MATHEMATICA VOL. 6 (29), 2, 1964, pp. 217-232

the latest three civil and reliable to the section of the south the states of the section of

que la solución equ) en sa deciore poto sen una colorio en o proceso a

we can find approximations for the discharges considering the cases when the filtration coefficient is constant and equals first k and then k. The second way is to approximate the given medium by a harmoni-

cally inhomogeneous medium, i.e. the medium for which

$$\Delta k^{1/2}=0,$$

and when we have to deal also with the determination of a harmonic function knowing certain boundary conditions.

REFERENCES

[1] Ciarnîi I. A., Podzeamnaia ghidravlika, Moscova (1956).

[2] Dupuis J., Tables des logarithmes, d'apres Callet, Paris (1880).

- [3] Filciakov P. F., Metod posledovatelníh komformníh otobrajenii i evo prilojenia k zadaciam filtratii, Ukr. Mat. Jurnal, 7 4, 453 (1955); 8, 1, 76; 3, 299
- [4] Filciakov P. F., Cislesnîi metod konformnovo otobrajenia odnosviaznîh odnolistnîh oblastei; Ukr. Mat. Jurnal, 10, 438 (1958).
- [5] Gheorghiță St. I., Asupra mișcării apelor arteziene, Analele Univ. București, nr. 15, 51 (1957).
- [6] Gheorghitza St. I., A semi-inverse method in plane hydrodynamics, Arch. Mech. Stosowanej, IX, 6, 681 (1959).
- [7] Lavrentiev M. A., Şabat B. V., Metodî teorii funkfii kompleksnovo peremennovo, Moscova, (1951).
- [8] Pîhacev G. B., Podzemnaia ghidravlika, Moscova (1961).

the wastery technic and low in the contraction of the

and the figure of the second second to the second

- [9] Tabliti Barlow, Moscova (1950).
- [10] Tabliți e^x i e^{-x} , Moscova (1955).

Received 19. XI. 1963

L'INTÉGRATION NUMÉRIQE DES ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE

D. V. IONESCU

c. STÖRMER [5] a donné une formule d'intégration numérique pour l'équation différentielle

$$y'' = f(x, y)$$
.

On sait que si les noeuds x_0 , x_1 , ..., x_6 sont en progression arithmétique dont la raison est égale à h et sont situés dans l'intervalle d'existence de la solution y(x) de cette équation, on peut calculer $y(x_6)$, si y(x) a été calculée au préalable sur les noeuds x_0, x_1, \ldots, x_5 , par la formule de Störmer

$$y(x_6) = 2y(x_5) - y(x_4) + h^2 \left[g(x_5) + \frac{\Delta_2 g(x_5)}{12} + \frac{\Delta_3 g(x_5)}{12} + 19 \frac{\Delta_4 g(x_5)}{240} + 9 \frac{\Delta_5 g(x_5)}{120} \right] + R$$

où g(x) = f[x, y(x)].

Nous avons donné dans un récent travail [2] l'expression du reste de cette formule sous la forme d'une intégrale définie et nous avons montré qu'il est de l'ordre de h^6 .

Dans ce travail nous traitons un problème sur l'intégration numérique de l'équation différentielle

(1)
$$y'' = f(x, y, y').$$

Nous désignons par y(x) la solution de cette équation qui satisfait aux conditions

(2)
$$y(x_0) = y_0, \quad y'(x_0) = y_0'$$

et nous considérons les noeuds x_1, x_2, \ldots, x_6 en progression arithmétiqe dont la raison est $h = x_1 - x_0$ et qui sont situés dans l'intervalle d'existenc

de la solution y(x). Nous allons donner des formules pour le calcul de la solution y(x) et de sa dérivée sur les noeuds $x_1, x_2, \dots x_6$ en supposant que la solution y(x) et sa dérivée y'(x) ont été calculées au préalable sur 1^7 un des noeuds x_1, x_2, \ldots, x_6 .

Ce problème est lié au polynome d'interpolation de Lagrange-Hermite avec les noeuds ξ_0 , ξ_1 triples et à sa dérivée. En prenant les valeurs de ce polynome et de sa dérivée au point ξ_2 , nous avons des formules de dériva-

tion numérique de la forme

(K)
$$f(\xi_{2}) = A_{0}f(\xi_{0}) + A_{1}f'(\xi_{0}) + A_{2}f''(\xi_{0}) + B_{0}f(\xi_{1}) + B_{1}f'(\xi_{1}) + B_{2}f''(\xi_{1}) + R$$
(L)
$$f'(\xi_{2}) = C_{0}f(\xi_{0}) + C_{1}f'(\xi_{0}) + C_{2}f''(\xi_{0}) + C_{1}f'(\xi_{1}) + D_{2}f''(\xi_{1}) + R'$$

Nous étudierons les restes R et R' de ces formules sous la forme d'une intégrale définie en supposant que la fonction f(x) soit de la classe $C^{(6)}$ sur l'intervalle sur lequel on a pris les noeuds ξ_0 , ξ_1 , ξ_2 . Nous insisterons surtout sur le reste R', dans le cas où $\xi_0 < \xi_2 < \xi_1$.

Des formules diverses de dérivation numérique sont établies dans tous les livres sur l'analyse numérique. Nous citons notamment le livre de I. S BEREZIN et N. P. JIDKOV [1] et le livre de S. E. MIKELADZE [3]. L'académicien T. POPOVICIU a publié à ce propos un très important mémoire [4].

Evidemment ce problème peut-être étendu de diverses manières et nous comptons revenir sur ce sujet dans d'autres travaux.

§ 1.

