L'ensemble $W_1(x_0) = G_{j_0} \cap W(x_0)$ est un voisinage du point x_0 dans la topologie de X. De (3) et (4) on obtient, pour tout $x \in W_1(x_0)$,

$$(f(x_0), g_{j_0}(x)) \in U \circ U = \overset{2}{U},$$

et de (2) et de la dernière relation on trouve

$$(f(x_0), f(x)) \in \overset{2}{U} \circ \overset{-1}{U} = \overset{3}{U} \subseteq \overset{3}{U_4} \subseteq U_1,$$

c'est-à-dire $f(x) \in V_1(f(x_0))$ pour tout $x \in W_1(x_0)$, donc l'application f est continue et la démonstration est achevée.

3. Remarques. Si l'espace topologique X est compact au sens de Borel-Lebesgue, alors de la suite généralisée $(G_j)_{j\in J}$ des ensembles ouverts G_j , la réunion desquels constitue un recouvrement de l'espace X, on peut extraire une suite finie $(G_{j_k})_{1\leqslant k\leqslant n}$ avec la même propriété. C'est pour cela que, dans ce cas, on peut remplacer dans la démonstration précédente de la condition suffisante les suites généralisées $(g_j)_{j\in J}$ et $(G_j)_{j\in J}$ par les suites finies $(g_{j_k})_{1\leqslant k\leqslant n}$, respectivement $(G_{j_k})_{1\leqslant k\leqslant n}$.

De même, lorsque l'espace topologique X possède une base dénombrable $\Gamma = (\Gamma_s)_{s \in \omega}$, pourt tout $x \in X$ et tout terme G_j de la suite $(G_j)_{j \in J}$ on trouve $\Gamma_s \in \Gamma$ tel que $x \in \Gamma_s \subseteq G_j$, et alors on peut remplacer les suites généralisées $(g_j)_{j \in J}$ et $(G_j)_{j \in J}$ par des suites habituelles correspondantes.

BIBLIOGRAPHIE

- [1] Alexandrov P. S., O tak nazyvaemoi kvaziravnomernoi shodimosti. Uspehi Mat Nauk, 3:1 (23), 213-215 (1948).
- [2] Arzelà C., Intorno alla continuità della somma di infinite funzioni continue. Rend. dell'Accad. R. delle Sci. dell'Istituto di Bologna, 79-84 (1883-1884).
- [3] Bartle R. G., On compactness in functional analysis. Trans. Am. Math. Soc., 79, 35-57 (1955).
- [4] Borel É., Leçons sur les fonctions de variables réelles. Paris, 1905.
- [5] Dunford N. and Schwartz T., Linear operators. I, New York, 1958.
 [6] Gagaeff B., Sur les suites convergentes de fonctions mesurables B. Fundam. Math., 18, 182-188 (1932).
- [7] Grothendieck A., Critères de compacité dans les espaces fonctionnels généraux.

 Amer. J. Math., 74, 168-186 (1952).
- [8] Hobson E. W., The theory of functions of a real variable and the theory of Fourier's series. II, London. 1926
- [9] Nicolescu M., Analiză, matematică, II, București, 1958.
 [10] Weil A., Sur les espaces à structure uniforme et sur la topologie générale, Paris, 1937.

HOMEOMORPHE PROJECTIONS OF k-INDEPENDENT SETS AND CHEBYSHEV SUBSPACES OF FINITE DIMENSIONAL CHEBYSHEV SPACES

by

A. B. NÉMETH

Cluj

0. Known results, definitions and notations. We denote by C(Q) the linear space of all continuous functions which map the compact set Q in R, the real numbers.

Definition 1. The n-dimensional linear subspace F_n of the space C(Q) is said to form a Chebyshev subspace of order n-k $(1 \le k \le n)$ with respect to the function $f \in C(Q)$, if the set of elements of the best approximation of f in F has the dimension $\le n-k$.

The following theorem due to G. Š. RUBINŠTEĬN [3] is a generalisation of A. Haar's well known theorem:

The n-dimensional linear subspace F_n of the space C(Q) is a Chebyshev subspace of order n-k with respect to any function $f \in C(Q)$ if and only if each set of n-k+1 linearly independent functions of F has at most k-1 common zeros.

