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ctors (3) and B cannot be linearly dependent .
1--)——6111(?31.1 ‘c,'l‘]’:e—v ei, becagu)se it -£0u1d follow that § = 0, which fi)sr :}1-. 8 s
radiction. Suppose that the vectors (‘;3) and B are linearly independent.
they span the subspace R”-1 of R _ which contains the point (I)(x‘s, T
subspace is pierced by (D((q, b)) at @(x;). 'I,‘}lze1 vectors (3) and ‘1“(:;) = is
a subspace R?-1. For sufficiently great v, R} -1 will be pierced by (f)'( (aI gn
at a point ®(x’) closed to O(x;) 'and distinct from (3) agd D(x,). THis i )
that the points (3), ®(x,), ®(#) are contained in R}, in contyps, s

Cont.
¥ Then

with the nm-vectorial-independentity of the set ®((a, ?)). Tmplicit]y tton
proved that p & ®((a, b)). If we define now the functions £, g ona:

by setting ®(«) = B, the theorem follows.
A repeated application of the above theorem and the Lempy, 3 of
[2], gives us the

Corollary. An n-dimensional Chebyshev space of order ( _g/,am;e g
by continuous functions defined on an open interval, has Chebyshey subspaces
of order O and of any dimension v, v = n.

ctions
which are defined on an open interval was observed by . . KREIN (sce
for example in the paper [4]).

“This property of Chebyshev spaces spanned by continuous fun
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OPTIMAL PATHS IN NETWORKS
AND GENERALIZATIONS (I)
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VASILE PETEANU
Cluj

Introduetion

The theory of graphs has recently asserted itself as an important
branch in mathematics, comprising two major qualities: a high level of
abstraction and a wide field of applications. As far as the applications in
economy are concerned the section of the theory of graphs dealing with
the optimal paths has been proved to be one of the most important. The
planning of construction — assembling works on the building sites, the ca-
pital repairs, the setting of production schedules, the organization of
transports, the delivery of information, the traffic in networks, the new
organization of enterprises by means of the electronic processing of data,
the introductions of new technology, the replacing of the old equipment,
the planning and the delivery of a new product, are only some of the ac-
tivities which by mathematical modelling lead to problems of paths in
networks. There have been elaborated new methods by means of which
one can determine the shortest or the longest path between two nodes in a net-
work, or the path with the maximum probability of going from a node to
another, or the path with the maximum or minimum capacity etc.Each
of these problems has been studied separately, taking into account the
Peculiarities it presents. On the other hand there are also surveys that
study some groups of problems of paths in networks, but a general study
of these problems has not been done so far. Such a study makes the sub-
Ject of this work. . ,

.. The following discussions are based on the remark that there is a bi-
Jective mapping between the directed finite graphs and certain matrices
defll_led on an algebraical structure which is organized as a partially ordered
Semigroup. Considering some particular cases of sets, laws of .composition

‘and order relations, we obtain algebraical structures which are specific
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ms of paths in m;twc;)rks. In this way we -
. t we find new results a5 e

hich are already known, but well,
t? (r)e;ré';slswof various problems do not differ any longer depending on t},
iagture of the problems, and thus we can make up standard Programs fo?
aters. At the end we should mention that the new berspective in whick
Egznp roble-ms of paths in netwqus are viewed gives the_p0551bility of 5
furtl?er development of theoretical researches and practical aPP]iCations
This study is divided in seven chapters. In chapter 1 we make 4 b
f the main : :
22{2%5} of the optimal paths in networks. In chapte? 2 the C‘Semigroup .
defined and some properties of its elements are studied. At the eng of the

for various particular proble

chapter we give some examples of C-semigroups. Chapter 3 is concerneq|

. - . -semi . Operations with matrj
trices defined on a C-semigroup. OF atrices ar,
Egﬂleglaand some of their properties are studied. In chapter 4 we :

stable power of a matrix. Chapter 6 is concerned with the application
of the results obtained in the previous chapters, to graphs. Ultimately
in chapter 7 some applications to economy are indicated,