La formule (K) de dérivation numérique

1. Considérons une fonction f(x) de la classe $C^{(6)}$ sur l'intervalle $[\xi_0, \xi_2]$ et désignons par ξ_1 , un noeud compris entre ξ_0 et ξ_2 Pour le calcul de $f(\xi_2)$ nous avons la formule (K), dans laquelle les coefficients A_0 , A_1 , A_2 , B_0 , B_1 , B_2 sont donnés par les formules

$$A_0 = -\frac{(\xi_2 - \xi_1)^3}{(\xi_1 - \xi_0)^5} \left[(\xi_1 - \xi_0)^2 + 3(\xi_1 - \xi_0)(\xi_2 - \xi_0) + 6(\xi_2 - \xi_0)^2 \right]$$

(3)
$$A_1 = -\frac{(\xi_2 - \xi_1)^3}{(\xi_1 - \xi_0)^4} (\xi_2 - \xi_0) [3(\xi_2 - \xi_0) + (\xi_1 - \xi_0)]$$

$$A_2 = -\frac{(\xi_2 - \xi_1)^3 (\xi_2 - \xi_0)^2}{2(\xi_1 - \xi_0)^3}$$

et

$$B_0 = \frac{(\xi_2 - \xi_0)^3}{(\xi_1 - \xi_0)^5} \left[6(\xi_2 - \xi_0)^2 - 15(\xi_1 - \xi_0)(\xi_2 - \xi_0) + 10(\xi_1 - \xi_0)^2 \right]$$

(4)
$$B_1 = \frac{(\xi_2 - \xi_0)^3}{(\xi_1 - \xi_0)^4} (\xi_2 - \xi_1) [4(\xi_1 - \xi_0) - 3(\xi_2 - \xi_0)]$$

$$B_2 = \frac{(\xi_2 - \xi_0)^8 (\xi_2 - \xi_1)^2}{2(\xi_1 - \xi_0)^3}$$

Le reste de la formule (K) est donné par la formule

(5)
$$R = \int_{\xi_0}^{\xi_1} \varphi(x) f^{(6)}(x) dx.$$

où la fonction $\varphi(x)$ coïncide sur les intervalles $[\xi_0, \xi_1]$, $[\xi_1, \xi_2]$ avec les

$$\varphi_1(x) = -A_0 \frac{(x-\xi_0)^5}{5!} + A_1 \frac{(x-\xi_0)^4}{4!} - A_2 \frac{(x-\xi_0)^3}{3!}$$

(6)
$$\varphi_2(x) = -\frac{(x-\xi_2)^5}{5!}$$

On démontre que la fonction $\varphi(x)$ est positive sur l'intervalle (ξ_0, ξ_2) . En posant

(7)
$$M_{6} = \sup_{[\xi_{0}, \xi_{1}]} |f^{(6)}(a)|.$$

on a pour R, l'évaluation

(8)
$$|R| \leqslant \frac{(\xi_2 - \xi_0)^3 (\xi_2 - \xi_1)^3}{6!} M_6$$

2. Lorsque $\xi_0 < \xi_2 < \xi_1$ et la fonction f(x) est de la classe $C^{(6)}$ sur l'intervalle $[\xi_0, \xi_1]$ on a pour la calcul de $f(\xi_2)$ la même formule (K)avec les coefficients (3) et (4), mais pour laquelle le reste que nous désignons par R₁, est donné par la formule

(9)
$$R_{1} = \int_{\xi_{0}}^{\xi_{1}} \psi(x) f^{(\mathfrak{g})}(x) dx$$

où la fonction $\psi(x)$ coïncide sur les intervalles $[\xi_0, \xi_2]$, $[\xi_2, \xi_1]$ avec es polvnomes

(10)
$$\psi_{1}(x) = -A_{0} \frac{(x-\xi_{0})^{5}}{5!} + A_{1} \frac{(x-\xi_{0})^{4}}{4!} - A_{2} \frac{(x-\xi_{0})^{8}}{3!}$$

$$\psi_{2}(x) = B_{0} \frac{(x-\xi_{1})^{5}}{5!} - B_{1} \frac{(x-\xi_{1})^{4}}{4!} + B_{2} \frac{(x-\xi_{1})^{8}}{3!}$$

On démontre que la fonction $\psi(x)$ est négative sur l'intervalle (ξ_0, ξ_1) . En posant

(11)
$$M_6' = \sup_{[\xi_0, \, \xi_1]} |f^{(6)}(x)|.$$

nous avons l'évaluation

(12)
$$|R_1| \leqslant \frac{(\xi_2 - \xi_0)^3 (\xi_1 - \xi_2)^3}{6!} M'_6$$

\$ 2

La formule (L) de dérivation numérique

3. Si la fonction f(x) est de la classe $C^{(6)}$ sur l'intervalle $[\xi_0, \xi_2]$ et si ξ_1 , est un noeud compris entre ξ_0 et ξ_2 , nous avons la formule (L) pour le calcul de $f(\xi_2)$, dans laquelle les coefficients C_0 , C_1 , C_2 , D_0 , C_1 , C_2 , C_3 , C_4 , C_5 , C_5 , C_6 , C_7 , C_9 ,

$$C_{0} = -30 \frac{(\xi_{2} - \xi_{1})^{2} (\xi_{2} - \xi_{0})^{2}}{(\xi_{1} - \xi_{0})^{5}}$$

$$(13) \quad C_{1} = -\frac{(\xi_{2} - \xi_{1})^{2}}{(\xi_{1} - \xi_{0})^{4}} [3(\xi_{2} - \xi_{0}) - (\xi_{1} - \xi_{0})] [5(\xi_{2} - \xi_{0}) + (\xi_{1} - \xi_{0})]$$

