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Observation. Les notions de Q-uniformément continuité et Q-comy, .
té sont indépendantes au moins dans les cas des ensembles bornés aupsic1~
de la métrique ou au sens de J. von NEUMANN. ]?e plus, dans ces cas la Qons
tinuité d’une application, ajoutée & la Q-compacité de celle-ci, ce quj revien.
maintenant 4 la compacité ordinaire, n’entraine pas la continuité unifor i
habituelle. Une telle application, d’aprés le théoréme précédent, pe pglle
pas étre complétement compacte. I’exemple correspondant donné ci-deJc
sous est suggéré par le travail cité de M.. VEINBERG. s

Soit X l’espace normé des suites bornées de nombres réels, , _
= (£,)icw, muni de Ja norme ||x|| = sup |&], ot w désigne l'’ensemble d;;

1w
nombres naturels dirigé habituellement. Considérons les suites (x,)
(Vnhneo oll %, = (E(l"))iem et y,= ('Q(iu))l'ewn avec

B =" = B,

ncw 6t

=1, g =1 _?51;7 et £ = 4"=0

pour t€w, t7£1 et 15£u 4 1. 'La fonctionnelle réelle A, définie sur X

par l'égalité
1

( 1 —6n|x— x, -

’ pour ”x - xn” <

A(x) =4 6n l# — 3/ —1, pour |[x —y,l| < -
. Gn

0 pour le reste des éléments,

Ol 7 € @, est continue et compacte, sans étre uniformément continue.
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TRANSFORMATIONS OF THE CHEBYSHEV SYSTEMS
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A. B. NEMETH
Cluj

0. Introduetion and definitions. We denote by C(S) the set of all
continuous functions which map S into R the real numbers.

Definition 1. The functions ¢, ..., @, of the space C(S) form
an n-parametric Chebyshev system (or span an n-dimensional Chebyshev or
Haar subspace F,) 1f every element different of zero of the n-dimensional
linear subspace of C(S) spanned by these functions is.a function vanishing
in at most n—1 distinct poinls of S.

Definition 2. The basis ¢,, ..., ¢, of the n-dimensional Cheby-
shev space F, is said to be a Markov basis, if for every 0 << k=mn, the
functions ¢,, ..., ¢, span a k-dimensional Chebyshev space.

In the present paper we investigate a new kind of iterpolation which
is introduced by means of an operator B and a set of Chebyshev spaces
as follows:

We consider the sequence of Chebyshev spaces F,F, ..., F . ~
where s and o are integers for which s =1, 0 =#n — as <s, and the
operator B having the properties

1. B is linear (additive and homogeneous) on F, . ¢=0,1,..., a
2. B(F, .)=F,_ypis g o=y 1 suug 8, WHER B, 00— 0.

== F. is a function which has at least ks distinct zeros
in S:,a- tIhfefl) ;’v-eoil:vf: ﬁ"q: =+ 0 (where by B'¢ we denote the result of
application of the operator B to the function ¢ for .k times).
We investigate the condition which must be fulfilled by the operator B
and by the Chebyshev spaces F, i=nn—s,...,n—as in order to
realise the conditions 1., 2., and 3.
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An important case of our interpolation is the case when the (,:hEbYShev
spaces F i =1 « are the subspaces of F,. The existence qf
n—is’ . BB Ey 3 _

of this kind is always carried aut, whe:n the space F, has
gllﬁzifcl;zv g%a):i(;?SWe shall show that this condition is not fulfllledj’ for
every Chebyshev space, not even in the case when S (the domain of
definition of elements of this Chebyshev space) is the closed interval [q, b)
of the real axis. The property of existence of a Markov basis of a Che-
byshev space is in relation to the extensibility of the domain of defini-
tion of functions of this Chebyshev space.

In the followings, only case S =[a, b] will be considered.

1. The B-interpolation. Let be F, ., =20, 1, ..., « the Chebyshev
spaces and B the operator for which condition 1., 2. and 3. of the
Introduction are fulfilled. An example of Chebyshev spaces and operator B
for which these conditions are valid, are the spaces F_. spanuned by the

functions

n—is—1

1, &, &% .o &

b

and the operator B = D’, where D is the differential operator.

The general problem of the B-interpolation may be formulated as
follows :

We consider the points %;, t =1, ..., »# in [a, !)] the non negative
integers %;, ¢ =1, ..., n, and the real numbers y,, t=1...,n To de-
termine the function ¢ ¢ F,, which has the properties

(1) Blig(x) =y, i=1,...,n

We say that the problem (1) has a solution, if there is a single
function ¢(x) for which the conditions (1) hold.

