans } (c, b), \text{ donc } P_1(d) > f(d). \text{ Mais } P_1(d) = \min_{a \le x \le b} P_1(x),$ donc $f(d) < P_1(c) = f(c)$, f(d) < f(b), d'où on a $c < x_0 < d$. Notons

$$P_3(x) = L(x_0, x_0, b; f|x).$$

On a $P_1(c) = f(c) < P_3(c)$ et $P_1(x_0) > f(x_0) = P_3(x_0)$. Il existe donc le nombre η tel que $c < \eta < x_0 < b$ et $P_1(\eta) = P_3(\eta) < P_1(b) = P_3(b)$. Il s'ensuit de la propriété des deux paraboles que $d < x_0$.

Enfin, si c = d, en tenant compte que f(x) > L(a, c, b; f(x)) > f(c) dans (a, c), on voit que dans ce cas x_0 ne peut pas être situé entre a et d et le théoreme 2 est complètement démontré.

Observations: 1) Il y a un théorème analogue pour les fonctions concaves dans [a, b], définies par $[x_1, x_2, x_3; f] < 0$. Par la substitution de la variable indépendante $x' = \frac{a+b}{2} - x$, la fonction concave f(x) se transforme dans nne fonction convexe de x' et nous pouvons appliquer le théorème 2. Par conséquent le théorème 2 est valable aussi pour les fonctions concaves avec la modification d'écrire $x_0 \le d$ au lieu de l'inégalité $x_0 \ge d$.

2) Le théorème 2 est utile dans les calculs numériques, car on peut trouver dans de nombreux cas, à l'aide de ce théorème celui des trois intervalles partiels de [a, b], qui contient le point x_0 , et nous ne sommes plus forcés de continuer les calculs avec la réunion des deux intervalles partiels. Cette situation avantageuse se présente dans les cas suivants: 1) l'ordre des points est a < c < d < b; alors $d < x_0 < b$; 2) l'ordre des points est a < d < c < b et f(d) < f(c); alors $d < x_0 < c$.

BIBLIOGRAPHIE

1] Popoviciu T., Sur quelques propriétés des fonctions d'une ou de deux variables réelles. Mathematica, 8, 1-85 (1934).

Reçu le 15. I. 1961.