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ABOUT THE EXTENSION OF THE DOMAIN OF DEFINITION
OF THE CHEBYSHEV SYSTEMS DEFINED ON INTERVALS
OF THE REAL AXIS

by
A. B. NEMETH
Cluj

Denote by € the linear space of the real, continuous functions defined
on R, the real axis.

Definition 1. The set of elements f,, ..., f, in@is said to form a
Chebyshev system of order v, (0r=n — 1), (denote CS,) on the subset
I C R, if the restrictions to I of these funcitions are linearly independent
functions, and if cach sel of v + 1 linearly independent clements of the linear
s pace spanned by fy, . .., f, have al most n — r — 1 distinct common zeros in I.

"Definition 2. The subset A of the n-dimensional, real Euclidean
space W' is said lo be k-veclorial-independent, if any k distinct vectors of A
are linearly independent,

By a similar reasoning as in the paper [1], Theorem 3., may be easy
proved the following proposition:

The clements fy, ..., f, of @ forma CS, 0=r<un—1) on I, if and
only if the mapping ®: I — R* defined by

is one 1o one, and O(I) is an (n — ) - vectorial-independent set in R”.

Ina previous paper [3] we have considered the connection between
Some extension property of the domain of definition of the CS,-s, defined
On a compact Hausdorff space, and the existence of the Chebyshev sub-
SPaces of the same order 7 (see the terminology in [3]) of the space spanned



308 _ . A, B. NEMETH . - X

by these CS,-s. In the present note we consider some extension Problem
the domain of definition of the CS,-s defined on the sublnter\_rals of the 1S'e01f
axis, which are of different nature. However, the method in our it ?s

closed to that in [3].

THEOREM 1. Suppose that the elements fir S 023, of @ form 4 a5
on [a, b), and that this interval is maximal in the sense that the aboye congy
dered system of functions has not the property CS, on [a, b]. Then f, . o
form mo CS, on |[a, b) foranyr=1, ..., n — 2. "

Proof. Denote by @ the mapping of [a, b] into R” defineq by (1). From
the our above proposition it follows that the set ®([a, b)) is n-vectorial.
independent in R”. From the same propositoin it fqllows that Theorem |
is equivalent with the assertion: The set ®([a, b]) is not a 2-vectorial-jn.
dependent set in R”. Because the system of functions f, ..., [, has not the
property CS, on [a, b], it follows that there exists a nonzero linear comb;-
nation

(2) ?;/: ¢:ts

with the property that it has » distinct zeros, say ¥,, ..., %, in [a, b]. This
means that the subspace R"-* of R” having the vector ¢ = (¢, ..., ¢,) as
normal vector, intersects the arc ®([a, b]) in the points ®(x,), ..., ®(x,).
Because f;, ..., f, form a CS, on [a, b), it follows that a point x; must coin-
cide with b. If the points x;, ..., %, are arranged increasingly, then x, = 6.
From the one-to-ones of the mapping @ on [a, b) it follows that the points
®(%,), ..., ®(x,-,) are distinct. According to the condition n == 3, at least
a point ®(x,) is in the interior of the arc ®([a, &]) and corresponds to a point
in (a, b). Because the nonzero linear combination (2) has n — 1 zeros in
[a, b), it follows from the classical theory of the Chebyshev system that
all the zeros in (a, b) must be simple. Geometrically this means, that the
subspace R"-1is pierced by ®([a, b]) in all the points corresponding to zeros
of (2) in (a, b). Consider now the set of vectors

(3) D(xy), ..o, O(%,-0), P(%i4a)s + oy Plx-a),

where x, ¢ (a, b). Suppose that ®(x,) = ®(b) forms with (3) a linearly
independent set of vectors, and such this set of vectors spans the subs-
pace R"-1 Let be now %, a point in (a, b), xg = %, i =1, ..., n — L. Lhen
the set of vectors (3) and ®(x,) span a subspace R"~! of R* according to the
n-vectorial-independentity of ®([a, b)). Letting now x, — b, the subspac¢
R%-! may be maden arbitrary closed to R*-1. From the fact that ®([a, b))
pierces R"-! in ®(x,), it follows that for ®(x,) sufficiently closed to ¢ ;
R}-1 will be pierced by ®([a, b)) at a point ®(x") closed to ®(x;), and d15t1115)
from ®(x;); =1, ..., n — 1. But then the points (3), @(%o) and (D(-'t_
of ®([a, b)) are contained in R%71, in contradiction with the n-vectobrlais
independentity of this set. From this contradiction it follows that o)

EXTENSION OF THE DOMAIN OF DEFINITION OFf CHEBYSHEV SYSTEMS 3
3 09

. early dependent on each set of vectors of the form (3), fori =2 3
hne 1. But the representation of ®(b) in the form of lir)lear combination of

th;—véctofs &(xy), ..., P(x,-;) is unique and therefore
D) = kD(x,),

which proves that ®([a, &]) is not a 2-vectorial-independent set. Impli-
citly was proved that x, = a.