The B-interpolation problem may be characterized with the pairs
(k;y %), 1 =1, ..., n Really, from the linearity of B follows the

Lemma 1. The B-inferpolation problem (1) has solution if and
only if the determinant

(2)
is different from zero.
Every function ¢ ¢ F, has the form

g = 2 ¢iPj
j=1

.., # are reals and ¢;, 7=1, ...,

lBkiij(x|-)l,-_j =1,...,n

)

where ¢;, 1 =1, . n form a bazis of

|
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1

F,. The interpolation problem

1) has solution i :
of linear equations in ¢ M ofution if and only if the system

:j=1,...,n

”

k. :
;c]—B lSOJ(xt) =yi: 1= 11 vee, N
has a single solution, i. e. if the determinant

The problem of the B (2) is different from zero.

: , B-interpolation formulated as above has not al-
ways solution not even in the case when B is the differential operator,

and F, is the set of polynomials of degree at most # — 1. In this case
the problem of the B-interpolation is the well known problem of lacunary
interpolation ‘which has been introduced by ¢. ». BirRkHOFF [1]. If the
integers £k, 1 =1, ..., % are given we shall say that the operatorial
orders of the B-interpolation are given.
. Definition 3. The system of the operatorial orders k,i=1,...,n
15 said lo be non degenerate if there could be found a set of points x;,
1=1 ..., n in [a, ] so that the problem (1) of the B-interpolation
has a solution.

In this point we shall answer to the question, when the operatorial
orders of an  B-interpolation problem with the operator B with the pro--

perties 1., 2. and 3. may form a non degenerate system. We shall prove the
following theorem :

THEOREM 1. The operatorial orders k,i =1, ..., n of a B-interpo-

lation problem with the operator B having the properties 1., 2. and 3
where s = 1, form a non degenerate system if and only if

0 L (-5 — p{ui> 2}) 20

With p(A) we denote the number of elements of the finite set A. .

We prove the necessity of the condition of Theorem 1 applying only
the conditions 1. and 2. impose on the operator B. The sufficience of the
condition of Theorem 1 may be too proved in more general conditions
then the conditions 1., 2. and 3. But these general conditions are not impor-
tant for us. .

Before proving Theorem 1, we prove the following lemma :

Lemma 2. If the condition (4) is fulfilled, then we have
”*j—f’{ks1k£>-‘i}> 0,7;=01...,n—1
S

Proof. We suppose that the Lemma 2 is not true. Then thereis at
least one 7, 0 =< j = »n — 1 such that ;

n—j—plklb> 2 <o,

rl

()
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’ 3 V% e

know that
We no " —p{kglk1>0};0.

. 1d be in contradiction with
; t be hold, because this would I : vi
’(1.‘41)1e \(;g?: iﬁzﬂﬁ;nﬁ is impossible to hold concomitantly the inequalitieg

. p{k,.lk,- > is}
e n—(+1) <p{k,.|k,.>’ﬁ;—‘}.
Really, from these inequalities it follows |
0>n—(@+1) ._p{k,.|ki>’—“si—1} > {k,-[ki -
and then .
s T -—p{k,-|k,- > T} > p{le,~|k,. .

and therefore

i 41
s
I +1

7k

—1

p{k,.]k,. =‘—*;—‘} < 0.

But this inequality is in contradiction with the definition of function p. !
We apply this reasoning for 1 =0,1, ..., — 1 and conclude that there |

is at least an integer m, 0 < m < j for which we have

n—m—;b{k,-|k;>1;i} =0,

which contradicts the condition (4).

Proof of the sufficience of condition of Theorem 1. We suppose that |
the operatorial orders of the B-interpolation problem are arranged increa-

singly :
bh=k=..<k,.

We group the equal operatorial orders in different classes K, and obtain

the classes ‘

(6) B2 k<... <K,

where K <K if for k.-q €K, and k?-' € K we have kiy < ks’-
.. We introduce the notation

O(x,, .

G 1

o By) = |<P.-(xj)li,j=l.---, n.
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 The function ® has the property that if we fix 5 _
les setting for they distinct v z we fix #

a function of a single variab]

; 1 of its variab-
aluels in ’Ea, fb],hthe function @ becomes, as
fu ; : e, element of the space . F_, having # —

distinct zeros in the fixed valges of remaning variables. The progf of thtla

sufficience of Theorem 1, g follows from 1
the proving that the function Lemma 1, may be reduced to

ky
Bt va s B::(I)(xl, -

is not identical to zero. With Bﬁf B(xy, ..., x,) we denote the applica-

tion of the operator B for k; times to the function ®(x,,

in which the remaning variables are considered fixed,
(é))Ve shall prove that this holds by induction with repsect to the sequen-