In our investigation concerning Chebyshev subspaces of finite dimensional Chebyshev spaces we have used the notion of the k-independent set introduced by K. BORSUK [2].

Definition 2. The set A of the n-dimensional euclidean space E_n is said to be k-independent, if each set of k distinct vectors of A is linearly independent.

The connection between Chebysev spaces of a given order and the notion of k-independent sets is by following theorem stated, similar to those of V.G. BOLTJANSKII, S. S. RYŠKOV, Ju. A. ŠAŠKIN ([1] Theorem 3)

THEOREM. The n-dimensional subspace F_n of C(Q) spanned by functions $\varphi_1, \ldots \varphi_n$ is a Chebyshev space of order n-k $(1 \le k \le n)$ if and only if the map $\Phi: Q \to E_n$ defined by the relation

 $\Phi(x) = (\varphi_1(x), \ldots, \varphi_n(x))$

is a homeomorphe imbedding of the compact set Q in a k-independent set of the n-dimensional euclidean space E_n .

An r-dimensional hyperplane of E_n passing through the origin is said to form an r-dimensional euclidean subspace of E_n and will be denoted with E_r .

As in the above mentioned theorem, in what follows, if $\varphi_1, \ldots \varphi_n$ are n functions of C(Q) which span an n-dimensional Chebyshev space of order n-k, then the map of the form (*) of Q into E_n will be denoted by Φ.

1. Homeomorphe projections of k-independent sets

THEOREM 1. Let be A a compact set of the cuclidean space En, which is k-independent. The set A can be topologically imbedded into an k-sindependent $(k \ge s + 2)$ set A' of the n-s-d imensional subspace E_{n-s} of E, by a projection, if and only if there are s vectors in E, outside to A, with the property that each set of k vectors composed by these s vectors and any k-s distinct vectors of A, spans a k-dimensional subspace of En.

The necessity. Suppose that the projection of E_n into E_{n-s} is a homeomorphe map of the set A into the k-s-independent set A'. Let be $x \neq 0$ a point of the subspace E_s , the orthogonal complement of E_{n-s} in E_n . Then the set $A \cup \{x\}$ is a k-s+1-independent set in E_n . Really, if there would exist a k-s -dimensional subspace E_{k-s} which would contain k-s+1 distinct points of $A \cup \{x\}$, then this subspace would contain the point x and then the projection of E_{k-s} into E_{n-s} would form a subspace of dimension k-s-1. But then the set A' would be intersected by a subspace of dimension k-s-1 of the space E_{n-s} in k-s distinct points (the images by projection of the k-s points of A which are common with E_{k-s}), which is in contradiction with our hypothesis, that A' is k-sindependent in E_{n-s} .

Let now the points x_1, \ldots, x_s form a basis of E_s . We shall show these vectors have x_1, \ldots, x_s form a basis of E_s . that these vectors have the property assumed by the Theorem 1. Suppose the contrary: there are k-s distinct vectors $y_1 \dots y_{k-s}$ in A so that the vectors $y_1 \dots y_{k-s}$ is there that the vectors $x_1, \ldots, x_s, y_1, \ldots, y_{k-s}$ are linearly dependent, i.e. there are the reals $a_i, i = 1, \ldots, s$ and $b_i, i = 1, \ldots, k-s$ with the property: $\sum_{i=1}^{s} |a_i| + \sum_{i=1}^{k-s} |b_i| \neq 0$, for which

(1) $\sum_{i=1}^{s} a_i x_i + \sum_{i=1}^{k-s} b_i y_i = 0.$

(1)
$$\sum_{i=1}^{s} a_i x_i + \sum_{i=1}^{k-s} b_i y_i = 0.$$

From the linear independence of the vectors x_i , $i = 1, \ldots, s$, and the k-independence of A it follows that $\sum_{i=1}^{s} |a_i| \neq 0$ and $\sum_{i=1}^{k} |b_i| \neq 0$. But then $x = \sum_{i=1}^{k-1} a_i x_i$ is a non-zero vector in E_s , and by (1) it follows that the vectors x, y_1 , ..., y_{k-s} are linearly dependent in contradiction with the result which has been established in the first part of our proof.

