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ON BERNSTEIN POWER SERIES

by
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1. Introduetion

In the first part of the paper, a method for the construction of a sequence
of positive linear operators is indicated. The generality of this method
will result from several examples and some well-known operators will be
obtained. Similar methods were studied in [3], [4] and [10].

In the second part, the operators of Szész-Mirakyan and Baskakov
are considered, and we establish the analogy between these operators and
Bernstein operator. Next, by using both the theory of the convex functions
relying on the divided difference notion, substantiated by T. rorovicivu,
and likewise his results concerning the remainder in the approximation
linear formulae [5] — [7], we give new properties of the above operators.
Moreover it can be noticed that these properties are similar to those of
the Bernstein operator ; they are related to the monotony of the sequence
of operators taking into account the shape of the function and to the sim-
ple form of the remainder. In the case of the Bernstein operator these
properties were established by o. ARamA [1].

2. Notation and definitions

Further we use the following symbols:

 is the set of natural numbers. o -
[%1s ®as »vvs Zpypns f] is the 2 4 1 — order divided difference of the

function f on the knots x;, %5 ..., %,
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he functions which are defined. and boundeq
on the interval [0, co) and which are coﬁ'tinuous on the interval {q, b],
continuous to the left on x = a and continuous to the right on x = j,

{L}, m€w, is a sequence of operators defined on Qla, b].

AIL" = Lﬂ-i—l — L,

V,[f] is the variation of f, defined as the number of changes of sigy

of the function f as x varies across its domain, D.
Moreover we recall the following definitions (see [5] — [7]).

Q[a, b] is the set of t

Definition 1. A real function f is called convex, mnon-concave,
polynomial, non-convex vespectively concave of k-order, on the interval [a, b), if

(%), %o ..., %ap2; 10,20, =0<0 resp. <O,

for any system of k + 2 knots from [a, b].

Definition. 2. A functional T which is defined on Cla, b] is of
the exactness degree k, and in this case we say that T is in &, if

T[¥]=0,7=0,1, ..., k and T[x"*']5£0.

Definition 3. A functional T defined on Cla, b] has the simple
form of k-order, and in this case we shorien by T € oAy, if for all f in
Cla, b], we have

Tl =E 8 % ren Bzzs I,

where C 32 0 is independent of f and the distinct knots x,, x,, .
depend by the choice of f.
We use the following results in the next sections.

THEOREM I (T. POPOVICIU). Let C*[a, b] the conjugate space of Cla, b]
and let T € C¥[a, b]. The functional T is in oA, if and only z{" TE€EG&,
and T[]0 for any convex function of k-order on [a, b] (f€ C[a, b)).

THEOREM II (P. P. KOROVKIN). We consider a continuous non-decreasing
functzo;z x(x) on the interval [a, b). Let a* = y(a) and b* = y(b). Let
{; €Q [a*, b*] and let {L}, nE€w, be a sequence of linear positive operators

efined on Q(a* 0*]. If this sequence satisfies the conditions
lim L,[1; 2] =1

n—>w

.+ Xpy2 generally

lim L,[t; %] = y(x)
1i_>m L,[2; x] =[x(x)p

uniformly on the interval [a, b], then the sequence o . :
. ’ » £ L : i
n € o, converges uniformly on [a, b] to f[‘-; ()], f functions {L,[f; %1}
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This statement is a generalization of small weight of the theorems
which were given by Bohman, Korovkin and for a particular sequence of
operators by T. PorovICIU [8]. The proof of the above theorem is essen-
tially the same with Korovkin’s proof. The fact that y(x) is a non-decrea-
sing function will be used for the proof that when x € [a, &] then y(x)
is a continuity point of f. "

3. A method for eonstructing linear positive operators

Let us consider two real functions «(x) and g(x) which are holomor-
phic functions defined in the diskes |x|< R, and |x| < R, Also we
suppose that the coefficients of the corresponding developments in power
series are non-negative and that «(0)320. Let A(n) and M\(n), #€ o,
positive functions. We define the sequence {«,}, 7€ w, by the relation