CHAPTER 1

Former resulls

The use of algebraical methods in order to determine certain paths in
networks has three major advantages as compared to the study of paths
directly on the network. First, because of the formal character of the al-

gebraical methods their programming for computers is extremely simple, se-
cond, they lead to more rigorous proofs and third, they maintain their
character of generality without neglecting the principal properties of each
individual problem of paths in networks. This is the explanation that la}-
tely the study of some algebraical structures for their usage in the determi-
nation of certain paths in networks has acquired an important place 1t
the preoccupation of the mathematicians. Two tendencies make themselves
clear in almost all the studies. The first is to study more and more general
algebraical structures and the second is to establish the computation alg(.):
rithms that need a restricted amount of operations. The aim of this
chapter is to make a brief presentation of the most important results that
have been obtained in this respect. .
The first work in literature in which an axiomatically defined algebrllg‘]
cal structure is used in the study of graphs belongs to A. G. LUNTZ [Ie-
published in 1952, Luntz defines the Boolean algebra as being 2 set of €

results which have been obtained by now in the algebraif'

: . study}
certain matricial equations connected with the optimal path problem, I},r]‘
chapter 5 we make a general study of the computation algorithms of tpe|
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ments with two binary operations + and X, which has the following pro-
Perties:

(11) (a+b)+5=“+(b+c): (aXb)XC=a,x(b><c)

(1.2) atb=0b+ta aXb=bxa

(13) (@48 xec=(axc)+ (b x 0

(1.4) 30 and 1 with the properties a +0=a,a x 1 = ¢

(1_5) a+a=a

(1.6) For any a there is an @ sothat a +d =1 and a x 4 = 0.

The author defines as follows the addition and multiplication of the
n % n dimensional matrices whose elements belong to the Boolean algebra :
A+ B=C

where ¢; = a,; + by

and

A x B=D where d; = (a; X by) + ... + (a;, X b,;).

A matrix A is called normed if the elements of the main diagonal are
equal to 1. It is shown that if 4 is a normed matrix, then A"~1 = A4". The
author uses the above results in the analysis and synthesis of switching cir-
cuits. He shows that if 4 is the matrix of direct conductibility between

the nodes of a circuit, then A”~1is the matrix of total conductibilities of that
matrix,

GR. C. MOISIL [13] defined in 1960 an algebraical structure called a

:?milaticially ordered semigroup as being a set S with the following proper-
ies :

”»

I. In S it is defined a law of internal composition ,,0” with neutral

element e so that whichever should a, b and ¢ of S be

(17) aob=="boa
(1.8) ao(boc)=(aob)oc
(19) o€ =¢eo0d=4.

, IL. In S it is defined a relation of partial order so that each pair of
“ements belonging to S should have alower boundary in S. If one denotes C
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semiserial relation and a A b the lower boundary of the elemen
a

the

and 0, then

(1.10) aca

(1.11) acb and 0Ca implies g = ¢
(1.12) acb and bCc implies ¢ g
(1.14) zCa and zC b implies z C 4 Ab.

L. In S the laws of distributivity and absobtion are valid,

(115) ao(b/\C)=(a,ob)/\(a,oc)

(116) a A (a o b) = a.

Cousider on S the square matrix 4 = (a;;) and the matricial product

P—=A x B where p;j = A (@0 by;)- It is proved that if 4 is a n x4
]

matrix on S having the property a; =¢, ¢ =1, 2, ..., n then A" = 4

The author shows that certain problems of transport economy can be
solved on the basis of the above results. Such problems are: the problem
of determining the transport route on which the costs are minimum, the
problem of determining the transport route with the greatest transport
capacity and the problem of determining the route on which the probability
of the transport outcome is maximum.