The sufficience. We suppose that the compact set A is k-independent in E_n and that the vectors $x_1, ..., x_s$ have the property assumed in Theorem 1. Let be E_s the s-dimensional subspace spanned by the vectors x_1, \ldots, x_s . and E_{n-s} the orthogonal complement of E_s in E_n . We shall show that the projection A' of A into the space E_{n-s} is a k-s-independent set in this space. Suppose the contrary: there is a k-s-1-dimensional subspace E_{k-s-1} of E_{n-s} , which intersects the set A' in k-s distinct vectors. All counter-images of these k-s vectors are contained in the k-1-dimensingal subspace $E_{k-1} = E_{k-s-1} \oplus E_s$. If the k-s distinct counterimages of the vectors of $A' \cap E_{k-s-1}$ are denoted by y_1, \ldots, y_{k-s} , then obviously E_{k-1} will contain the vectors $x_1, \ldots, x_s, y_1, \ldots, y_{k-s}$ and hence it follows that these vectors are linearly dedendent, in contradiction with our assumption. The continuity of the projection of A into- E_{n-s} is obvious. We prove that this map is one to one. If a vector $y \in A'$ would have two counter-images y' and y'', then if y_1, \ldots, y_{k-s-2} $(k-s-2 \ge 0)$ are counter-images of other k-s-2 distinct vectors of A', then the k-1-dimensional subspace $E_{k-1} = E_{k-s-1} \oplus E_s$, where- E_{k-s-1} is the k-s-1-dimensional subspace of E_{n-s} spanned by y and those k-s-2 vectors whose counter-images are the vectors y_1, \ldots, y_n y_{k-s-2} , contain the vectors y', y'', y_1 , ..., y_{k-s-2} , x_1 , ..., x_s , and therefore these vectors must be linearly dependent, in contradiction with our assumption.

Observations. Firstly we observe that in Theorem 1 it is sufficient to consider the case $s \ge 1$, because if s = 0 then as a projection may be considered any continuous one-to-one linear map of E_n in itself and as it is easy to be seen such a transformation map any k-independent set. of E_n in a k-independent set.

The condition $k \ge s + 2$ of this theorem is an essential one. It has been applied in the first part of the proof of the necessity and in the proof of the one-to-ones of projection defined in the proof of sufficience. The essentiality of this condition may be seen in the following example. Let be $A \subset E_2$ the two-independent set obtained by the circumference of the circle $x^2 - 2x + y^2 = 0$ excluding an open arc of length which is smaller then the semicircle, containing the origin. This set may be projected with an one-to-one projection into none straight line.

In particular, if $A \cup \{x_1, \ldots, x_s\}$ is a compact k-independent set in E_n , then A is k-s — independent projectable in E_{n-s} , the orthogonal complement of E_s , the s-dimensional space spanned by x_1, \ldots, x_s .

Lemma 1. The compact two-independent set A of the n-dimensional euclidean space E, may be topologically imbedded in a two-independent proper subset of S_{n-1} , the n-1 sphere in E_n with its centre in the origin.

Proof. Let S_{n-1} be an n-1-sphere in E_n with its centre in the ori. gin. Let be $x \in A$ and let be $(x)^+ = {\lambda x \mid \lambda \ge 0}$. We consider the map $\psi(x) = S_{n-1} \cap (x)^+$ of A into S_{n-1} . It is easy to seen that this map is continuous. Moreover, it is one-to-one, because A is a two-independent set in E_n . According to the compacteness of A it follows that ψ is a homeomorphism. The set $\psi(A)$ is two-independent, because any one-dimensional subspace of E_n , which contains some points of $\psi(A)$, contains also the counter images of these points in A. It is a proper subset of S_{n-1} , because if $x \in A$ then from two-independence of A it follows that the point $\{\mu x | \mu \le 0\}$ $\bigcap S_{n-1}$ is outside to $\psi(\bar{A})$.