$$C_{2} = -\frac{(\xi_{2} - \xi_{1})^{2}}{2(\xi_{1} - \xi_{0})^{3}} (\xi_{2} - \xi_{0}) [5(\xi_{2} - \xi_{0}) - 2(\xi_{1} - \xi_{0})]$$

et

$$D_0 = 30 \frac{(\xi_2 - \xi_1)^2 (\xi_2 - \xi_0)^2}{(\xi_1 - \xi_2)^5}$$

(14)
$$D_{1} = -\frac{(\xi_{2} - \xi_{0})^{2}}{(\xi_{1} - \xi_{0})^{4}} [3(\xi_{2} - \xi_{0}) - 2(\xi_{1} - \xi_{0})] [5(\xi_{2} - \xi_{0}) - 6(\xi_{1} - \xi_{0})]$$

$$D_{2} = \frac{(\xi_{2} - \xi_{0})^{2}}{2(\xi_{1} - \xi_{0})^{3}} (\xi_{2} - \xi_{1}) [5(\xi_{2} - \xi_{0}) - 3(\xi_{1} - \xi_{0})]$$

Le reste de la formule (L) est donné par la formule

(15)
$$R' = \int_{1}^{\xi_{1}} \theta(x) f^{(6)}(x) dx$$

où la fonction $\theta(x)$ coïncide sur les intervalles $[\xi_0, \xi_1]$, $[\xi_1, \xi_2]$, avec les polynomes

(16)
$$\theta_1(x) = -C_0 \frac{(x - \xi_0)^5}{5!} + C_1 \frac{(x - \xi_0)^4}{4!} - C_2 \frac{(x - \xi_0)^3}{3!}$$

$$\theta_2(x) = \frac{(x - \xi_2)^4}{4!}$$

On démontre que la fonction $\theta(x)$ est positive sur l'intervalle (ξ_0, ξ_2) et qu'on a l'évaluation

(17)
$$R' \leq \frac{3}{6!} (\xi_2 - \xi_0)^2 (\xi_2 - \xi_1)^2 [(\xi_2 - \xi_0) + (\xi_2 - \xi_1)] M_6$$

4. Lorsque le noeud ξ_2 est compris entre ξ_0 et ξ_1 , et la fonction f(x) est de la classe $C^{(6)}$ sur l'intervalle $[\xi_0, \xi_1]$ nous avons pour le calcul de $f'(\xi_2)$ la même formule (L) avec les mêmes coeficients (13) et (14), mais nous avons pour le reste R'_1 la formule

(18)
$$R'_{1} = \int_{\xi_{1}}^{\xi_{0}} \chi(x) f^{(6)}(x) dx$$

5

où la fonction $\chi(x)$ coïncide sur les intervalles $[\xi_0, \xi_2]$, $[\xi_2, \xi_1]$ avec les polynomes

(19)
$$\chi_{1}(x) = -C_{0} \frac{(x-\xi_{0})^{5}}{5!} + C_{1} \frac{(x-\xi_{0})^{4}}{4!} - C_{2} \frac{(x-\xi_{0})^{3}}{3!}$$

$$\chi_{2}(x) = D_{0} \frac{(x-\xi_{1})^{5}}{5!} - D_{1} \frac{(x-\xi_{1})^{4}}{4!} + D_{2} \frac{(x-\xi_{1})^{3}}{3!}$$

La discussion du signe de la fonction X(x) sur l'intervalle (ξ_0, ξ_1) met en évidence trois points importants sur l'intervalle (ξ_0, ξ_1)

(20)
$$\alpha_1 = \xi_0 + \frac{2}{5}(\xi_1 - \xi_0), \quad \alpha_2 = \frac{\xi_0 + \xi_1}{2}, \quad \alpha_3 = \xi_0 + \frac{3}{5}(\xi_1 - \xi_0)$$

Nous avons les conclusions suivantes:

1° Si $\xi_0 < \xi_2 \leqslant \alpha_1$ la fonction $\chi(x)$ est négative sur l'intervalle (ξ_0, ξ_1) .

 2° Si $\alpha_1 < \xi_2 < \alpha_2$ la fonction $\chi(x)$ s'annule en un point ξ^* de l'intervalle (ξ_0, ξ_2) ; elle est positive sur l'intervalle (ξ_0, ξ^*) et négative sur l'intervalle (ξ^*, ξ_1) .

 3° Si $\xi_2 = \alpha_2$ la fonction $\chi(x)$ s'annule pour $x = \alpha_2$; elle est positive sur l'intervalle (ξ_0, α_2) et négative sur l'intervalle (α_2, ξ_1)

 4° Si $\alpha_2 < \xi_2 < \alpha_3$ la fonction $\chi(x)$ s'annule en un point ξ'^* de l'intervalle (ξ_2, ξ_1) ; elle est positive sur l'intervalle (ξ_0, ξ'^*) et négative sur l'intervalle (ξ'^*, ξ_1) .

