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AN ALGEBRA OF THE OPTIMAL PATH IN NETWORKS
by )
VASILE PETEANU
Cluj

The problems concearning the determination of the optimal paths
in networks have been very much studied lately. There were elaborated
various algorithms for the determination of these paths.

In [2] the author makes an algebrical study which holds for many
problems of optimal paths. We notice that the optimal path exists in all
cases studied in [2]. If we enlarge the class of the studied problems,
for instance if in the case of the minimal path problem in a graph we admit
the existence of some arcs which have negative lengths, the problem
of the optimal path may mnot have solution. A study on the compa-
tibility was made in [4] and [3] for the problem of the maximal path.
In this paper we extend this study to a more general case.

Let 6 be a set of elements which has the following properties : An
internal law of composition is defined in & which is termed ,,addition”’
and written ®@. The addition is associative :

(1) a®(b®c) = (a@d) De,

it is commutative

@ 4@ b=b@Da;

there exists an element 0, termed the neuter element, characterized by
3) a®0=00a=a

for all the @ in 6, and af, least one and only one equality of the following
two is satisfied,

) - 2®b=a, a®b=b.
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It is also defined in 6 a second law of composition which
,,multiplication’” and written o . This law of composition
each pair a4, b of elements of & the product @ o & which is again
of 6. The multiplication is associative

5) ao(boc)=(aob)oc,

is _termed
assigns to

it is commutative
(6) _ aob=0boa

there exists a unit element denoted by e, which is characterized by
V) Aoce=¢oaqa=a.

The multiplication is distributive relating to the addition

8) aoc0(d®c)=(aoch)® (aoc)

and moreover

9) a@e=a,azte, b0=a0b==b

(10)

The set § which has the properti i '
We define @ » b if and onlypif 1; A beszmaentloned above can be ordered.
Evidently g

(11)
(12)

a°6=eoa=6_

a>b,b>aa=0»
a> 0, for a €8.

From (4) it results th i
Z%horbs g at whiche

Next properties follow directly :

ver would be a, b of 8, we have eithef

11:1: a> b, c>d=2a@c> p@4
s a>b, c>d3g0¢ b
We denote S

ls

3

Let 4, B, C, be the i
’ 2 ] m t
The sum of two matrices 4 an&ceg

+

]

I
-

a;=a1®az@ ..,@a"_

Whose elements belong to the sewjt ‘8]1
. g to
both having the dimension m X #
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be a matrix C, of the same dimensions. Its elements are ¢; = a;; @ by
The following properties are obvious:

P,: A®@B®C)= (A®B)®C
By A@B=B®A
P, AP =004 =4, where ®is the matrix with all

elements equal to 0.
The product of two matrices is defined like this:
A= B=C

where

cij = |+l ap o by.

=1

td

These three matrices have the dimensions m X %, respectively n X p and
m X p.

Py: Ao(BoC)=(A0B)oC
Proof.
E‘jaik° (Dbks°csj) =EE a£k°bks°csj=
k s & s
= [H] [ @i o bs o ¢y = IFI(IH] agx 0 bys) 0 ¢
s k s k
P,: Ao (B®C)= (40 B)® (40 C)
Proof.

k

The set of matrices of the same dimensions is partially ordered. We have
A > B if and only if A® B = 4.

It follows directly that
| A>B, C>D=4@C>B®D
B A>B, C>D=4.C> BolD.

In the set of #Xn-dimensional matrices, the matrix E will be called the
unit. matrix. Its elements ¢; are defined like this:

6 for s 7

THa, o (b, D¢, = [E @ o b,,,-) ® (L_—-}j a,, o c,,,-) .
k

e
= e for 1 =7j.
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The matrix E has the following property:
Pyo: AcE=EcA=4
where A is an grbitrary n X n matrix over E.
Proof.

I+l a0 65 = ge;k ° &y = @j;.

k=1
For the square matrices we define

Al = A, AP = A?-1 . 4.
Evidently

A? o A1 = AP+,
Further on we denote by af;. the element of the line 7 and the column

j of a matrix A2
We denote by of the set of # X # — dimensional matrices which has

the property th 5 1 ; — . i
. Wé) hfve y that a; =e, =1, 2, ..., n. For any integer and positive
P..: -
11 - AEO{:}I_—!—_FA?:AS_
: =1
Proof.

A€EAE< A4 < A2 < ... <A$=>EAP=A5.
Let us consider now the matricial equation .

(13) X=Xod

in whi : . '

. ¢We ;:h= zli Zd is :i given matrix and X = {x,, ..., #%,}, % €5
be determined. We .h’ave S an #n-dimensional line vector which is going to
P12 : The equation (13) ‘

is equivalent to the i 5
(14) e inequality

X>XoA.

Proof. 1t is sufficie

I nt t

go prove this, we notice tha?c i‘im:v Ff‘hat
ance with P, ; it follows X3 Xo

Py3: The equation (13)
(15)

whichever

(13) follows from (14). In order
= X o4 > X for any X, in accor
4 > X = X =Xo A

is equivalent to the equation
X=Xg Ap
should be the natural number b2

T
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Proof. (15) follows from (13).
X=X0A=)X0A=X0A2=...=X0AP

(13) follows from (15)
M A Xodt s XoA=X> XA X=Xo 4
The next property is clear
P,,: The equation (13) is equivalent to the inequality
X > X o A?
whichever should be the natural number .

curoreM 1. The necessary and sufficient condition for the compali-
bility of the equation (13) 1s

(16) A" = 4*,

Proof. The condition is necessary. We suppose that the equation (13)
admits the solution X, According to P,, we have

(17) Xy b Xyo AP ey 2y won
and hence acording to (9)

a. < e

11

i= 12 00040
On the other hand

AeADA>E=A > Eah > e
hence according to (11)
(18) af; = e,
For p = p, + p. we have

de2 b B s B3 P=1 R sns

AP — A o }1;&

that is

»
o, = ¥ ali o af;.

k=1
From the former equality it results on the one hand that for any index %
we have .