The Lemma 1, in conjunction with Theorem 1 gives the following analoge

of K. Borsuk's well known imbedding theorem [2]:

THEOREM 2. If A is a k-independent compact set in E_n $(k \ge 2)$, and if x_1, \ldots, x_{k-2} are k-2 vectors outside to A with the property that each set of k vectors which is composed by these vectors and any 2 distinct vectors of A, span a k-dimensional subspace of E,, then the set A is topologically imbeddable into a proper subset of the n-k+1-sphere S_{n-k+1} .

THEOREM 3. Let be A a compact two-independent set in the space E. Then there is an one-dimensional subspace E_1 with the property $E_1 \cap A = \emptyset$.

Proof. Let be E_2 any two-dimensional subspace of E_n . From Lemma 1 it follows that $\psi(A)$ (where ψ is the map defined in the proof of Lemma 1) is two-independent. We consider the set $A' = \psi(A) \cap E_2$. Because A' is a two-independent. two-independent set in E_2 it is a proper subset of the one-sphere S_1 $=S_{n-1}\cap E_2$. Because A' is compact it is a sum of closed arcs of S_1 Let be a an end-point of one of these arcs, and let be (a) the one-dimensional sub-point of one of these arcs, and let be (a) the one-dimensional sub-point of one of these arcs, and let be (a) the one-dimensional sub-point of one of these arcs, and let be (a) the one-dimensional sub-point of one of these arcs, and let be (a) the one-dimensional sub-point of one of these arcs, and let be (a) the one-dimensional sub-point of one of these arcs, and let be (a) the one-dimensional sub-point of one of these arcs, and let be (b) the one-dimensional sub-point of one of these arcs, and let be (b) the one-dimensional sub-point of one of these arcs, and let be (b) the one-dimensional sub-point of one of these arcs, and let be (c) the one-dimensional sub-point of one of these arcs, and let be (c) the one-dimensional sub-point of one of these arcs, and let be (c) the one-dimensional sub-point of the one-dimensional sub-poin mensional subspace which is spanned by a. From the two-independence of A' it follows that of A' it follows that $-a \in A'$. Because A' is a closed subset of S_1 it follows that there is follows that there is a neighbourhood V of the point -a in S_1 so that $V \cap A' = \emptyset$ But then the $V \cap A' = \emptyset$. But then the central homothety with respect to the original with the coefficient and with the coefficient -1 map the neighbourhood V in U, which is a neighbourhood of the property of all is a neighbourhood of the point a in S_1 . Because a is an endpoint of an arc of A', its neighbourhood A'. arc of A', its neighbourhood U contains a point b outside to A'. one-dimensional subspace (b) spanned by the vector b intersects the S_1 in b and in a point of V S_1 in b and in a point of V, and hence it follows that this subspace no common point with A'no common point with A'. It also follows that this subspace $E_1 = (b)$ has the property also follows that the one-dimensional subspace $E_2 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows that the one-dimensional subspace $E_3 = (b)$ has the property also follows the property al space $E_1 = (b)$ has the property stated by Theorem 3.

Definition 3. The sequence of projections x_1, \ldots, x_{k-2} is said to form an M-sequence of projections of the compact set A, which is k-independent in E, if x, is a homeomorphe prjection of A into a k-i-independent set of E_{n-i} $(i=1,\ldots,k-2)$ and if $E_{n-i} \supset E_{n-i-1}$, $i=1,\ldots$,

THEOREM 4. The compact set A which is k-independent in E, has an M-sequence of projections x_1, \ldots, x_{k-2} , if and only if there is a sequence of vectors x_1, \ldots, x_{k-2} outside to A, with the property that each set of k vectors which is composed by the vectors x_1, \ldots, x_i and k-i vectors of A, span a k-dimensional subspace of E_n .