ce b

We consider the class K, ={k|k; =k}. Let be Jo=sk, — 1. We

observe that j, <n — 1. Really, if it is not true, then we should have

n—1=sk,—1, ie. =2 <k, If the condition (4) holds, then the

$
inequalities (5) are valid. But the obtained inequality is in contra-
diction with (5) for j = # — 1. Therefore we have j,<n — 1.
From the Lemma 2 it follows that

cer %,) of g

n— sk, — 1) — p {k,-[k,- > i__'} >0,
i. e.
(7) n—(sk, — 1) > p{k|k; = )} = B,

We shall prove by

induction that the values %y, .
so that we have

.., %, may be chosen

Fn—pet1 5,
(8) B*:—¢.4-1 i BIJQ# Oj
Let be v a variable index between 0 and Bo- We set for the
variables «x,, ..., x,_; distinct values. Then ® becomes as function
of variable x, element of F, vanishing at # — 1 distinct pla-
Ces %y, ..., x,_,. By the property 3. of the operator B the function B:"(D

"
of variable x, is not identical to zero, because in accordance with the

inequality (7) it follows that #n — 1> sk,. We fix the variable %, such
that

B 5 0.

For v = 1 the condition (8) has been proved. If By = 1 then the cohdition
(8) holds for each operatorial order in K,. Suppose that B, > 1 and let
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\
|
|
i
i
|
!

i . =c—1, 1=c—1<8g, i ;
be the condition (8) fulfilled for v c ; = "® & we| According to the definition o
suppose that the values %, ..., % may be so chosen that *

| s b2 itthen g f number Yy and of index ¢, this inequality
k L
® Prfaps - 070 03 -z,

n—ct2

We consider fixed the points %;, =1, ..., %, 152 % — o + 1. Then tp, | Let be v = 1. We consider the expression Bz":’_'

: : . SRR B';"(D as function of
expression B:n g B:"(D becomes function of variable x . Tetpe the variable %, the remaining variables being fixed and equals with those
n—o0+

g AW et 41, the values for which is valid (9). The | values for which the condition (10) is fulfilled. This function is a not iden-

;c&,néti_—(;nl,o ey ' Rihich we have obtained, accordingly is not identicy] X(I:JE;)II ;ﬁlgeiﬁee?;:go?f B?r"k vanishing in ¢ — 1 distinct points %, .
n—a . . . - a . 3
to zero and is an element of F, vanishing in 7 — o distinet pointg operator B and from the i

By o vy K But o < B,, and from (7) it follows that sk, <z G because B,=>1)

wing Bpns
times to this function, from property 3. of qthle
: nequality ¢ — 1= sk, (which follows from (13)
it follows that x, may be chosen so that

i it f that applying B k& times |
g the property 3. of the operator B it follows lying » times , :
I;r?];le fun%:tiolil ofy X, ., Obtained above, the result will be a function Bi; B);:j: ... B® =0,
ich i i i zero, i. e. the point x . may be so chosep .
which is not identical to ze G - We suppose that B, > 1, v=10, 1, < 6 < B, and suppose that the points
that we have ' %Xy, ..., %,, may be so chosen that
k ky Eap o4 ;
B-“:—a+1 B“'u—o+2 T an(l) # 0. - (14) B:’ ... Bir Blott | Bh@ = 0,
9—g+2 ¢ Fa1 *n

It has been proved by induction that the condition} (8) may be fulfilled, ... BBt .. B%® a function of
Let be now a certain class K; and an £k €K, We suppose that : : ~8AE s gl ‘ ,

h ek x, may be chosen so that | %y-o+1, the remaning variables being fixed and equal with those values for

the DOIRLS Hix « o Wy - which the condition (14) is fulfilled. This function forms a not identical to

(10) Bfert | B*® £ 0, - zero element of F, vanishing in ¢ — ¢ distinct points x,, ..., %X4—q. But

Fa+1 *n - o < f; and from (13) it follows that sk, < ¢ — 6. From the property 3.

3. pd _ : - plhll> k)= of the operator B it follows that applying operator B to this function £,
Wher(;){qkTi mml{"}l & >{3 ky;;’Ve 11)'1'(}\"{: I;;tggggggiozhihlgtigg nl?OiI?l{tesll i_.l> i x times, the result is a not identical to zero function, and then the value of
=, iRy = Ry = 3. : 1 ov ey Ny

be ch o that Xn_s+1 May be so chosen that
may be chosen s a

Let be now the expression Bir
e

[ ]