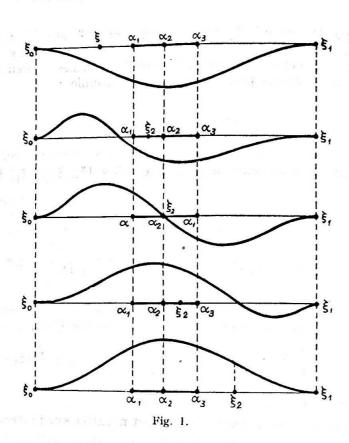
5° Si $\alpha_3 \leqslant \xi_2 < \xi_1$, la fonction $\chi(x)$ est positive sur l'intervalle (ξ_0, ξ_1) . Nous avons

(21)
$$\int_{\xi_0}^{\xi_1} \chi(x) dx = \frac{1}{5!} (\xi_2 - \xi_0)^2 (\xi_2 - \xi_1)^2 \left(\xi_2 - \frac{\xi_0 + \xi_1}{2} \right)$$

et par suite le degré d'exactitude de la formule (L) est cinq si $\xi_2 \neq \alpha_2$ et il augmente d'une unité lorsque $\xi_2 = \alpha_2$.

On démontre que le graphique de la fonction $\chi(x)$ sur l'intervalle $[\xi_0, \xi_1]$ a l'une des formes suivantes selon la position de ξ_2 par rapport aux points α_1 , α_2 , α_3

où le reste a l'expire



Remarque. Lorsque la fonction f(x) est de la classe $C^{(7)}$ sur l'inter valle $[\xi_0, \xi_1]$ et $\xi_2 = \alpha_2$, on a la formule de dérivation numérique

(22)
$$f'(\xi_2) = -\frac{15}{16\lambda}f(\xi_0) - \frac{7}{16}f'(\xi_0) - \frac{\lambda}{16}f''(\xi_0) + \frac{15}{16\lambda}f(\xi_1) - \frac{7}{16}f'(\xi_1) + \frac{\lambda}{16}f''(\xi_1) + R_2$$

où $\lambda=\xi_2-\xi_0=\xi_1-\xi_2$. Le reste R_2 est donné par la formule

(23)
$$R_2 = -\int_{\xi_0}^{\xi_1} \omega(x) f^{(7)}(x) dx$$

où la fonction $\omega(x)$ coïncide sur les intervalles $[\xi_0, \xi_2]$, $[\xi_2, \xi_1]$ avec les polynomes

$$\omega_{1}(x) = \frac{15}{16\lambda} \frac{(x - \xi_{0})^{6}}{6!} - \frac{7}{16} \frac{(x - \xi_{0})^{5}}{5!} + \frac{\lambda}{16} \frac{(x - \xi_{0})^{4}}{4!}$$

$$\omega_{2}(x) = \frac{15}{16\lambda} \frac{(x - \xi_{1})^{6}}{6!} + \frac{7}{16} \frac{(x - \xi_{1})^{5}}{5!} + \frac{\lambda}{16} \frac{(x - \xi_{1})^{4}}{4!}$$

On démontre que la fonction $\omega(x)$ est positive sur l'intervalle (ξ_0, ξ_1) et qu'elle a le graphique donné dans la fig. 2

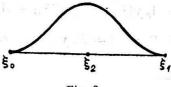


Fig. 2.

En posant

$$M_7 = \sup_{[\xi_0, \, \xi_1]} |f^{(7)}(x)|$$

on a l'évaluation

$$|R_2| \leqslant \frac{\lambda^6}{7!} M_6.$$

§ 3.

L'intégration numérique de l'équation différentielle (1) avec les conditions (2)

5. Nous allons faire maintenant l'application des formules (K) et (L) a l'intégration numérique de l'équation différentielle (1), avec les conditions (2).

Supposons que la solution de l'équation (1) qui vérifie les conditions (2) existe sur l'intervalle $[x_0, x_0 + a]$ et que dans le parallélépipède (π) définie par

$$x_0 \leqslant x \leqslant x_0 + a$$
, $|y - y_0| \leqslant b$, $|y' - y'_0| \leqslant c$.

la fonction f(x, y, y') est continue et a des dérivées partielles successives, par rapport à x, y, y' jusqu'au quatrième ordre, continues. Dans ce cas, par des dérivations successives, on déduit de l'équation (1)

(26)
$$y''' = f_1(x, y, y'), ..., y^{(e)} = f_4(x, y, y')$$

où les fonctions $f_1, ..., f_4$ sont continues dans (π) . Nous désignons par

Nous désignons par
$$F_4 = \sup_{(\pi)} |f_4(x, y, y')|$$

Supposons que l'on ait calculé la solution y(x) et sa dérivée y'(x) au point ξ_1 . Alors pour calculer y(x) et y'(x) au point ξ_2 on peut appliquer les formules (K) et (L), où on va remplacer y''(x) par

(28)
$$g(x) = f[x, y(x), y'(x)].$$

Les formules d'intégration numérique que nous avons en vue sont alors

(29)
$$y(\xi_2) = A_0 y(\xi_0) + A_1 y'(\xi_0) + A_2 g(\xi_0) + B_0 y(\xi_1) + B_1 y'(\xi_1) + B_2 g(\xi_1) + R$$

où le reste a l'expression

(30)
$$R = \int_{\xi_0}^{\xi_0} \varphi(x) f_4[x, y(x), y'(x)] dx$$

si $\xi_0 < \xi_1 < \xi_2$ ou

(30₁)
$$R_1 = \int_{\xi_0}^{\xi_1} \psi(x) f_4[x, y(x), y'(x)] dx$$

si $\xi_0 < \xi_2 < \xi_1$, et

(31)
$$y'(\xi_2) = C_0 y(\xi_0) + C_1 y'(\xi_0) + C_2 g(\xi_0) + D_0 y(\xi_1) + D_1 y'(\xi_1) + D_2 g(\xi_1) + R'$$

où le reste a l'expression

(32)
$$R' = \int_{\xi_0}^{\xi_1} \theta(x) f_4[x, y(x), y'(x)] dx.$$

si $\xi_0 < \xi_1 < \xi_2$ ou

(32₁)
$$R'_{1} = \int_{\xi_{1}}^{\xi_{1}} \chi(x) f_{4}[x, y(x), y'(x)] dx.$$

si $\xi_0 < \xi_2 < \xi_1$.