In 1961 . vorLr [29] defined the algebraical structure which he qalled
a (-semiring. A Q-semiring is a set of elements @ which has two binary
operations ,,+"" and ,,0” and the properties:

(1.17) at+b=>b+a
(1.18) (@+b) +c=a+ b+

(1.19) (@ob)oc=uao (boc

(1.20) do(d+c)=(aoh) + (aoc)

(1.21) b+c)oa=(boa)+ (c?a) .
and which contains the elements 0 and 1 with the following propertits :
(2] a+0=4a, ac0=00a=0

(1.23) dol=1oca=a

(124 a+1=1.

Eh
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he author defines matrices and operations with matricc ;

Eical structure. It is denoted by A the link matrix oftsrtlcge:ag}lll 31115 %1-
7 the transmissl on matrix. The author proves that A™ = T for B, B gy e ly
~here A is a matrix of thg order #. Other properties of matrices are also
studied but they are of no interest for the subject of the preserit paper. Itis
worth mentioning that unhke; t_he other authors quoted above, M. YOELI does
not postulate the commutatW}ty of multiplication.

In 1965, cRUON and HERVIY's work [4] was published. It studies a i
lar a]gebraical structure, referring to the longest path in a network. Consider
the set E =R U {— o.o} where R is the set of real numbers. On the set E de-

fine two operations + and x, called symbolic addition and symbolic
multiplication

gebr

a + b = max (a, ).
axb=a-b.

This algebm_ical structure surpasses the frame of those presented above
it does not \_'c-rxfy cither the property (1.24) of the Q-semiring or the
property (1.16) of the semilaticially ordered semigroup. The authors study
some equations of the form:

(1.25) T=TxA

where 7" is a vector which must be determined and A is a square
matrix of the order », which has all the elements of the main diagonal equal
to 0. The equation (1.25) is an algebraical representation of the problem
of potentials formulated by B rov [24] by means of graphs. rov pro-
ves that the problem of potentials is compatible if the graph it represents
does not contain circuits of strictly positive length. Taking into account
these hypotheses cruvox and pprvi: show that A® = A" where A is the
arcs length matrix in the corresponding graph. I'he solution of the equation
Is given by

T=UsxA"

where U is a ve ctor with » arbitrary components from E.

In 1966 in my paper [18] I showed that A"~! = A"is a necessary and
sufficient condition for the compatibility of the equation (1.25). I also
,S}lowed that for solving this equation the computation of the matrix A"
IS ot necessary, instead, due to the associativity of matricial multipli-
cation, the al gorithm

Ti=UxA4
T,=T:x 4
To = dyavd
T :Tn--l
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can be used. This algorithm needs a considerably smaller amount o

i : m.
Puta’ﬂ;)nlss.)67 in [20] I generalized the algebraical structure Suggesteq
cruon and HERVE, by cgnmdenng an orderedzset having twq binarye by
rations, a set in which neither the property (1.24) nor the other equiy ‘ip&
ones were postulated. This structure comprises all the exemples of pat}? ent
networks given by GR. C. MOISIL and M. YOELI, but without includi, Stm
above mentioned algebraical structures. If we 111111.1; ourselves tg the sgt he
of path in networks, the h){pothesm of tot_al order is necessary becauSe“fi}'
absence would make impossible the comparison of. several paths ip Sl its
choose one of them. I made another gener'ahzatxon together with % Rr to
[21] in which I gave up the hypothesis of total order, - RADg

From the above discussion we notice that the matrix A4»-1 54 -
citly the computation of its elements present a special interest. ObViOuI;;:
this matrix can be calculated by repeatedly multiplying the matrix A b}
itself. But there are algorithms which permit the determination of A"_Bi
with a smaller amount of computations.