: kr kr kr k'?'“ s Bk”q’ ;—L 0.
(11) Bi‘f—:-ii 2 B::I: s Bi”(b = 0. B”q—o—H B"Q—a-l—ﬂ T B‘q B*’q+1 y
2—F n { ‘ “ v .
’ ; ; ) We have proved by induction that the points x,, ..., x, may be in such a
Let be v a variable index 0<v=p, and let be j, = sk, —1; we have way chosen, to hold the condition (11). Then the necessary condition is
from the Lemma 2 . proved for the class [, which completes our proof by induction with
sk, — { respect to the sequence (6).
n— (sk, — 1) — p{k,-|k,- > — —} =0, { Proof cf the necessity of the condition of Theorem 1. We suppose that
. ) i index [, 0=<<I=<n— 1, so that
or, applying the notations which have been introduced there 1v M Sfces &= :
k-1 _ 15 ””‘l“P{kilks>"}=0-
n—(sk,—1)—p{k,-[k,->s’s—}=n—(sk,— 1) — pik|hi= k3= (15) : 8

' NIT ;
=n—(sk,—1) — B, —y>0, From this equality it follows that / 4 1 = min {1|k,-> T}' The function

from which

(12) : n— B, — y= sk,

x

- (16) ' BY e B’,‘;:(D

| 9 — Mathematica vol. 8 (31) — Fascicola 2/1966
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may be written as

k=1 R phig
B (B LB

k B Rl — R ’
B:...B!B sam R Hppr Ao

.. Bl
Jl" £‘+2 In
Because of operatorial orders arranged increasingly

_ it follows that
kR, — Rk =0fort=1+2,...,n The expression

Bhi+1
41

) B0

is element of F,,,sk!_ﬂ for each variable x4,

this function is identical to zero. Suppose that the variables x,_,, .
are distinct. Then (17) as a function of x4, is a function of F

n—sk

cor X,

s %, We shall show gt |

: g oz 41
and if it is not identical to zero it has at most n—sk;,; — 1 distinct zeros, |

But from the inequality k., > L it follows that
s

ﬂ—-SkH,.]—1<n—l‘—'l

and from the form of (17) this function has # — ! — 1 distinct zeros in

%142, ..., %, and therefore it is identical to zero. If the variables X119,

o sl g

are not all distinct then this function is zero because it is a determinant -

with two identical rows.

2. The B-transformations of the Chebyshev systems. In
we investigate the transformations B

this point‘_
of the n-dimensional Chebyshev

space F, in the n—s-dimensional Chebyshev space F,_, which satisfays |

the conditions 1., 2. for i =0 and 3. for &= 1V. The operator B

having these properties will be said to form a B-transformation of the Che- ;

byshev space F, in the Chebyshev space F,

Operators B: F, —» F,_, baving the properties
easyly defined as follows :

a) B(Z c"CP") = EC:'B?;}
=1 i=1
b) Bo; ={;, i=1,...,n—s,
Bp;=0,i=n—s4+1,...,n

where ¢, ..., ¢, is a basis of the space F,, ¢, .
the space F,_;. Conversly,
may be thus defined. The

?

1) In foliowings, where reffering to conditions 1, 2 and 3 we understand alwais these cases- |

1. and 2. may be

.y Un_s is a basis of
each operator B with the properties 1. and 2. 3
question is, which are the conditions necessary |
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to be imposed on operator B satis
space F,, so to fulfil condition 3.

For the caracterisation of
of the L-basis.

Definition 4. The basis P - Py Of the n-dimensional Ceby-
shev space E,, 15 said to be an  L-basis with; respect to the points Ly o xws :Ey 3
if the following conditions hold: 3

fying the conditions 1. and 2., and on

these conditions we introduce the notion

Pil%) = 8%,4,7 =1, —
where 3 is the symbol of Kronecker.

THEOREM 2. Any function ¢ ¢F,, 9 3= 0, having at least s distinct
zeros will be transformed by the operator B which has the properties 1. and
2. in a non zero element of Fu_s, i1f and only if for every L-basis ¢, ..., o,

of F,, every n—s different Junctions of the set Be,, ..., Be, of the space
Fy_s are linearly dependent.

b

Proof of the necessity. Suppose that the operator B: F, — F,_, has the
properties 1., 2. and 3., and that there is an L-basis P1s - .., @, With
respect to a set of distinct points x, ..., x, with the property that
there are n —s different functions of the set Bg,, ..., Bg,, which are
linearly dependent. Let be these functions the functions B, .o, By
Then there are the real numbers a,t=1,...,n —s with the property

n—s
that D |a;| = 0 and
i=1

n—s

E“iB‘P.' = 0.
1=]

n-S
The function @=2a‘-<p; is not zero because of the condition imposed
1=1 . .
on coefficients a,,7 =1, ..., n — 5. This function vanishes in s distinct

points Xn_s41, ..., %,. Therefore there is a function Q€ 1.‘7,,, ¢ = 0, vani-
shing in s distinct points, so that Bg =0, in contradiction with the pro-
perty 3. of the operator B.