The necessity. According to Theorem 1, for every i (i = 1, ..., k-2) there are the vectors $x_1^{(i)}, \ldots, x_i^{(i)}$ outside to A with the property that every k vectors composed by these i vectors and k-i vectors of A are linearly independent. Furthermore, it is easy to seen that each basis of the space E_i , the space spanned by verctors $x_1^{(i)}$, ..., $x_i^{(i)}$ has too this property. From the proof of Theorem 1 it follows that the subspace E_i , (i = 1, ..., k-2) is the orthogonal complement of the space E_{n-i} $(i = 1, \ldots, k-2)$ the space in which is projected A by the projection κ_i . Because we have $E_{n-i} \supset E_{n-i-1}$ it follows that $E_i \subset E_{i+1}$ (i=1,..., k-3). Let be x_1, \ldots, x_i a basis of the space E_i and let be x_{i+1} a vector of E_{i+1} which is linearly independent of these vectors. Applying this constructive method for $i = 1, \ldots, k-3$ we obtain the points x_1, \ldots, x_{k-2} which have the property assumed by Theorem 4.

The sufficience follows immediately as a result of a repeated application of the sufficient part of the Theorem 1, remarking that according to the proof of this theorem it follows that $E_{n-i} \supset E_{n-i-1}$, $i = 1, \ldots, k-3$.

In what follows we introduce a new kind of map of the k-independent sets.

Definition 4. Let be A a compact set in the n-dimensional euclidean space E_n , which is k-independent. The projection β of E_n into E_{n-s} will be said to form a β -transformation of E_n into E_{n-s} with respect to the k-independent compact A, if β $(E_n) = E_{n-s}$, and if each k-1-dimensional subspace E_{k-1} which intersects the set A in s - (n-k) distinct points has in its orthogonal complement E_{n-k+1} in E_n an element, whose projection into E_{n-s} is different from zero.

THEOREM 5. The projection β forms a β -transformation of the n-dimensional euclidean space E_n into the n-s-dimensional subspace E_{n-s} with respect to the k-independent compact A in E_n , if and only if the projection of A into E_s , the orthogonal complement of E_{n-s} in E_n , is a homeomorphe map, and the image of A is an s-(n-k)-independent set in E_s (s- $-(n-k) \geqslant 2$.

The necessity. We denote by E_s the orthogonal complement of the subspace E_{n-s} in which E_n may be projected with a β -transfortmation β with respect to the k-independent compact A in E_n . We denote by A' the projection of A into E_s . Suppose that A' is not s-(n-k)-independent in E_s , i.e. there is a subspace of the dimension s-(n-k)-1 $E_{s-(n-k)-1}$ in E_s , which intersects the set A' in s-(n-k) distinct vectors (we remind that $s-(n-k) \ge 2$). Let be E_{n-k+1} the orthogonal complement of $E_{s-(n-k)-1}$ in E_s and E_{k-1} the orthogonal complement of E_{n-k+1} in E_s . Then we have $E_{k-1} = E_{n-s} \oplus E_{s-(n-k)-1}$ and the counter-images of the s-(n-k) distinct points in $E_{s-(n-k)-1} \cap A'$ are contained in E_{k-1} . It follows that E_{n-k+1} must have at least an element which is projected by β in a non-zero element of E_{n-s} . But this is impossible because $E_{n-k+1} \cap E_s$ and β (E_s) = 0. Therefore A' is s-(n-k)-independent in E_s .

With a similar argument it may be also proved that the projection of A in A' is an one-to-one map. Due to its continuity and because A is compact, it follows that this map is a homeomorphism.

The sufficience. We suppose that the projection of A into the s-dimensional subspace E_s is a homeomorphism, which map the set A in the s-(n-k)-independent set A' of the space E_s . Let β be the projection of E_n into E_{n-s} , the orthogonal complement of E_s in E_n . We shall show that this projection is a β -transformation of the space E_s in E_{n-s} with respect to the k-independent compact set A in E_n . Really, let be E_{n-k+1} an n-k+1-dimensional subspace of E_n , whose orthogonal complement E_{k-1} intersects the set A in s-(n-k) distinct vectors. Then E_{n-k+1} contains at least a point which is outside to E_s . If we should have $E_{n-k+1} \subset E_s$, then, - if $E_{s-(n-k)-1}$ is the orthogonal complement of E_{n-k+1} in E_s — because $E_{k-1} = E_{n-s} \oplus E_{s-(n-k)-1}$, it would follow that the s-(n-k) distinct points of the set $E_{k-1} \cap A$ would be contained in the projection of A into E_s , i.e. in the s-(n-k) — 1-dimensional subspace $E_{s-(n-k)-1}$, in contradiction with the assumption that A' is s-(n-k)-independent homeomorphe image of A by the projection into E_s

Observation. The essentiality of the condition $s - (n - k) \ge 2$ follows from the observation after the Theorem 1.