The first paper in which it is given an algorithm for the determinatjon
of the transitive closing of an application I' defined on a finite set of points
belongs to 5. Rov [23] and it was published in 1959. The results obtaineg
by B. ROY can be algebraically formulated as follows: Cousider gy
algebraical structure whose elements are the numbers 0 and 1 and whose
operations are a + b = max (a, 0) and @ X b = min (a, b). 'or the square
matrices M = (a,,) of the order #, whose elements on the main diagonal
are all equal to 1, the following operators are defined:

T;M = (by,) where by, = a,;, + (a); X ay)

and it is proved a theorem which is equivalent to the property:
b due o suw gl == ML

In,1962, S. WARSHALL [28] obtained a result which was close to that of
B.ROY's. It was shown in the following theorem :

THEOREM. It is given a square matrix M of the order d which has the
elements my;, 0 or 1. M’ is defined as follows: ml; = 1 if and only if my =]
or if the indices ky, ky, ..., k, exist, so that Wi, = Mg, == +.. = My = =

In the op'posite case ;= 0. M* is defined by means of the following
construction

0. M*=M
1.i=1

2. For any j for which m} =1 and for any k, mj is replaced by
max (mj, m})

3. 7 is increased with a unit,

4. If 7 = d, we pass to the second step, if it is not, we Stop-
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~1

Then M* = M’
The algorithm suggested by 8. ROY was generalized in 1968 by 1. ToyEscy
27, in the case of an algebraical structure equivalent to that suggested by
. MOISIL, for m.atnces whose elements on the main diagonal are all
eqtial to e. TOMESCU introduced the operators Up(d), p=1,2, .. ., 1 defi-

ned as follows :
Up(4) = B where b,; = a,; A (a

io © @)
and he proved that
L"pl UP2 S Up" A = Ar1.

The study of $. WARSHALL ha_s deve}oped several generalizations. We men-
tion R. W. rLovD's [8] work published in 1962 and p. ROBERT & FERLAND'S

- work [22] published in 1968. ROBERT and FERLAND make a generalization

of wARSHALL'S results in the case of vorLI's Q-semiring. They show that if
Ais a square matrix of the order n defined on a Q-semiring, then

A = A 4 A¥ 4 ., J A

where the matrix A™ is recursively construed as follows:
A0 = 4

AW = (cll;:i) where aff} — ai»f"” + (ag-:—” X ai’}"]]), k=12 ..., =
ROBERT and FERLAND'S resultsinclude ToMEScU’s result, because on the
one hand the algebraical structure is more general and on the other hand
no assumption is made on the elements of the main diagonal of the matrix
A. Obviously the algorithm is the same,
In chapter 5 we make a more general study of some algorithms of the
types mentioned above.

CHAPTER 2

I1. The routing semigroup

In this chapter we will define an algebraical structure containing in
Particular the algebraical structures which have been presented in the pre-
Vious chapter. We will call it the routing semigroup or, shortly, the _C- semi-
group. We will reveal those properties of the C-semigroup which will

¢ used in the following chapters.

. Definition 2.1. A4 routing semigroup or C-semigroup is ca{{ed a non-
void set @, in which two internal composition-laws are defined ,,@" and o
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denominaled as addition and correspondingly multiplication, wity, 5, Foll,
wing properties : i¥

(2.1) A @b @dc=ad (b
(2.2) a@b=00a

[2.3) a@a=a

(2.4) (@aob)oc=uao(boc)
(2.5) ao(b@c)=(aod) @ (aocc
(2.6) b@c)sa=(boa)® (co a)
(2.7) Je€C aoe=¢coa=a

whichever would a, b, ¢ be, belonging to the set €.