Proof of the sufficience. Suppose that the operator B:F, —» F,
having the properties 1. and 2. transforms each L-basis ¢, ..., ¢, in a
set of functions Be,, ..., B, with the property that every n — s diffe-
rent functions of this set are linearly independent. Let be 9 ¢ F,, ¢ 5= 0
a function vanishing in s distinct points x;, ..., x,. Let be %1, ..., %,
other n — s distinct points, and let be ¢, ..., ¢, the L-basis of the space
F, with respect to the points %,, ..., %,. Then ¢ may be written as

= E 2Pi,
F1

$=5
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where obviouslyi |d,-[ = 0. If Be would be = 0, then according to the

=541
above representa:tion it would follow that

E a;Bo; =0

i=5-+1
i.e. the functions By, ..., By, are linearly dependent which contradictg
our assumption.

i
: . w—s having the properties 1 |

THEOREM 3. For every operator B:F,— F,_; . , A
and 2. fnd for every s—1 dastinct points %y, . .., %1 there is a function Y ¢F_ |
U #:ijhz'ck vanishes in the points %y, ..., %, and has the property that |
By = 0. If the operator B has also the property 3., then this function is the |
single except a multiplicative constant. !

. We add to the points zx, ..., Xs— the other distinct po‘im;si
x Pro;f- Let be o, ..., ¢, the f—basis with respect to these points,
Each function @ € F, which vanishes in the points x,, ..., %,_; may be |
written as '

” ,
P = ; a;p;. !

Because the functions B, ..., By, are elements of the 7 — s-dimen-
sional space F,_;, they must be linearly dependent, i. e. there are the!

0
numbers ¢;, 1 =S, ..., #, E|c,-| = 0, so that
t=3§

Z C"Bq)" = 0,

1
but this means that the not identic to zero function ¢ = E ¢i;, Which |

vanishes in s—1 distinct points x,, ..., x,_;, has the property that By =0.
We suppose now that the operator B has also the property 3. If the !
function 7ne€F,, n =+ 0 which vanishes in the points =x,, ..., %1, IS
linearly independent of ¢, and has the property that the operator B va-
nishes too on it, then if %, is a point xy 5= x;, 4 =1, ..., s—1 and W_f |
have (%) = k(%) (it is possible because the functions y(x,) % 0, Y(%)7
=+ 0), it follows that the function % — k¢ € F, is not identic to zero,
has s distinct zerosin %y, ..., x,_;, %, and has the property that B(xn —k{)=
=0 in contradiction with the property 3. of the operator B '

THEOREM 4. The operator B:F,—F,_ . having the properties 1._am§
2. has also the property 3. if and only if the space F, has an s-dimensiondr |
Chebyshev subspace F, for which B(F) = 0.
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Proof of the sufficience Suppose that the i
C ence. : operator B havi
properties 1. and 2. vanishes on ap s-dimensional Chebyshev subs nagcet}.;?e
of the space F,. We shall show that ; i S

n this case the operator B has als
the property 3. From Theorem 3, it follows that it isp sufficient to shov(v)r

that each # —s different functions of the set B i

: . ?1, - .., Bo, are linearl
lnd‘zg::;ei% for any Libglsls_ ®1 ..., ¢, of the spacle F.. che" suppose thz
con y: €re 1s an L-basis o,, .. ., @, of th .

the points x,, ..., x so 71 P e space F, with respect to

] that # —s of the functions Bigys
linearly dependent. Let be these functions By, .
that may be written

(18) B(Pl == .ECi'B(Pi'

The set of functions Bo,, ..., Bp,_; may be completed with functions
of the set By, .y, ..., Bo, to a set which contains a basis of the space
F,_s. We may suppose that the functions which have non zero coefficients
in the representation (18) are linearly independent. We may suppose that
the functions Bg,, ..., Be,_s, Be,_ .1 form a basis of the F,_;, and we
also suppose that the first # —s — 1 of these functions are those which
appear in the representation (18). Let be the function ¢ the not identical to
zero function of the space F,, which vanishes in the points %,_iq, ..., %,
We have the representation

.., Be, are
.+, Bey_s and we suppose

n—s-41

¢ = Z a;p;.

i=1

Applying the operator B to this function which according to the hypothe-
sis vanishes on F, and then vanishes also on ¢, we obtain

n—s-k1

2 aiBCP:' = 0:

i=1
from which, applying the reprezentation (18) we obtain
(az + a105) Boy + (@3 + a;63) By + ... + (Gus + 165—s) Bou—s +

+ aﬁ—s-{-lB(Pn—s-i-l = 0. ]

But the functions Bo,, ..., Bo,_sBp,_ 41 are linearly independent and
then must to be zero all coefficients in the above linear form. It follows
that a,_s;; = 0, and then