2. Chebyshev subspaces of finite dimensional Chebyshev spaces

The notions and notations applied here were introduced in 0.

THEOREM 6. The n-dimensional Chebyshev space of order n-k spanned by the functions $\varphi_1, \ldots, \varphi_n$ of the space C(Q), has a Chebyshev subspace of dimension n-s ($k \ge s+2$) and of the same order, if and only if the compact set $\Phi(Q)$ which is k-independent in E_n may be projected in k-s-independent set of an n-s-dimensional subspace E_{n-s} , and if this projection of $\Phi(Q)$ in E_{n-s} is a homeomorphe map.

The necessity. We suppose that F_n has an n-s-dimensional Chebyshev subspace F_{n-s} of the same order. Then there exists a linear inversable operator $A = ||a_{ij}||$ of F_n onto itself so that the vector-function

$$(\psi_1(x), \ldots, \psi_n(x)) = (\varphi_1(x), \ldots, \varphi_n(x)) \cdot ||a_{ij}||$$

has the property that $\psi_1(x), \ldots, \psi_{n-s}(x)$ is a basis of F_{n-s} . From the above equality it follows that

$$\Psi(Q) = \Phi(Q) \cdot ||a_{ij}||$$

and from the inversability of $||a_{ij}||$ it follows that $\Psi(Q)$ is too a k-independent compact set of E_n . We consider the projection \varkappa of E_n onto its first n-s coordinates and will show that this projection is a homeomorphe map of $\Psi(Q)$ onto a k-s-independent subset of this subspace. Really, $\varkappa(\psi_1(x), \ldots, \psi_n(x)) = (\psi_1(x), \ldots, \psi_{n-s}(x), 0, \ldots, 0)$ and for any k-s distinct points x_1, \ldots, x_{k-s} of Q the rank of the matrix

will be k-s since $\|\psi_i(x_j)\|_{i=1,\ldots,n-s}$ is of this rank by the hypothesis that ψ_1,\ldots,ψ_{n-s} span an n-s-dimensional Chebyshev space F_{n-s} of order n-k. From Theorem 1 it follows that there are s vectors y_1,\ldots,y_s with the property that the vectors $y_1,\ldots,y_s,y_{s+1},\ldots,y_k$ are linearly independent for any k-s distinct vectors y_{s+1},\ldots,y_k in $\Psi(Q)$. Now we consider the set of vectors $A^{-1}y_1,\ldots,A^{-1}y_s,A^{-1}y_{s+1},\ldots,A^{-1}y_k$. Because A^{-1} is an inversable linear map of E_n onto itself it preserve the linear independence and the above vectors are linearly independent. This means that the vectors $y_1'=A^{-1}y_1,\ldots,y_s'=A^{-1}y_s$ have the property that the vectors $y_1',\ldots,y_s',y_{s+1}',\ldots,y_k'$ are linearly independent for any y_{s+1}',\ldots,y_k' in $\Phi(Q)$, and we finish the proof of the necessity making use again of Theorem 1.

The sufficience. Suppose that $\Phi(Q)$ is projectable onto a k-s-independent set of E_{n-s} . By a coordinate transformation we map E_{n-s} in the subspace E'_{n-s} with the last s coordinates zeros. This coordinate transformation is a linear inversable application $A = ||a_{ij}||$ of E_n onto itself and it means for the space F_n the change of the basis $\varphi_1(x), \ldots, \varphi_n(x)$ into a basis $\psi_1(x), \ldots, \psi_n(x)$ which is given by the equality

$$(\psi_1(x), \ldots, \psi_n(x)) = (\varphi_1(x), \ldots, \varphi_n(x)) \cdot ||a_{ij}||.$$

The orthogonal projection of $\Phi(Q)$ into E_{n-s} become thus the orthogonal projection of $\Psi(Q)$ into the space E'_{n-s} , and because the image of $\Psi(Q)$

8

by this projection is a k — s-independent subset of E'_{n-s} , it follows that the matrix

is of rank k-s for any k-s distinct points x_1, \ldots, x_{k-s} of Q and so does the matrix $\|\psi_i(x_j)\|_{\substack{i=1,\ldots,n-s\\j=1,\ldots,k-s}}$. It follows that $\psi_1(x),\ldots,\psi_{n-s}(x)$ is a basis of a Chebyshev space of dimension n-s and order n-k, which completes the proof of Theorem 6.