The element e is called unity element and it is unique.
of idempotence (2.3) of the operation @ can be replaced by

(2.3") , ePe=ce

The pl‘operty

the two operations being equivalent, due to the distributivity of multipli-

cation relative to addition. Thus, from (2.3") multiplying from the left
by a we get

ao(e®e) =aoc
hence
a@a=a Yacse

_THEOREM 2.1. A C-semigroup 1s a semilatice.
Proof. We say that a is greater than or equal to 6 and we denote a > b

or_b < aif and only if a @ b = 4. The relation ,, >’ satisfies the three
axioms of the order relation. Thus, by (2.3) we get

(2.8) a> a,

From the property (2.2) it results that

Vase,

(2.9) a>band b>a, implies g = b, Va, bese.

Ul_timqtely, the relation ,,$
(2.10)

is transitive, that is
a>band b > implies a > ¢ because a @ b =a and b @c=b
implies a@c=(a®b)@c=a@(b@c)=a®b=a-

- The properties (2.8), (2.9) and (2.10)

Ty B3 : attest t the Jation
»> " is an order relation and by he fact that the re

C-semigroup € is an ordered set.
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Iet now be 4 € € an element for which the relations d > 4 apq

‘ a=4d and e @ b=d are satisfi d.
t];azg(igb)=dthatjsd>a$b. ed. Hence (d@a)@
or &

In conclusion:

d>b
biss if

211) d>aandd>bimpliesd>a@b
and because
(2.12) a@b>aanda@b>b

results that @ @ b is the smallest majorant of the elements a and 5. This
fact proves the theorem.

The theorem 2.1 shows that the C-semi
as an algebraical structure which is a semi
pon-commutative semigroup with unit element. We have preferred, however,
the above defimtl_ou, as the Matricial operations which appear in the follo-
wing chapters will thus have a formal analogy with the usual matricial
operations.

group could have been defined
latice and in the same time a

THEOREM 2.2, Two inequalities of the same kind can be added term by
ferm.

Proof. Suppose that
a>bandc>d

that is :

(2.13) adb=a cpd=-c.
Adding term by term the above equalities we get .
(2.14) e D(c®d =adpc

. Taking into account that the addition is associative and commuta-
tive, the relation (2.14) can be rewritten :

e ed=0e¢

This means that « @ ¢ » b @ d whichever would be the elements B L
and d of the C-semigroup €.

Corollary. a > b impliesa®c >b®c, Va, b, cse.

THEOREM 2.3. Two inequalities of the same kind can be multiplied
lerm by term.

Proof. Let be @ > b and ¢ > d. From the first inequality results that
a@®b=a.
gfbutlt‘iplying by ¢ both terms of the above equality, from the right, we
ain :

(2.15) (a@boc=aocc.
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ding to the property (2.6) the relation (2.15) becomes
n

(aoc)@(boc)=aoc

Accor

that is
(2.16) aoc > boc.
On the other hand ¢ 2 d implies ¢ @ 4 = c.
Multiplying by b both terms of the equality above, from the -
» We
obtain:

bo(cad).:boc

which, according to (2.5) can be written

(boC)@(bod)=boC

that is

(2.17) bocs bod.

From (2.16) and (2.17) results that @oc > boc > bod This fact proves
the theorem. ;

Remark. Throughout the proof of the theorem we have shown that
@ > bimplies a0 ¢ > b o ¢, which is an analogous property to the corollary
of the previous theorem.

Definition 22. An element a belonging to the C-semigroup € s
called supraunitary if a’> e. A C-semigroup whose elements are all supraunilary
ones s called a supraunitary C-semigroup. The element a is called subunitary
element if @ < e. The C-semigroup whose elements are all subunitary ele-
ments is called a subunitary C-semigroup.

