REVUE ROUMAINE DE MATHÉMATIQUES PURES ET APPLIQUÉES

TOME XV, Nº 1

1970

TIRAGE À PART

NONLINEAR DIFFERENTIAL n-PARAMETER FAMILIES

вY

A.B. NÉMETH

(Cluj)

We prove that the continuous function F(x, a) defined on $[\alpha, \beta] \times \mathbb{R}^n$ generates an n-parameter family in the sense of [7] iff for any distinct x_1, \ldots, x_n in $[\alpha, \beta]$ the mapping with the coordinate functions $f^i(a) = F(x_i, a)$ is a homeomorphism of \mathbb{R}^n onto \mathbb{R}^n . The special case when this mapping is a diffeomorphism is considered and several results concerning n-parameter families with this property are obtained.

0. INTRODUCTION

Denote by $C[\alpha, \beta]$ the linear space of all continuous real-valued functions defined on the closed interval $[\alpha, \beta]$ of the real axis. In what follows an n-dimensional linear subspace L_n of $C[\alpha, \beta]$ will be said to be a Chebyshev space if only the zero element of L_n has more then n-1 distinct zeros in $[\alpha, \beta]$. A set of n elements of $C[\alpha, \beta]$ will be said to be a Chebyshev system if it spans an n-dimensional Chebyshev subspace of $C[\alpha, \beta]$.

The present paper is devoted to the study of n-parameter families. This notion is the non-linear generalization of the Chebyshev spaces and is defined as follows:

DEFINITION 1. A family F of functions in $C[\alpha, \beta]$ is said to be an *n*-parameter family if for any distinct points x_1, \ldots, x_n in $[\alpha, \beta]$ and any real-values y_1, \ldots, y_n there exists a single function f in F with the property

$$f(x_i) = y_i, \ i = 1, \ldots, n.$$

Investigations on the *n*-parameter families were made by T. Motzkin [5], L. Tornheim [7], M. I. Morozov [4], E. Moldovan [2, 3] and others.

REV. ROUM. MATH. PURES ET APPL., TOME XV, No 1, P. 111-118, BUCAREST, 1970

As observed by G. Meinardus in his book [1], a great inconvenience in the study of the *n*-parameter families is the small number of concrete exemples (loc. cit., p. 142).

The aim of this paper is to propose a topological method in the study of the n-parameter families which seems to be very efficient in revealing

a lot of new interesting properties.

We consider the n-parameter families to be n-dimensional topological manifolds in the space $C[\alpha,\beta]$ which is topologized with the uniform norm. If such a manifold is differentiable and its tangent spaces are Chebyshev spaces of dimension n, then the n-parameter family is said to be differentiable. We concentrate ourselfs upon two problems:

(i) To characterise the differentiable n-parameter families which

have in every point the same Chebyshev space as tangent space.

(ii) Given two Chebyshev spaces of dimension n, does then exist a differentiable n-parameter family for which these spaces are tangent?

The second problem is only partially solved. In particular this partial solution permits the construction of differentiable *n*-parameter families which do not have the property (i) and yield examples for nonlinear *n*-parameter families.

1. THE NOTION OF DIFFERENTIAL n-PARAMETER FAMILIES

We need for our purpose the following equivalent definition of the

n-parameter families:

DEFINITION 1'. Let F(x, a) be a real-valued continuous function defined on $[\alpha, \beta] \times \mathbf{R}^n$ where $x \in [\alpha, \beta]$, $a \in \mathbf{R}^n$, \mathbf{R}^n being the *n*-dimensional real Euclidean space. The function F(x, a) generates an *n*-parameter family if for any distinct points x_1, \ldots, x_n in $[\alpha, \beta]$ and any vector $b = (b^1, \ldots, b^n)$ in \mathbf{R}^n there exists a single vector a in \mathbf{R}^n such that

$$F(x_i, a) = b^i, i = 1, \ldots, n.$$

Now prove the following

THEOREM 1. The function F(x, a) which is continuous on $[\alpha, \beta] \times \mathbf{R}^n$ generates an n-parameter family if and only if for any distinct points x_1, \ldots, x_n in $[\alpha, \beta]$ the map $b = \Phi$ (a) of \mathbf{R}^n in \mathbf{R}^n with coordinate functions

(1)
$$b^{i} = F(x_{i}, a), i = 1, ..., n$$

is a homeomorphism onto.

The sufficience of condition of Theorem 1 is obvious.

The necessity. From the definition of the continuous function F(x, a) which generates an n-parameter family it follows the one-to-ones and the continuity of the mapping Φ . To demonstrate that Φ^{-1} is also continuous, it is sufficient to show that Φ is an open map. Let G be an open subset of \mathbb{R}^n and $b \in \Phi(G)$, i.e. $b = \Phi(a)$, $a \in \widehat{G}$. Denote by V a bounded neighbourhood of a with the property that $V \subset G$. From the compacteness of \overline{V} it follows that $\Phi \mid \overline{V}$ is a homeomorphism. Applying

now the Brouwer theorem of invariance of the domain it follows that $\Phi(V)$ is open. But $\Phi(V) \subset \Phi(G)$ and $b \in \Phi(V)$ and therefore b belongs to $\Phi(G)$ together with the neighbourhood $\Phi(V)$. Because b was arbitrary in $\Phi(G)$ it follows that this set is open, which completes the proof. 1)

DEFINITION 2. If for any distinct points x_1, \ldots, x_n in $[\alpha, \beta]$ the mapping Φ of \mathbf{R}^n in \mathbf{R}^n with coordinate functions (1) is also a diffeomorphism (i.e. it is a homeomorphism and the partial derivatives of $F(x_i, a)$ with respect to a^i are continuous functions and the Jacobian is everywhere different from zero), then the n-parameter family generated by F(x, a) will be called differential n-parameter family (DnF).