With help of Theorem 6 we obtain as consequences of those proved in 1. the following theorems:

THEOREM 1'. The n-dimensional Chebyshev space F_n of order n-k $(1 \le k \le n)$ spanned by the functions $\varphi_1, \ldots, \varphi_n$ of the space C(Q) has an n-s-dimensional Chebyshev subspace $(k \ge s+2)$ of the same order, if and only if the real values $\varphi_i(x_j)$, $i=1,\ldots,n$, $j=1,\ldots,s$ may be defined so that the matrix

$$\|\varphi_i(x_j)\|_{i=1,\ldots,n}$$

has rank k, for each set of k-s distinct points x_{s+1}, \ldots, x_k in Q^{1} .

THEOREM 3'. Each n-dimensional Chebyshev space of C(Q), which is of order n-2 has a Chebyshev subspace of dimension n-1 and of the same order.

THEOREM 4'. The n-dimensional Chebyshev space F_n of order n-k has Chebyshev subspaces F_i , $i=n-1,\ldots,n-k+2$ of dimensions $n-1,\ldots,n-k+2$ and with the properties $F_i \subset F_{i+1}$ $i=n-1,\ldots,n-k+2$ which are of the same orders as F_n , if and only if the real numbers $\varphi_i(x_j)$, $i=1,\ldots,n$, $j=1,\ldots,k-2$ may be defined so that the matrices

have rank k for any distinct points y_1, \ldots, y_{k-i} of Q.

Definition 5. The basis $\varphi_1, \ldots, \varphi_n$ of the n-dimensional Chebyshev space F_n , which has the order n-k, is said to be a Markov basis, if the subspaces of F_n spanned by the functions $\varphi_1, \ldots, \varphi_{n-k+i}$, $i=1,\ldots,k$, are Chebyshev subspaces of order n-k.

Theorem 3' and Theorem 4' in conjuncture yield the

Consequence. The *n*-dimensional Chebyshev space F_n of the order n-k has a Markov basis if and only if the conditions of Theorem 4' are fulfilled.

Definition 6. The map B of the n-dimensional Chebyshev space F_n of order n-k in the n-s-dimensional euclidean space E_{n-s} (s+k>>n+1) is said to from a B- transformation if B is onto, linear (additive and homogeneous) and if every n-k+1 lienarly independent functions of F_n which have at least s-(n-k) common zeros span an n-k+1-dimensional subspace of F_n , which has at least an element φ so that $B\varphi \neq 0$.

THEOREM 5'. The linear operator B which map the n-dimensional Chebyshev space F_n of order n-k onto the n-s-d imensional euclidean space E_{n-s} (s+k < n+1) is a B-transformation if and only if there is an s-dimensional subspace F_s of F_n which is a Chebyshev subpsace of the same order as F_n , and for which $B(F_s) = 0$.

REFERENCES

[1] Болтянский В. Г., Рышков С. С., Шашкин Ю. А., О к-регулярных вложениях и их применении к теории приближения функции. Усп. Мат. Наук, 15, 6, 125——132 (1960).

[2] Borsuk K., On the k-independent subsets of the Euclidean space and of the Hilbert space. Bull. Acad. Sci. Pol., 5, 351-356 (1957).

[3] Рубинштейн Г. Ш., Об одном методе исследования выпуклых множеств. Докл. Акад. Наук СССР, 102, 451—454 (1955).

[4] Németh A. B., Transformations of the Chebyshev systems., Mathematica 8 (31), 315-333 (1966).

Received 11. II. 1967.

¹ A particular case of this theorem was proved in [4] (Theorem 5).

² In [4] is given an example for 3-dimensional Chebyshev space of order 0 without 2-dimensional Chebyshev subspaces of order 0.