THEOREM 2. Let fy, . ... [, form a CS, on (a, b). Denote by @ the mar -
ping of R into R” defined by (1). If ®(b) =0 (or D(a) £ 0), then the abo{;)e
ﬂmctiOﬂS form a CS, on (a, b] (respective on [a, b)). '

Proof. Suppose ®(b)>20 and that f,, ..., f, do not form a CS, on (a, ).
It follows that the set ®((a, b]) is not an n-vectorial-independent subset
of R", i.e. that there exist n distinct points, say x,, ..., %, in (g, b] such
that the vectors ®(x,), ..., ®(x,) are linearly dependent. Because f,, ..., f,
form CS, on (a, b), it follows that ®((a, b)) is an n-vectorial-independent
subset of R", and therefore x, = b, if it is supposed that the zeros are
arranged increasingly. Let R"-!be the subspace of R* which is spanned by
®(x,), --., P(x,.,); according to our assumption, ®(b) is contained in R*-1,
Iet be now f a linear combination of the form (2), where ¢ = (¢, ..., ¢,)
is a normal vector of R"~!, Then x,, ..., x,_, are simple zeros of f, and
therefore the subspace R"-! is pierced by the arc ®(a, ) in the points
O(x,), ..., ®(x,. ). If B(d) is linearly dependent on each set of vectors of form
(3) for i =1, ..., n — 1, then it would be follow that ®(b)=0, in contradic-
tion with the assumption of the theorem. Suppose that the system of vec-
tors (3) and ®() form a set of linearly independent vectors, and therefore
they span the subspace R”~1. Let now be x, € (2, b) and let %, — b. For %,
sufficiently closed to & the vectors (3) and ®(x,) span a subspace R}-! of
R* with the property that it meets the set ®((a, b)) at a point ®(x’) closed
to ®(x,) and distinct from the points (3) and ®(x,). But then the sub-
space R7 -1 will contain # distinct points of the set ®((a, b)), in contradic-
tion with the n-vectorial-independentity of this set. The theorem is proved.

THEOREM 3. If the elements [, . . ., f, forma CSy on (a, b), then it is always
possible a redefinition of these functions on a point w in R, outside to (@, b)
(and if we require continuity, then generally outside to [a, b]), in order to form
@ CSq on (a, b) U {a}.

Proof. Denote by §”+! the surface of the unit sphere in R with its
centre in the origin, and let be ® the mapping of (a, ) in R* defined by (1).
Let ¥ denotes the radial projection of R"—{0} into S*~1. We put for simplity
Wd(x) = ¥(x). The set ¥((e, b)) will be obviously #-vectorial-indepen-
dent. Consider the sequence {x,} — b, v—> oo, %, € (@, b), and denote by
Baclouster point of the sequence {¥(x,)}. Suppose for simplity that { W(x,)} -
=2 B, v— co. The set ®((a, b)) U {B} is n-vectorial-independent in R*.
To prove this, suppose the contrary : there exist the distinct points %, ...,
*»_11n (a, b), such that the vectors ®(x,), . .-, ®(x,_,), B are linearly de-
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ctors (3) and B cannot be linearly dependent .
1--)——6111(?31.1 ‘c,'l‘]’:e—v ei, becagu)se it -£0u1d follow that § = 0, which fi)sr :}1-. 8 s
radiction. Suppose that the vectors (‘;3) and B are linearly independent.
they span the subspace R”-1 of R _ which contains the point (I)(x‘s, T
subspace is pierced by (D((q, b)) at @(x;). 'I,‘}lze1 vectors (3) and ‘1“(:;) = is
a subspace R?-1. For sufficiently great v, R} -1 will be pierced by (f)'( (aI gn
at a point ®(x’) closed to O(x;) 'and distinct from (3) agd D(x,). THis i )
that the points (3), ®(x,), ®(#) are contained in R}, in contyps, s

Cont.
¥ Then

with the nm-vectorial-independentity of the set ®((a, ?)). Tmplicit]y tton
proved that p & ®((a, b)). If we define now the functions £, g ona:

by setting ®(«) = B, the theorem follows.
A repeated application of the above theorem and the Lempy, 3 of
[2], gives us the

Corollary. An n-dimensional Chebyshev space of order ( _g/,am;e g
by continuous functions defined on an open interval, has Chebyshey subspaces
of order O and of any dimension v, v = n.

ctions
which are defined on an open interval was observed by . . KREIN (sce
for example in the paper [4]).

“This property of Chebyshev spaces spanned by continuous fun
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OPTIMAL PATHS IN NETWORKS
AND GENERALIZATIONS (I)

by
VASILE PETEANU
Cluj

Introduetion

The theory of graphs has recently asserted itself as an important
branch in mathematics, comprising two major qualities: a high level of
abstraction and a wide field of applications. As far as the applications in
economy are concerned the section of the theory of graphs dealing with
the optimal paths has been proved to be one of the most important. The
planning of construction — assembling works on the building sites, the ca-
pital repairs, the setting of production schedules, the organization of
transports, the delivery of information, the traffic in networks, the new
organization of enterprises by means of the electronic processing of data,
the introductions of new technology, the replacing of the old equipment,
the planning and the delivery of a new product, are only some of the ac-
tivities which by mathematical modelling lead to problems of paths in
networks. There have been elaborated new methods by means of which
one can determine the shortest or the longest path between two nodes in a net-
work, or the path with the maximum probability of going from a node to
another, or the path with the maximum or minimum capacity etc.Each
of these problems has been studied separately, taking into account the
Peculiarities it presents. On the other hand there are also surveys that
study some groups of problems of paths in networks, but a general study
of these problems has not been done so far. Such a study makes the sub-
Ject of this work. . ,

.. The following discussions are based on the remark that there is a bi-
Jective mapping between the directed finite graphs and certain matrices
defll_led on an algebraical structure which is organized as a partially ordered
Semigroup. Considering some particular cases of sets, laws of .composition

‘and order relations, we obtain algebraical structures which are specific