Pour R, nous avons l'évaluation

$$|R| \leqslant KF_4$$

où

(34)
$$K = \frac{(\xi_2 - \xi_0)^3 (\xi_2 - \xi_1)^3}{6!}$$

et pour R_1 , nous avons l'évaluation $\frac{1}{2}$ $\frac{1}{2}$ 1904 raidreinne u'il

$$(35) |R_1| \leqslant K_1 F_4$$

où $x = 2 \left(\frac{1}{2} \right) x$

(36)
$$K_1 = \frac{(\xi_2 - \xi_0)^3 (\xi_1 - \xi_2)^3}{6!}$$

Pour R' nous avons l'évaluation

$$|R'| \leqslant K' F_4$$

Où

ĝ

8

(38)
$$K' = \frac{1}{5!} (\xi_2 - \xi_0)^2 (\xi_2 - \xi_1)^2 \left(\xi_2 - \frac{\xi_0 + \xi_1}{2}\right)$$

· Quant à l'évaluation de R', nous distingons plusieurs cas.

1° Si
$$\xi_0 < \xi_2 \leqslant \xi_0 + \frac{2}{5} (\xi_1 - \xi_0)$$
 nous avons

$$|R_1'| \leqslant K_1' F_4.$$

où

(40)
$$K_1' = \frac{1}{5!} (\xi_2 - \xi_0)^2 (\xi_2 - \xi_1)^2 \left| \xi_2 - \frac{\xi_0 + \xi_1}{2} \right|$$

2° Si
$$\xi_0 + \frac{3}{5} (\xi_1 - \xi_0) \leqslant \xi_2 < \xi_1$$
 nous avons

$$|R_1'| \leqslant {}^{\cdot} {}' F_4.$$

nin

(42)
$$K_1' = \frac{1}{5!} (\xi_0 - \xi_0)^2 (\xi_2 - \xi_1)^2 \left(\xi_2 - \frac{\xi_0 + \xi_1}{2}\right).$$

3° Si
$$\xi_0 + \frac{2}{5}(\xi_0 - \xi_1) < \xi_2 < \xi_0 + \frac{3}{5}(\xi_1 - \xi_0)$$
 nous avons

$$|R_1'| \leqslant K_1' F_4$$

οù

En particulier pour $\xi_2 = \frac{\xi_0 + \xi_1}{2}$ nous avons

(45)
$$K'_{1} = 2 \int_{\xi_{0}}^{\xi_{s}} \chi(x) \ dx.$$

6. Dans le cas de la suite de noeuds $x_0, x_1, ..., x_6$ on prend $\xi_0 = x_0$ et $\xi_1 = x_i$, (i = 1, 2, ..., 6). Lorsque ξ_2 est un des noeuds $x_1, x_2, ..., x_6$ différent de x_i , il se présente les circonstances suivantes :

$$1^{\circ} \xi_2 > \xi_1$$

$$2^{\circ} \xi_2 = \alpha_2$$

$$3^{\circ} \ \xi_{2} \in (\xi_{0}, \ \alpha_{1}] \ \text{on} \ \xi_{2} \in [\alpha_{3}, \ \xi_{1})$$

Dans tous ces trois cas on peut calculer facilement le coefficient K' ou le coefficient K'_1 , avec l'une des formules (38), (45), (40) ou (42).

Nous terminons ce travail en donnant des tableaux avec les coeficients A_0 , A_1 , A_2 , B_0 , B_1 , B_2 , K ou K_1 pour construire des formules pratiques (29) pour le calcul de y (ξ_2) et aussi des tableaux avec les coefficients C_0 , C_1 , C_2 , D_0 , D_1 , D_2 , K' ou K'_1 pour construire des formules pratiques (31) pour le calcul de y' (ξ_2).

$$1^{0} \ \xi_{0} = x_{0}, \ \xi_{1} = x_{1}; \ \xi_{2} = x_{2}, \ x_{3}, \ x_{4}, \ x_{5}, \ x_{6}$$

$$y(\xi_{2})$$

ξ ₂	A_{0}	A_1	A ₃	B_{0}	B_1	B_{2}	Kh6 ou K ₁ h6
x ₂	-31	-14 h	$-2h^{2}$	32	-16h	4 1/2	$\frac{1}{90} < 0.0112$
x ₃	-512	-240h	-36h²	513	-270h	54h ²	$\frac{3}{10} = 0.3$
x4	-2943	-1404h	$-216h^{2}$	2944	-1536h	288h²	$\frac{12}{5} = 2,4$
x ₅	-10624	-5120h	-800h ²	10625	-5500h	1000h²	$\frac{100}{9} < 11,1112$
x ₆	-29375	-14250h	-2250h²	29376	-15120h	2700h²	$\frac{75}{2} = 37.5$

S. were the tax process of

 $y'(\xi_2)$

ξ2	C ₀	C ₁	C ₂ .	D 0 64	D_{1}	D_2	K'h5 ou K'h5
<i>x</i> ₂	$-\frac{120}{h}$	55	-8h	120 h	-64	14 <i>h</i>	$\frac{1}{20} = 0.05$
x ₃	_ 1080 h	-512	78h	1080 h	567	108h	$\frac{3}{4}=0.75$
x ₄	$-\frac{4320}{h}$	-2079	-324 h	4320 h	- 2240	408ħ	$\frac{21}{5} = 4.2$
x ₅	12000 h	- 5824	920 <i>h</i>	12000 h	6175	1100h	15
x 6	$-\frac{27000}{h}$	- 13175	-2100h	27000 h	- 13824	2430h	$\frac{165}{4} = 41,25$

$$2^{0}$$
 $\xi_{0} = x_{0}$, $\xi_{1} = x_{2}$; $\xi_{2} = x_{1}$, x_{3} , x_{4} , x_{5} , $x_{6} = \frac{1}{2}$ $\frac{1}{2}$