() a(x) = exp m) { () gls)ds, %€ [0, R), R = min (Ry, Ry).

admits a developpement in power series

In this case the function e,(%)
with the convergence radius equal to R, that is

o«
o,(x) = Zﬂ Cry X"
Y=

and the coefficients c,, are non-negative.
In order to construct sequences of operators, we assume as verified

the conditions:
1. lim A(n) = oo, lim 2;{n) = oo

n» o n—> o

2, lim 2 — 1,
nao An)
We consider the operator L, which is defined, on the class of func-

tions Q[0, 8], 8 > 0, by the relation

v

ST I Al
@ h%ﬂ—%mnghm

This operator is obviously linear and positive for x > 0. Taking into
account the identity

1=—L S e, 2€[0, B),

aﬂ(") v=0
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we give
(3) | L[l;s]=1 x€[0,R).
Further we consider the function
(%) = xo'(x) (%),

and by our conditions for « and g it results that = is an absolutely monotone
function on the interval [0, R). Using the above remark we have the
following.

THEOREM 1. Let 4 €(0, R) and let a* = (a). If f€QI0, a*], then the
sequence of functions {L,[f; x]}, n € w, converges umiformly on the interyql
[0, a] to the function f[<(x)].

Proof. We shall show that the sequence of linear positive operators
{L,},n € ®, verifies the conditions of Korovkin's theorem. It is clear that
7 is a non-decreasing function. Let x € [0, a]; in this case we observe
that <(x) € [0, a*]. For f{{) ={ we have

L"[t;x]= 1 e v s xan(z‘) )
w (%) = M) l(u)mn(x)

On the other hand from the differentiation of (1), we obtain

o, (%) "
= M(n) o'(%) g(#)
¥
which enables us to give
4 . t; 2] =2 o).
@ L,1t; 2] =2 <(z)

When' f(f) = 2, we have

L[ 2] =130, gy = Tl ¥ ()
W25 %] a”(x),;(,cvl"'(n)x e T

Finally, since
(%)

@ (%)

= () #%(x) g¥(x) + W(n) o' (x) (%) + Wy(m) o"() (),
Wwe can prove thaf;

@ B =[Z2xm) 4 '}% (%% (3) /() + 22" () g(x) + (%)
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For 7 —» oo, taking into account the relations 3), (4) and ]
conditions 1. and 2., it follows that Ble ), o= Lt sy t'he

N> o

lim L_[{; %] = =(x)

- ®

lim L,[#2; x] = [+(%) %,

N>

and because for any x€[0, @] the points t(x) are continuity points
for the function f, according to Korovkin’s theorem our assertion is proved.

This method is a generalization of Kesava Menon's method for the
construction of linear positive operators. In his method we must have

M) = N(n) = », g(z) =1,

and {«,(x)}, m€ o, is the sequence obtained by substituting In«(x) in
«(x), in other words we give

(%) = [«(2)]".

Relating to the class of operators L,, defined by (2), it occurs the
following property.

THEOREM 2. The operator L, is a variation-diminishing operator, that is

VioalLu[f; 21} < Vie s [f(#))-
Proof. 1t is known [2], that if

W) = 2 e

is convergent for x € (— 3§, 3), then for y < 8 we have
Vo n[¥(#)] < V{aheol,

where V[{a},c,] is the variation of the sequence {a} .
Since
¢

™ -0, x€[0, a,
a (%)

it results that
it V<) et

and the theoremis proved.
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A theorem of this type was given by I. J. SCHOENBERG in the Case of

the Bernstein operator [9]. '
Remark Let the functionals R, 7€ o, be defined by

R,[f] =flx(x)] — L,[f; x), f€Q[0, a*].

= the functionals A,L, and R, are ip 8
{Ifsin)é(f?S),_(tl}il(::)a,d (tSt;eltlhe proof of this :.slssertlon is immediate.
In what follows we shall try to indicate a concrete_ method qf gettin
some well-known operators. Having t}le above defined functiop
g=1, and A(n) = A\ (n) = ». It is obvious that

1-

o (3) = e
and
(x) = xo'(x).