Hn—s
$ = E @9,
i=1 ;
i:e. the function ¢ ¢ F, vanishes in s distinct points %s—.41, ..., %, in con-

tradiction with our hypothesis that ¢ == 0, and F, is Chebyshev space of
dimension s. -



326 A. B. NEMETH 12

that the set F, = {¢|¢p€F, By = 0} form a linear subspace of F . . |
show that this subspace has the dimension s. Let be xj, ..., %, s dis. |
tinct points in [¢, b.] From Theorem 3. we may construct the functiong n

: 1

Proof of the mecessity. From the linearity of the operator B it folloy, f
E

|

with the properties |

(19) "]:(r"ﬁ:) = 8],, 1-,]—‘_- 1: e S B’); =0’ 1:: 1’ -een S

The functions =,%=1,...,s are obviously linearly independent, angq |
therefore dim F, =s. If F, would be of dimension > s, then would also |
follow that dim F,_. < n — s, in contradiction whith .the hypothesis, anq
then dim F, = s. From property 3. of the o_perator B it follows that every |
function of F, may have at most s — 1 distinct zeros and therefore F_ is 3 {
Chebyshev space. ) |

Another proof of Theorem 4. We give also a very short proof of The- |
orem 4. applying a simple result of theory of finite dimensional vector |
spaces. If we denote by F, the set of functions of F, on Whl‘ch .the lgnear :
operator B vanishes, it follows by the linean_ty of B, that F, is a lmearf
subspace of F, and that dim F, = dim F, 4 dim F,_,, where F,_. = B(F,). |
If the dimension of F,_, is equal with n —s, then it follo_ws that dim F =35, |

The sufficience. Because F, is Chebyshev space its every non zero
element has at most s — 1 distinct zeros. If @€ [l,, o= 0, and has |
s distinct zeros, then ¢gF, and then By == 0. 1

The necessity. The dimension of linear subspace F, of F,, on which:
vanishes the operator B is s. According to property 3. of the operator B,
it follows that every non-zero element of this subspace, has at most s —1
distinct zeros, i.e. it is a Chebyshev subpace. ;

Observation. In proving theorems 2, 3, 4 it has not been applied the
condition that F,_s is a Chebyshev space. It may be nobody # — s-di-
mensional linear space. ‘

Conclusion. From Theorem 4 it follows that for B-interpolation the
Chebyshev spaces with Chebyshev subspaces of each dimension are very
important. Such Chebyshev spaces are those which have a Markov
basis. In what follows we shall show that no every Chebyshev space has
thus a basis. ;

3. The problem of existenee of an 27— l-dimensional Chebyshev sub-.
space of the zn-dimensional Chebyshev space. In the previous point we
have seen the importance of Chebyshev spaces with a Markov basis of out
point of viw of B-interpolation. If we consider the space C(S), where
is a compact Hausdorff space, then if S is the circumference of the circle,
then C(S) contains only Chebyshev spaces with odd dimension _[2], iel
in this case there is no Chebyshev space with Markov basis of dimension > L

In what follows we shall investigate the problem of existence of an|
7 — 1-dimensional Chebyshev subspace of the n-dimensional ChebysheV|
space F, of the space C(S). The main result of the present point 1s e}

1
|
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THEOREM 5. The n-dimensi.
T ey sz](:nal Chebyshev space F, of the space C(S)

i ! ev subs 7 ; . :
of definition S of fumctions of F, may g;“zi ti;:gédt_coazdsg?l% 16 the domain
@ 15 @ point not in S, so that the property of Chebyshey spa F{rx}, where
tain on the set S U {o}. pace of F, to main-

The sufficience of conditi :
prove it here only for complgtlznggs.’rheorems ts well known, we shall

Before proving our theorem, we present a simple lemma
Lemma 3.

A1 -oh W ior Qi gl ... Ay

= kel .,n—1
(19) A1+ oAy 1,i—18n—1,i41- . . Quey, n
bu e bl, n—1
X bz, 1 .. bicy we
b|'+l.l . b,-+1,,._1
bnl e b», n—1

This result is well known in linear algebra.

The proof of mecessity of Theorem 5. Suppose that the #-dimesional
Chebyshev space F, contains an n— l-dimensional Chebyshev subspace
F,_;. Let the functions ¢, ... ¢,y form a basis of the space F,_,.
They may be represented in the form

(20) ‘]’j:Eaji(Ph j=1r-":”"—1:

where the functions ¢, ..., ¢, form a basis of the space F,, and g,
j=1,...,n—1,1=1,...,# are reals. Because F,_, is a Chebyshev
space, it follows that for any » — 1 distinct points x,, ..., ¥s—1, %€ S,
t1=1,...,n — 1, we have