ξ ₂	A 0	A_1	A_2	B_{0}	B_1	B ₂	Kh ⁶ ou K ₁ h ⁶
<i>x</i> ₁	$\frac{1}{2}$	$\frac{5}{16}h$	$\frac{1}{16}h^2$	1 2	$-\frac{5h}{16}$	$\frac{1}{16} h^2$	$\frac{1}{720} < 0.0014$
<i>x</i> ₃	- 19 8	$-\frac{33}{16}h$	$-\frac{9}{16}h^2$	27 8	$-\frac{27}{16}h$	$\frac{27}{16} h^2$	$\frac{3}{10}=0.3$
x4	- 31	- 28 h	- 8 h ²	32	- 32 h	16 h²	$\frac{32}{45} < 0.7112$
<i>x</i> ₅	$-\frac{621}{4}$	$-\frac{2295}{16}h$	$-\frac{675}{16}h^2$	<u>625</u> 4	$-\frac{2625}{16}h$		$\frac{75}{16} = 4,6875$
<i>x</i> ₆	- 512	- 480 h	- 144 h ²	513	- 540 h	216 h²	$\frac{69}{5} = 19,2$

228

ξ2	, C ₀	<i>C</i> ₁	C ₂	D_0	D_1	D_2	K'h ⁵ ou K' ₁ h ⁵
<i>x</i> ₁	$-\frac{15}{16h}$	$-\frac{7}{16}$	$-\frac{1}{16}h$	$\frac{15}{16h}$	$-\frac{7}{16}$	$\frac{1}{16}h$	$\frac{1}{1920} < 0,00053$
x ₃	$-\frac{135}{16h}$	$-\frac{119}{16}$	$-\frac{33}{16}h$	135 16h	$-\frac{135}{16}$	$\frac{81}{16}h$	$\frac{3}{5}=0.6$
x4	$-\frac{60}{h}$	_ 55	- 16 h	60 h	- 64	28 h	$\frac{8}{5}=1,6$
<i>x</i> ₅	$-\frac{3375}{16h}$	- 3159 16	$-\frac{945}{16}h$	3375 16h	$-\frac{3575}{16}$	$\frac{1425}{16}h$	$\frac{15}{2}=7,5$
x ₆	$-\frac{540}{h}$	_ 512	- 156 h	540 h	_ 567	216 h	24

3°
$$\xi_0 = x_0$$
, $\xi_1 = x_3$; $\xi_2 = x_1$, x_2 , x_4 , x_5 , x_6 . $y(\xi_2)$

ξ2	A ₀	A ₁	. A2	B_0	B_1	B_2	Kh^6 ou K_1h^6
	<u> </u>					2	$\frac{1}{90} < 0.0112$
<i>x</i> ₁	81	$\frac{16}{87}h$	$\frac{4}{27} h^2$	17 81	$-\frac{2}{9}h$	$\frac{2}{27} h^2$	90 0,0112
<i>x</i> ₂	17 81	$\frac{2}{9}h$	$\frac{2}{27}h^2$	64 81	$-\frac{16}{27}h$	$\frac{4}{27}h^2$	
x4	$-\frac{47}{81}$	$-\frac{20}{27}h$	$-\frac{8}{27}h^2$	128	0 16 a	$\frac{32}{27}h^2$	$\frac{4}{45} < 0.0889$
x ₅	- 544 81	$-\frac{80}{9}h$	$-\frac{100}{27}h^2$	625 81	$-\frac{250}{27}h$	$\frac{250}{27} h^2$	$\frac{25}{18} < 1,3889$
x ₆	- 31	-42 h	- 18 h ²	32	- 48 h	36 h²	$\frac{162}{20} = 8,1$

 $y'(\xi_2)$

ξ ₂	C ₀	C ₁	C ₂	D_0	D_1	D_2	K'h ⁵ ou K' ₁ h ⁵
<i>x</i> ₁	$-\frac{40}{81h}$	0	$\frac{6}{81}h$	40 81h	$-\frac{39}{81}$	$\frac{12}{81}h$	$\frac{1}{60}$ < 0,0167
x ₂	$-\frac{40}{81h}$	$-\frac{39}{81}$	$-\frac{12}{81}h$	40 81h	0 .	$\frac{6}{81}h$	$\frac{1}{60}$ < 0,0167
x4	$-\frac{160}{81h}$	$-\frac{207}{81}$	$-\frac{84}{81}h$	160 81h	$-\frac{192}{81}$	$\frac{264}{81}h$	$\frac{1}{3} < 0.3334$
x ₅	$-\frac{1000}{81h}$	$-\frac{1344}{81}$	$-\frac{570}{81}h$	1000 81h	$-\frac{1575}{81}$	$\frac{1200}{81}h$	$\frac{35}{12}$ < 2,9167
x 6	$-\frac{40}{h}$	– 55	- 24 h	40 h	– 64	42 h	$\frac{243}{20} = 12,15$