We make mention of the following particular cases:
L. For a(x) = x, we obtain the Szdsz-Mirakyan operator, defined by

© Sfial = e S (e,

vl

For f€Q[0,a], a > 0, the sequence {S.[f; 1}, € w, converges uniform-
ly on [0, a] to f(x).

II. If «(x) = In1 -

— X

, the operator has the form

) Lif;ix]=(1— " ;("“‘,‘] x“f[i).

v n

For any feQ[o, a*); a*=—li—, 0<a< 1, the
— a

7€ «, converges uniformly on [0, al to f [ s )
- x

ITII. By means of the operator defined by

is obtained, replacing x by —% , that is
1 4+ »

®  Klfia=L[r; =] =5(*- Yo ()

v 14 )ty "
If feQ[0, a], a>0,
formly on [0, a] to

then the ¢
(%).

orresponding sequence converges Ui

« let |

sequence {L,[f;x]},

(7), Baskakov’'s operator

]
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4. Some properties of (he linear positive operators

THEOREM 3. a) If the function [ defined on |0, o0) 15 on this interval
respectively convex, non-concave, polynomial, non-convex, concave of 1-order, then
the sequence of operators {S,}, ne w, defined by (6), is respectively decreasing,
non-increasing, stationary, non-decreasing, 1ncreasing.

b) If f is continuons on [0, o0), we have the Jollowing equalities

Alsn[f; xo] = e n(n:o- l) [Cm, ;Zm z.’in; f]

flxg) — S, [f: Xy] = — %‘[mm N2n, Nan; f]

where Ty, 1€ [0, oo), t =1, 2, 3, and X 1S a fixed point in [0, o).

Proof. The assertion a) was proved in [2]. Let %, be a fixed point
in [0, oo). According to the remark and to the first assertion we see
that the functional A,S, verifies the conditions of Popoviciu’s theorem.
Thus, this functional has a simple form of l-order, namely

(9) AISn [f] == Cn(xn) [Clm sz :2»; f],‘ fE C [0, oo)

The value of C,(x) can be determined by particularizing convenably
the function f (see [7])

For f{t) =, we obtain

—nx, @ v 1 %y
3. % o v+1) A2 %o
Sn [l’ 4 X’D] - 3 v§=0: i Yo = o + n

Consequently

A = Bl = et

in (9) we obtain the first affirma-

Substituting C, (%), thus determined,
tion from b).

Similarly, we can speak about the simple form of the functional
defined by
RuLf: %] = fl2) — S,[f; %), [fe€C[0, o).
Indeed, this functional takes negatives values for any convex function of
l-order, and R, is in 6,. Let
Rn[f] — Ars(xo) ["Jlm Nons N3n s f]:
and it is readily verified that

R[] = A (x) = =2,

n
and thus the theorem is proved.
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For the Bernstein operator an analogous result was Obtained

by 0. AraMA [1].
Next, in order to study the Baskakov operator we shall prove the fo

lowing results.

Lemma. Lét f be defined on [0, co). Then for the class of lineay fJOs'j
tive operators L,, defined by (7) the functional A,L,[f; %] has the jbllowz'n:,
form

ALf;xn]=(1— x)EA [f1xs,

where i

wa[ﬂ=— 1 (n+v)[v—l v .i_; f]

: nn + 1) (v—1 11+1’1T+—1’n
Proof. We have

AL,f; %] = (1 — x)"(1 — ) Z ("- t v)f(n_i"_]) Xy —

<

|
——
s
|
s
JS
—_——
2
4
<
|
-
e ———
~
—
|<
R —
=
(=24
il

=== ST R o) + ()] =

v=0
o

1 ntv [v -1 v v
e A e : [ , 2l g
( O)En(n+l) n+1 n-{-—l,n’fxo

v=1 v—1

Putting

nn+1) \v—1/|n4+1" n+1

u Avu[f_l='— 1 (11-{-1[\;—1 v ,L;f]
n
the lemma is proved.