(19) o > aly o af.
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and on the orher hand, according to (5) there exists an index g such +
hat

2 -
(20) af;=af! o al}.

It results from (19) that whichever would be the natural nu

the indices &,, k&,, . mber  apg

LR kP—l:

(21 # :
) ﬂ’-j > a,‘kl o akl,,. ... 090 akp_‘lj'

and it results from (20) that the indices s, s,, .
(22) at. =g

ij

+» Sy_1 exists such thyt

isy ° a-‘xsu CEIAE a‘n—l.‘f'
In the right side of the equali i

quality (22) there exist #» + 1 indic i
to the set {1, 2, ..., n}. At least two indices coincide, LZS;: 2:121111%111]5

be two of the indic i o
represented like this :es which coincide (¢ < 7). The element a; can be

n —
aij - aﬁ'sq ° Bs.jsr ° Ys,j
where :
®.,. = g.
sy as:‘ ° Sq—1%
B.e =a °o...
Sqlr :q:g'*'l = a‘r—lsr
T‘f.f SySpr1 © as”_ of
According to (21)
al, > a r—q
is, a > "—
q 154 i Sy B;qs' » as,-j' > .Ysrj
hence
al < al og'—9¢0 oh—r
B U ‘lSq asgs' ﬂsrj
ut s, = S, an .
s =5, and according to (18) we have a/57 — ¢
hence o

a; < af oarr
Accordi 1 W
ng to (19) we have

al, o gr=* ntg—r
isg © Asj < ag
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hence
" n4+qg—r
a; < aj; .

As n > n 4 g — 7 it results

n—1
(23) ay < [+l af
p=1
hence
n—1
(24) A* < |+ 4?2 = A4"1
=1

the last equality being Py;.
On the other hand 4 > E = A" > A" and in view of (24)
A= A 3

which proves the necessity of the condition (16).
The condition is sufficient. Let X, be an arbitrary z-dimensional

vector If A"-1 = A" then

(25) X=X,0A4A"1

verifies the equation (13). Really we have
Xio0dA"1=X,0A" = (X;0 4" ) o A

which proves that the condition (16) is sufficient.

THEOREM 2. If Aeot, Bect, A > B and A"t = A" then also
B = BP,

Proof. According to the theorem 1, 4"~!= A" implies the exis-
tence of a vector X, for which X,= X, o 4. On the other hand
A> B X,04 > XgoB= Xy > Xy0 B and according to Py, Xo=X,0B
hence B"-!= B".

Corollary. If Beot and C € ot and (B® C)y'-*= (B @ C)" then
also B*-1 = B" and C"-1 = C".

Proof. Evidently B@® C € of and B®C > B, B&®&C > C.

Let G be a directed network with # nodes. We assign to each arc
(3, §) a real number a,; called “the length” of the arc. Hence the matrix
A = (a;) is the distance matrix. If we define the addition a®@p =
= max (a, b) and the multiplication acb=a +- b then the matrix A"~ ig the
matrix of the maximal paths between the nodes. But if we define 2 b =
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=min (g, 3) and aob = a+b then A"' is the matrix of the
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paths. These two cases together with orther possible ones are containeg
&

in the following table.

N & @ 0 ° e S
—
1 [— o, +x) max — 00 + 0 =
2 (—, +o] min + o0 k& 0 <
3 [0, + ) max 0 X 1 >
4 (0, +0o0] min + o X 1 <
5 [—o, +@©] max — min 4- o0 >
6 [—o, +©) min + o0 max — <
7 [—o, +w) max — 0 max — 0 =
8 (—o0, 400] min + o min + <
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SOME OBSERVATIONS CONCERNING THE APPLICATION
OF THE ELECTRONIC COMPUTERS IN ORDER TO SOLVE
NONARITHMETICAL PROBLEMS
by
TEODOR RUS
Cluj

1. — Introduction

The elaboration of a theory using electronic computers in order to
solve mathematical problems of nonarithmetical character requires firstly
a certain generalisation of the computing notion itself, and, in the same
time, a new computing theory answering the purpose. The idea of such a
theory was clearly exposed by J. Mc.Carty [22]. But this idea is founded
on the usual computing notion, namely on the numerical calculation.

For the electronic computer could become an effective instrument
in solving some scientific problems related to the research especially in
mathematics or in other fields strongly connected with it, it is necessary
to understand the computing notion in a laiges sense. This understanding
must have in view the fact that the nature of the magnitudes taking part
in the computing process can be different from the numerical one, and
that the operations performed in the computing process can be different
from the common numerical ones.

Some of the desiderata of such a theory are formulated within the
different specification of the algorithm notion. But in view using effectively
these desiderata in the machanization of that part of the matematical
research process that refers to the effectuation of a certain computing
process, having abstract magnitudes, given rules, different from those
commonly used the actual computers, or from the numerical ones, it is
necessary to reconsider the mathematical theory itself, in the new spirit
of the electronic computer. But this would lead to serious difficulties.
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