40
$$\xi_0 = x_0$$
, $\xi_1 = x_4$; $\xi_2 = x_1$, x_2 , x_3 , x_5 , x_6

ξ2	A_0	A_1	A2 .	B ₀	B ₁	. B ₂	Kh ⁸ ou K ₁ h ⁸
<i>x</i> ₁	459 512	$\frac{189}{512}h$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	53 512	$-\frac{39}{256}h$	$\frac{9}{128}h^2$	$\frac{3}{80} = 0,0375$
x ₂	$\frac{1}{2}$	$\frac{5}{8}h$	$\frac{1}{4} h^2$	1 2	$-\frac{5}{8}h$	$\frac{1}{4}h^2$	$\frac{4}{45} < 0,0889$
<i>x</i> ₃	$\frac{53}{512}$	$\frac{39}{256}h$	$\frac{9}{128} h^2$	459 512	$-\frac{189}{256}h$	$\frac{27}{128}h^2$	$\frac{3}{80} = 0.0375$
<i>x</i> ₅	$-\frac{113}{512}$	$\phantom{00000000000000000000000000000000000$			$-\frac{125}{256}h$	$\frac{125}{128}h^2$	$\frac{25}{144} < 0,1737$
x ₆	$-\frac{19}{8}$		$-\frac{9}{4}h^2$		$-\frac{27}{8}h$	$\frac{27}{4} h^2$	$\frac{12}{5}=2.4$

	1	۲ ۱
γ	1	521
-	,	

ξ ₂	C ₀	<i>C</i> ₁	· C ₂	D_0	D_1	D_2	$K'h^5$ ou K'_1h^5
x ₁	$-\frac{135}{512h}$	81 256	27 • h	$\frac{135}{512h}$	$-\frac{95}{256}$	$\frac{21}{128}h$	$\frac{3}{40} = 0.075$
x ₂	$-\frac{15}{32h}$	$-\frac{7}{16}$	$-\frac{1}{8}h$	15 32h	$-\frac{7}{16}$	$\frac{1}{8}h$	$\frac{1}{60}$ < 0,0167
<i>x</i> ₃	$-\frac{135}{512h}$	$-\frac{95}{256}$	$-\frac{21}{128}h$	$\frac{135}{512h}$	$-\frac{81}{256}$	$-\frac{27}{128}h$	$\frac{3}{40} = 0.075$
<i>x</i> ₅	$-\frac{375}{512h}$	$-\frac{319}{256}$	$-\frac{85}{128}h$	375 512h	$-\frac{175}{256}$	$\frac{325}{128}h$	$\frac{5}{8} = 0,625$
x ₆	$-\frac{135}{32h}$	$-\frac{119}{16}$	$-\frac{33}{8}h$	$\frac{135}{32h}$	$-\frac{135}{16}$	$\frac{81}{8}h$	$\frac{24}{5}=4.8$

5°
$$\xi_0 = x_0$$
, $\xi_1 = x_5$; $\xi_2 = x_1$, x_2 , x_3 , x_4 , x_6

$$y(\xi_2)$$

ξg	A ₀	A_1	A 2	B_{0}	B ₁	B_2	Kh ⁶ ou K ₁ h ⁶
<i>x</i> ₁	2944 3125	512 625 h	$\frac{64}{250} h^2$	181 3125	$-\frac{68}{625}h$	$\frac{16}{250} h^2$	$\frac{4}{45} < 0.0889$
<i>x</i> ₂	2133 3125	594 625 h	$\frac{54}{125} h^2$	992	$-\frac{336}{625}h$	$\frac{36}{125}h^2$	$\frac{3}{10} = 0.3$
<i>x</i> ₃	992	$\frac{336}{625}h$	$\frac{36}{125}h^2$	$\frac{2133}{3125}$	$-\frac{594}{625}h$	$\frac{54}{125}h^2$	$\frac{3}{10}=0.3$
x4	181 3125	68 h	$\frac{8}{125} h^2$	2944 3125	$-\frac{512}{625}h$		$\frac{4}{45}$ < 0,0889
<i>x</i> ₆	$-\frac{331}{3125}$	$-\frac{138}{625}h$	$-\frac{18}{125}h^2$	3456 3125	$\frac{432}{625}h$	$\frac{108}{125}h^2$	$\frac{3}{10}=0.3$

 $y'(\xi_2)$

ξ_2	C_0	C_1	C ₂	D_0	D_1	D_2	Kh5 ou K'1h5
<i>x</i> ₁	$-\frac{96}{625h}$	$\frac{64}{125}$	$-\frac{40}{125}h$	$\frac{96}{625h}$	$-\frac{35}{125}$	$\frac{20}{125}h$	$\frac{1}{5}=0.2$
<i>x</i> ₂	$-\frac{216}{625h}$	$-\frac{27}{125}$	0	216 625h	$-\frac{64}{125}$	$\frac{30}{125}h$	$\frac{3}{20} = 0.15$
<i>x</i> ₃	$-\frac{216}{625h}$	$-\frac{64}{125}$	$-\frac{30}{125}h$	216 625h	$-\frac{27}{125}$	0	$\frac{3}{20} = 0.15$
x4	$-\frac{96}{625h}$	$-\frac{35}{125}$	$-\frac{20}{125}h$	96 625h	64 125	$-\frac{40}{125}h$	$\frac{1}{2}=0.2$
<i>x</i> ₆	$-\frac{216}{625h}$	$-\frac{91}{125}$	$-\frac{60}{125}h$	$\frac{216}{625h}$	0	$\frac{270}{125} h$	$\frac{21}{20} = 1,05$