(21) [ b2 k=1, # 0,
from which applying the representation (20) we obtain
co.(x = 0.
;“h%( k) £ Bl ey il .
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From (19) it follows that

n
LS T
?1(%1)
» | %11 cee “ll,1‘~1 6?1, i+1 .. 6.11:; (;)i_l(xl) o
- ,—Z—': @y_1,1.-. én—l,i—lan—l,i+1 ' A ?Hl(xl) o
EN

We introduce the notations

I
d;= (=1

“n—l, 1

e Qi1 G0t o Qin

. aﬂ-—l,i—lan—l, i+l

then the condition (21) may be written as

A ou%1) ... @u(Xa—y)
4 %1) « oo @a(¥n—1)

(22) :2 ?2( 1) '2 1 b 0.
An (Pn(xl) L an(x"-l)

Let benow o a pointnotin S. We define the functions o;, i =1

on the point « setting

gile) =Ay i=1,...,n.

Since the condition (22) is fulfilled for any distinct points s

and since the functions ¢, .

S U {a}.

Proof of sufficience of the condition of Theorem 5. We suppose that

-» ¢, form a Chebyshev system on the set S U {a},
where o is a point not in the set S. It follows that for any n — 1 distinct

the functions ¢, ..

points %, ..., %,_; of S we have

@y(0) @y(xy) . .. @1(%n—1)
(23) D : #=U0,
lp,,((l) cPn(xl) siE s (Pﬂ(x"-l)

- @2(Fn-1)

C'Pi—l(xn—l)

. <Pi+1(xn—1) )

2 (l;')n(xﬂ— l)

e u_1,n

ceay Xy in S:
.., @, form a Chebyshev svstem on S
follows that these functions form a Chebyshev system too on the set

14

veay N

it
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X:tmay supose that ¢,(«) 5= 0, angd then may determine the reals k; so
%i0) — k() =0, j =2, ... &
Then the condition (23) may be written és

i‘PHl(xk) = kf+l‘P1(xk) |j,k=l, vean—1 7= 0.
But this means that the functions

bi = piyy — Riyio, i=1,...,n— 1,
form an n—

our proof.

In what follows we shall give an exemple of three-parameter Cheby-
shev system which is defined on the closed interval of the real axis, and
whose domain of definition may be not extended with a point, so that
the property of Chebyshev system remains valid. An exemple of three-
parameter Chebyshev system, which is defined on a closed interval and
may be not extended to an open interval which contains this closed inter-
val has been given by v. 1. voLkov [31.

We define the functions o:(f), i =1, 2, 3 as follows

I-parameter Chebyshev system on the set S, which complete

sin tcost,Ogt<12°-,

() = -
cos ¢, —2—5th;
(sin®¢, Ogt<%,

@(t) =4 "
| sin ¢, SSt=T
es(t) = 1, I=st<m.

Firstly we shall show that the functions @; ¢t =1, 2, 3 form a three-para-

meter Chebyshev system on the interval [0, =]. Suppose the contrary:
there are three points £, £,, ¢, so that

(24) | @i(t) li,j=1,2,3= 0.

We define the transformation ®: [0, =] - E, as follows
D(t) = (a(), 92lt)s @alt))-

From (24) it follows that the points

(25) (w8, oalt), 2alt), 7=1,2,3
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are in a plane H which pass through the origin. The relations

x = ¢(t),
y = CP2(t)!
z = ‘Ps(t):

define a curve in the space E, This curve is _completly in the plane z =1
The plane H, which contains the vectors (25), intersect the plane z =1ig
the straight line (A), which contains the points (25), i.e, the straight line (4)
interesect the curve with equations

(26) x = ¢(1), 0<t< ‘

¥ = 9(t) 1

in three distinct points. In the polar coordinates the equation of the curve

(26) is ‘
l sin §, 0=t< —;— )

{
’
i, e. the curve is in the first square a semi-circle with its centre in x =0, |

At = —;— , and with radius %, in the second square it is the quarter of circle |

with its centre in origin and with radius 1. As it may be easily observed, |
every straight line interesect this curve in at most two points in contradic- |
tion with our conclusion. It follows that the equality (24) is not true, and |
ther[egore the functions ¢, ¢,, ¢, form a three-parameter Chebyshev system
on [0, =]. !

We shall show that the domain of definition of the above defined
three-parameter Chebyshev system may be not extended i.e. the functions'
9;, © =1, 2, 3 may be not defined on a point « notin [0, =] so that .
these functions form a three-parameter Chebyshev system on [0, =] U {a}.
Really, let a, b and ¢ be three real numbers, and let be '

i

o1(2) = a, ps(a) = b, @3 (@) = ¢
We distinguish two cases: l
i) a=0, b=0, ora==0,bisof same sign as a, or equal with zero.

i) a=0, b=0, or a and b are of oposite signs.

i) The casea =0, b= 0 may be excluded, because in this case the
vectors (9,(0), 95(0), @5(0)) and (a, b, ¢) are linearly dependent and thed!
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91, P2, @3 may be not form a Ch
St Tt G D, bomp aegy?)hev system on [0, =] U {a}.

of a and b the numbers -a and -p. =0 we consider “instead

Let be
t]. == O, ¥
(27) !, = arccos — % .
2 COS ‘/‘_12 0
t; = a.