Remark. The algebraical structures studied by Gr. C. MorsiL [13] and
M. YOELI [29] are subunitary C-semigroups. They were defined either bf
the supplementary condition

(2.18)

ae=e¢ VasC

tt. : ; hie
?Orz;:hed to the properties (2.1) — (2.7), or by a law of absobtion of th

2.19)

b@® (boa)=10 Vabee
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The relation (2.18) is equivalent to a < e. A similar conclusion is reached

i 107 e LI e e e
have
bo(ae)=0b
and hence
(boa) B (boe) =0
that 1s

(bod)@b:b

which, due to the commutativity of addition, represents the condition (2.19)
proper. The notion of C- semigroup defined in this study represents an im-
portant generalization of the previously studied algebraical structures
enlarging considerably the class of the problems under discussion. For’
example, we mention that the algebraical structures studied by the au-
thors quoted abqve, are not concerned with the study of the longest path
in a graph and implicitly cannot be applied to the scheduling problems.
But the C-semigroup comprises these problems too.

In what follows, we denote a° = ¢, a* = @*! o @ and

. @ a,

Property. 2.1. Ifas @ and a > e then

p

|+]| a? = a?
-0

g=

because ¢ being supraunitary according to the remark of the theorem
3, we have

g.(a(az( ...<ap'
Similarly it is justified

Property 22 If a s € and e > a then

a? = e.

i
s

10 — y
Mathematica vol. 11(34) — Fascicola 21969



VASILE PETEANU

322

12
_THEOREM. 24. If ¢ €C, ¥ € € and a > ¢, the following velations

equivalent are

(2.20) W R

(2.21) el

(2.22) g o ¥

(2.23) %> xoab

whichever should be the natural number p.

Proof.

a). ’l"fhe relation (2.20) implies (2.21). Evidently, the inequality ¢ » ,
multiplied from the left by x becomes x o @ > x. This inequality together
with (2.20), implies (2.21).

b). The relation (2.21) implies (2.22). Multiplying from the right the re.
lation (2.21) by a, @2, 4% ..., a? ' we obtain the succession of equalities

X=Xoa
Xoad=2%o0a%

Xoa= xoad

Xoafl =y, gl

which imply the relation (2.22).
c). The relation (2.22) implies (2.23). This implication is obvious.
d). The relation (2.23) implies (2.20). From a > e results that a? > a

éegii %o a? > xoa. From the last inequality and from (2.23) results

Definition 2.3. An element a belonging to the C-semigroup € is
called a regular one if ao b < a implies b < e, Vb A subset of the
C-semigroup is called a vegular one if all its elements are regular.

Remark. Any C-semigroup contains regular elements because ¢ is O

viously aregular element. Ina subunitary C-semigroup any element is regular
because apriori b < e,

Definition 2.4. An element a belonging to the C-semigroup C 15 qalled

normal, if a =ao a implies a —¢. A C-semigroup is called novimal if ol
us elements are normal,
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cniti 2.5. An clement a belongi '
pefinition nging to the C-semigroup o ;
called p-stable if a? = a?*'. The element at is called the stable j)gwerpo; z]tz
clement @

THEOREM 2.5 If a € € 1s a p-stable element, then the equation

(2'24) X=Xoa
is saiiSfl'cd by
(2.25) By

whichever should be v, = €,

Proof. As a is p-stable, a®? = a?*1, Multiplying from the left this equa-
tion by %, we obtain

(2.26) Xg o af = x,0 aPt,
The relation (2.26) can also be written :
Xogo a? = {1y 0 a*) o a
and taking into account (2.25)
Ry == By . .

This fact proves the theorem.

Definition. 2.6 An clement a belonging to the C-semigroup € is
called weak p-stable if

(2.27) I+t

THEOREM 2.6 Any weak p-stable supraunitary element is p-stable.
Proof. 1et be a € a weak p-stable supraunitary element.
Due to the fact that @ > ¢ we have

ptr
|| a? = a?t?
g=1

and
I
[+] a? = a?

£
]
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and since a is weak p-stable

ap-l—l o ap_

This fact proves the theorem.

rHEOREM 2.7. If a € € is weak p-stable, then

|

|=

| a.
1

o

al =

i

l
l

Q
I
—
o
Il

whichever should be m =# + L.
Proof. The fact that a is weak- p-stable is shown by the equality

p+1 2
[+] af = |+ a
c}:i_ g=1
which is equivalent to
.
a‘H‘l < |-i—| al.