6°
$$\xi_0 = x_0$$
, $\xi_1 = x_6$; $\xi_2 = x_1$, x_2 , x_3 , x_4 , x_5

$$y(\xi_2)$$

			1 10				
ξ2	A_{0}	A_1	A2	B_0	B_1	B_2	Kh ⁶ on K ₁ h ⁶
<i>x</i> ₁	625 648	$\begin{array}{ c c c c c }\hline \frac{125}{144} h \end{array}$	$\begin{array}{ c c c c c c }\hline & \frac{125}{432} h^2 \end{array}$	23 648	$-\frac{35}{432}h$	$\frac{25}{432}h^2$	$\frac{25}{144} < 0.1737$
x ₂	64 81	$\frac{32}{27}h$	$\frac{16}{27} h^2$	17 81	$-\frac{12}{27}h$	$\frac{8}{27} h^2$	$\frac{32}{45} < 0.7112$
x ₃	$\frac{1}{2}$	$\frac{15}{16}h$	$\frac{9}{16}h^2$	$\frac{1}{2}$	$-\frac{15}{16}h$	$\frac{9}{16}h^2$	$\frac{81}{80} = 1,0125$
x4	17 81	$\frac{4}{9}h$	$\frac{8}{27}h^2$	64 81	$-\frac{32}{27}h$	$\frac{16}{27}h^2$	$\frac{32}{45} < 0,7112$
<i>x</i> ₅	23 648	$\frac{35}{432}h$	$\frac{25}{432}\hbar^2$	625 648	$-\frac{125}{144}h$	$\frac{125}{144} h^2$	$\frac{25}{144} < 0.1737$

V marginal at the life will also up of the area at the bit of the benging V A PROPERTY OF A STATE OF A STATE OF A STATE OF THE STATE The state of the second state of the second state of the second of the second second max. Tun. population rade is lawy grade draft, of collection t I and a second of a real second of the secon

and his highest many has being a management workers are being minder deduction and restriction of the action of the contract of the

v'(E2)

ξ ₀	C ₀	C ₁	C_2	D_0	D_1	D_2	$K'h^5$ ou $K_1^{'}h^5$
x ₁	$-\frac{125}{1296h}$	$\frac{275}{432}$	$\frac{175}{432} h$	$\frac{125}{1296h}$	$-\frac{93}{432}$	$\frac{65}{432} h$	$\frac{5}{12}$ < 0,4167
x ₂	$-\frac{20}{81 h}$	0	$\frac{4}{27}h$	20 81h	$-\frac{13}{27}$	$\frac{8}{27}h$	$\frac{8}{15} < 0,5334$
<i>x</i> ₃	$-\frac{5}{16h}$	$-\frac{7}{16}$	$-\frac{3}{16}h$	5 16h	$-\frac{7}{16}$	3 16	$\frac{81}{640} < 0,1266$
x4	- 20 81h	$-\frac{39}{81}$	$-\frac{8}{27} h$	20 81h	0	$-\frac{4}{27}h$	$\frac{8}{15} < 0,5334$
**	$-\frac{125}{1296h}$	93 432	$-\frac{65}{432}h$	125 1296h	$+\frac{275}{432}$	$-\frac{175}{432}h$	$\frac{5}{12} < 0.4167$

BIBLIOGRAPHIE

[1] Березни И. С. и Жидков Н. П., Методы вычислений. Москва. 1, 3 (1959 [2] Ionescu D. V., Restul în formula de integrare numerică a lui Störmer. Studii și cercetări de mat. (Cluj), XIV, 49-56 (1963).

[3] Микеладзе Ш. Е., Численные методы математического анализа. Москва, XII, 1953.

[4] Popoviciu T., Asupra restului în unele formule de derivare numerică. Studii și cerc. matematice, 3, 1-2, 53-122 (1952).

[5] Störmer C., Méthode d'intégration numérique des équations différentielles ordinaires. Congr. Intern. des Mathématiciens, Strasbourg, 243-257 (1920).

Recu le 19. XI, 1963

НОМОГРАММЫ С ОРИЕНТИРОВАННЫМ ТРАНСПАРАНТОМ ДЛЯ УРАВНЕНИЙ С ШЕСТЬЮ ПЕРЕМЕННЫМИ

Г. Д. ИОНЕСКУ

Известен тот факт, что уравнения, имеющие больше трёх переменных, вообще не номографируемы. Известны только номограммы с двойным выравниванием, с крестовидным транспарантом, или с параллельным транспарантом пля уравнений с четырымя переменными, которых можно представить в виде

$$F_{12}=G_{34}$$

Также для уравнений с четырьмя переменными можно построить номограммы с выравненными точками, образованные из двух шкал и одной котированной сети для уравнений вида по образничения

$$f_1 (g_2 + g_{34}) + g_1(f_2 + f_{34}) + f_2g_{34} + g_2f_{34} = 0$$

а для уравнения вида

$$f_1 f_4 + g_1 g_4 + f_1 f_{23} + g_1 g_{23} + f_{23}^2 + g_{23}^2 = 0$$

можно построить номограммы с прямоугольным транспарантом. Уравнение с четырьмя переменными вида

$$z_4 = F(f_{12} + f_3, g_{12})$$
 is an energy for hell

можно представлять ромбовидной номограммой [12], а для уравнений с пятью переменными также известны простые номограммы для нескольких типов уравнений, как, например

$$z_5 = F(f_{12}, g_{34}); \quad z_5 = F[\varphi(f_{12}, g_3), \psi_4]$$
 и т. п.

Используя идею о номограмме с ориентированным транспарантом, высказанную м. ДОКАНЬ в [1] и [2], автор устанавливает все возможные канонические формы для уравнений с четырьмя и пятью переменными, которые можно решать мри помоши номограмм с ориентирован-