In this case 0L 4, <.§, and

sin £, cos ¢,

Q

3l sinf,cost, a

sinf, b

-0
| @it} i, j=1,28 =] O
1 1 c

a
.| VEre
= sin {, =0,
b
Va* + *
and therefore in this case the above functions may be not form a Cheby-
shev system on [0, =] U {«}.
ii) Suppose a < 0, 5>0; if we have a =0, b < 0 instead of these
numbers we consider —a, —b. Let be the points ¢, ¢, #, defined as in -

(27). In this case % < ¢, < wand

sin?,

0 cost, a

cos ¢ a
() liicrns=|0 sint, b|= 2 =
|¢l(.’)llf 1,2,3 2 Sintz b
1 1 ¢
o a
o Ve e B
b
i T b
Va? + 0%

In conclusion for any values of ¢, g, and @, in the point a there
are two points &, f, € [0, =] so that the determinant

[‘Pt(tj) |i,j=-= 1,23
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vanishes for #; = «. Therefore the domain of definition of the Chebyshey,
system oq,, o,, may be not extended. )

Frorfll tlTi2s (:P;emple applying the Theorem § it follows that the ahgy,
three-dimensional Chebyshev space has none two-dimensional Chebyshe,,
subspace, i. e. it has not a Markov basis.

4. The densitiy of Chebyshev spaces which have Markov hasis, The
following lemma may be obtained as a consequence of Theorem 5. We gjye
a constructive proof for it by means of notion of the L-basis.

Lemma 4. If the functions ¢y, ..., 9, form an n-parameter Chebyshey
system on the set S, and if x,, ..., x._y ave n—1 distinct points in S they
the functions o, ..., @, spans a Chebyshev space on on S —{xy, ..., x, ),
which has a Markov basis.

Proof. Let ¢, ..., ¢, be an L-basis with respect to the points
Xyy «ees Xn_y, Xp Where x, €S — {x, ..., 2,_1}. Then the functions d,, .. o G
form an # — 1 parameter Chebyshev system on S — {x,}, the functions
Yg, ..., ¥, form an #n — 2 parameter Chebyshev system on S — {x,, x,} and
so on, the function ¢, form an one parameter Chebyshev system on
S —{x,, ..., %—1}. It follows that the functions ¢, ..., {, form a Markov
basis of the #-dimensional Chebyshev space spanned by functions g, .

g v Py
defined on S — {x, ..., %,_1}. We show that the functions {;...,{,
form an # — ¢4 1 parameter Chebyshev system on S — W Bis 5 by e

Really, if it would exist a linear combination of these functions, .haw:ng
n — 1 4 1 distinct zeros on S — {x,, ..., %;_,} then this linear combination
would have » distinct zeros in S in contradiction with the fact that the
functions ¢, ..:, ¢, form an s-parameter Chebyshev system on S.

THEOREM 6. For every m-parameter Chebyshev system of continuous
Junctions (%), ..., ¢,(x) defined on the closed interval [a, b], and for
every positive  there exists an n parameter Chebyshev system y(x), .. ., 4, (x)
which has a Markov basis and for which

loi(%) — di(x)| <, i=1, ..., n

Proof. Because the functions ¢,, ..., ¢, are uniform continuous on
the interval [a, b] there is a positive § so that

l9:(*") — @ila") | < &,

Let be a’in (e, b) and so that @’ —a < §. The set [a, a’), contains
n—1 distinct points and therefore it follows from Lemma 4 that the func-

tions ¢,, ..., 9, form a Chebyshev system on [, ] , which has a Mar-
kov basis. By the transformation

if |&f — 2" < 8.

b —a a —a
y+ 5
b—a

b—a

X =
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the Chebyshev system

the Chebyshev spst. Pu -.., @, defined on [@', 5] will be turned in
(] b — a’ ’
W, = |- —% 9 —a .
vi() cpl(b—ay_}-b_.a b),z:l, T

which is defined on [

a, bz . ;
yin x and show that Jand has a Markoy basis (

Lemma 4), We replace

[6(2) — o) < e, & =1,

e, M.
Really, let be %€ [4, b]. Then we have

l\b,-(x) — @(x)| =

B — g S
oy + b+ a(2)

= b—a

LEi=1,...,m
because

b—a at___a
x b—x
{b—a +b-—a

which complete the proof of Theorem 6.

<3
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