(2.28)

|

q

Multiplying both terms of the inequality (2.28) by a we obtain:

k-2
—-

_{_

+
=

at*t? < |+] af.

(2.29)

T
Il
L]

Now adding the element @ in both the terms of the inequality (2.29) we
obtain

e
(2.30) at*? @ a < [+]af.
g=1
This inequality is equivalent to
; £+l #41
(2.31) a2 @a@ [+ a? = [+
g=1 g=1

- . ) ) ' eakl
or, writing the first term shorter and taking into account that a 15 W

p-stable

bidin

2
+la? = |

=

(2.32)

=

al.

7=1 q

I
-

-
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- repeating the above process the theorem will be proved

pefinition 2.7. The element 9 belonging to the C-

e properties semigroup € with

233 a@ﬂ:a,aé@:ﬂoar_e,vae@

;s called the meuter element of the C-semigroup.
Remark. The neuter element, if any,

pot have a neuter element, there exists an extension of the C-semj

which contains the neuter element. Ihe element ¢ is neith:r (;‘ef;ﬁr:;gr(;%;;

normal. The first equality from (2.27) is equivalent to 6§ < ¢ Vase ﬁe

9 is the smallest element of the C-semigroup. ' nee

Further, we shall give some examples of C-semigroups,

is unique. If a C-semigroup does

Example2l. €={0, 1}, ® =V, o=A,e=1, 6 =0 the usual
Boolean algebra. It is a commutative, subunitary C-semigroup.

Exam!?l’e‘ 22 e =_(-oo, —'}-oo], @ =min, o =+4,e=0, 6 = —I—-oo
#t = = This C-semigroup is regular, normal and commutative. It
does not contain p-stable elements except the elements ¢ and 6,

€0, 4o00], ® =min, o = 4, ¢ =0, 0= 400

This C-semigroup is subunitary, regular, normal and commutative.

Example 23

Example 2.4, CRUON R, HERVE PH [4]). @ = [—o0, +o0) @ = max,
Q=+, =10, 8= —opo, W& = =z",

This C-semigroup is regular, normal and commutative,

Example 25. @ = M(#), @ = min, o = +, e =0, § = + 00 where
M(k) is the set of the multiples of the number % reunited with {0, + oo}.
In particular we may have 2 = 1. suiMBEL A. [26]). This C-semigroup
Is a subunitary, regular, normal and commutative one.

Example 26.¢= [0, 1], @ = max, e = X, ¢=1, 06 =0 where
X represents the usual multiplication. This C-semigroup is subunitary, regu-
lar, normal and commutative.

Example 27. €= [—o0, +00], ® =max, o=min &= oo
0= —oo. This C-semigroup is subunitary and commutative. It is not nor-
mal since min (a4, a) = a for any a €€

Example 28.¢=4, +=U, o=0N, e=g{a, 0 = @ where

4 is a family of sets, (J is the reunion operation and M is the operation
o_f Intersection of two sets. This C-semigroup is subunitary and commuta-
tive but not normal,
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i ich it is defined :

Example 29 Let M bea set in whic an assogjyy:

ik eeial comgosition-law % which has a neutral eleme?t denoteq ba;wle

.1\heu G:_@(ﬂ[)) @ == U, A <] B = {a*b, a EA; bEB 5 V A_, BEQ(AJ)
e=1, 6= @, where €(M) is the set of the parts of M anq D is

void part, being a C-semigroup.

Example 2.10. € is the set of the functions defined and Continy
on a closed interval [0,1], taking in each point x & [0, 1] a reg] llonne(gi
tive value, (f @ g) (¥) =sup [/(x), &(=)], (fog) (%) =f(¥) g(x), e = el o
6 = 6(x) = 0 This C-semigroup is regular, normal and commutatjye,

2

the
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