THEOREM 4. a) If the function f defined on [0, oo) is on this inter-
val respectively convex, non-concave, polynomial, non-convex, concave of 1-
order, then ﬂz_e sequence of operators {L}, n¢ w, defined by ’(7) is respect-
ely decreas_mg, non-increasing, stationary, mon-decreasing, in,creas-ing. !

b) If f is continuous on [0, o0), we have the following equalities |

Aan[f’ xo] T T _.io;(z_l(_'—_-!-"’;;_—a [!‘le Ken, Man ; .f]
- i

f2) - Lliml = = 20= e g g B

n

where i, £,€[0, oo0),i=1, 2, 3, and %y 1S a fixed point in this interval.
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Proof. The first assertion is an eas
_ vy consequence of the ab
Because of the fact that for fixed #, in t:htce1 interval [0 oi)mtrielesr:’cm c‘g.
» ) 1

contains the functionals defined by A,Z,[f; x,] and by f( % ) — L[] %]
- n » M0y

1 —x
and in view of a), it is easy to verify t #
can write o y hgt both are in of;,. Thus we

AILn[fr xO] = Bn(xﬂ) [p-lﬂ: Hon, [L3n, f]
For f(t) = £, and taking into consideration that |

AW [tz] s 2L 1 (11 + v
am+ 1) \lv—1)’

it follows
ol — xg)~?
nin 4+ 1)
and we derive the first equality. Further we give that for

RN =J(720) = Lol 0] = Eu() [Bums Gons an ]

AIL" UZ; xﬂ] == Bn(xo) ==

we obtain
x(1 — 2)72

Rn[tz:l = Eu(xo) =

n
From this theorem the following remarkable property for the Bas-
kakov operator is resulting. ;

THEOREM 5. a) If the function f defined on [0, oo) is on this interval
respectively convex, non-concave, polynomial, non-convex, concave of 1-order,
then the sequence of operators {K,}, n€w, defined by (8), s respectively
decreasing, non-increasing, stationary, non-decreasing, increasing. -

b) If fis continuous on [0, oo), we have the following equalities

AII(n[f; x.,] — R f:%?’-_;%;) [e1n, *om Xan f]
i

Sf(x) — K,[f: %]=— fo(foﬂﬂ)[elm €an, Ean; f]
where w, ein€ [0, 00), 1 =1, 2, 3,_ami %, 15 a fixed point in [0, oo).

Proof. The above results follow immediately from theorem 4, taking
into account the equality

K,[f; %] = L..[f:

]
14 x
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L’APPLICABILITE PROJECTIVE D’UNE
CONGRUENCE DE DROITES EN ELLE-MEME

par
FROIM MARCUS
a Iassy

1. On a étudié jusque maintenant les déformations projectives des
surfaces en elles-mémes [1] mais pas encore le méme probléme pour les
congruences de droites.

Le présent travail, et un autre de prochaine publication, s’occupent
de ce probléme. C

D’aprés Cartan, une congruence de droites est généralement projective-
ment indéformable de deuxiéme ordre, et celles qui sont déformables, dé-
pendent d’une fonction arbitraire de deux variables. Pour reconnaitre si
deux congruences sont projectivement applicables nous avons le critérium
de FUBINI [2] et de A. TERRACINI [6].

D’aprés vuBINT [2] deux surfaces S et S’ sont les nappes focales de deux
congruences de droiles applicables (de deuxiéme ordre) si les asymplotiques
u, v se correspondent et s'il existe une fonction p = p(u, v) telle que les deux
quantités

(Be)s -—{f);

.

(1.1) pﬂ—£+ph—%2m+sz+

Yt! l 72 pl.l
4 [ =gt o)

aient des valeurs égales sur S et S'. ™
(B, v, L, M sont les expressions bien connues de la théorie des surfaces).