Consider F(x, a) as a manifold in $C[\alpha, \beta]$. If F(x, a) generates a DnF, then its tangent space in any point $a \in \mathbf{R}^n$ forms a Chebyshev space of dimension n, which will be denoted by L_n (a).

2. UNISPATIAL DIFFERENTIAL n-PARAMETER FAMILIES

DEFINITION 3. If the DnF generated by F(x, a) has the property that its tangent space $L_n(a)$ in any point $a \in \mathbb{R}^n$ is the same Chebyshev space L_n , then it will be called unispatial DnF with the tangent space L_n . THEOREM 2. A function F(x, a) generates a unispatial DnF with

the tangent space L_n if and only if the function F(x, a) may be represented

in the form

(2)
$$F(x, a) = \sum_{i=1}^{n} f^{i}(a) \varphi_{i}(x) + \psi(x)$$

where φ_i , $i=1,\ldots,n$ is a basis of the space L_n , f^i , $i=1,\ldots,n$ are the coordinate functions of a diffeomorphism of \mathbf{R}^n onto \mathbf{R}^n and $\psi(x)$ is an element in $C[\alpha, \beta]$.

The necessity. Suppose that the function F(x, a) generates a uni-

spatial DnF and show that it may be represented in the form (2).

The functions

$$rac{\partial F(x,\,a)}{\partial a^i}$$
 , $\,i=1,\,\ldots\,,\,n$

form a basis of the space L_n . Fix now the distinct points x_1, \ldots, x_n in $[\alpha, \beta]$ and suppose that $\varphi_1, \ldots, \varphi_n$ is a basis of L_n with the property

$$\varphi_i\left(x_i\right) = \delta_i^i, \ i, \ j = 1, \ldots, n.$$

Then we have

(3)
$$\frac{\partial F(x,a)}{\partial a^i} = \sum_{j=1}^n a_{ij}(a) \varphi_j(x), i = 1, \ldots, n.$$

¹⁾ This simple proof was suggested by M. Bognár.

where $A(a) = ||a_{ij}(a)||$ is a non-singular $n \times n$ matrix. Putting $x = x_k$ in the formula (3) we obtain

$$a_{ik}(a) = \frac{\partial F(x_k, a)}{\partial a^i}$$
, $i, k = 1, \ldots, n$

and then the formula (3) becomes

$$\frac{\partial F(x, a)}{\partial a^{i}} = \sum_{j=1}^{n} \frac{\partial F(x_{j}, a)}{\partial a^{i}} \quad \varphi_{j}(x), \quad i = 1, \ldots, n.$$

By integration with respect to a^i we obtain

$$F(x, a) = \sum_{j=1}^{n} F(x_{j}, a) \varphi_{j}(x) + \varkappa_{i}(x, a^{1}, \ldots, a^{i-1}, a^{i+1}, \ldots, a^{n}),$$

$$i = 1, \ldots, n.$$

From the above equalities it follows that all the functions x_i , $i = 1, \ldots n$, are equal with a function $\psi(x)$ depending only on x, which according to the condition imposed on F(x,a) must be continuous on $[\alpha, \beta]$. Finally, the map with the coordinate functions $F(x_j, a) = f'(a), j = 1, \ldots, n$, form a diffeomorphism of \mathbb{R}^n onto \mathbb{R}^n because F(x, a) is supposed to generate a differential n-parameter family, which proves the necessity part of the theorem.

The sufficience. By representation (2) it follows that for fixed x_1, \ldots, x_n in $[\alpha, \beta]$ the map with the coordinate functions $b^i = F(x_i, a)$ $i = 1, \ldots, n$ is the composition of the map with coordinate functions $b^i = f^i$ $(a), i = 1, \ldots, n$ and the map with coordinate functions $b^i = f^i$ $=\sum_{i=1}^{n} a^{i} \varphi_{i}(x_{i}), i=1,\ldots n,$ which are both diffeomorphisms onto, and an additional constant vector $(\psi(x_1), \ldots, \psi(x_n))$, and therefore it is also a diffeomorphism onto. Moreover, by (2) we have

 $\frac{\partial F(x, a)}{\partial a^{i}} = \sum_{i=1}^{n} \frac{\partial f^{i}(a)}{\partial a^{i}} \varphi_{i}(x), i = 1, \ldots, n,$

i.e. every tangent space L_n (a) is generated by $\varphi_1, \ldots, \varphi_n$, and therefore is identical with L_n , which completes the proof of sufficience.

3. PREPARATORY RESULT: AN INVERSE FUNCTION THEOREM LOF GLOBAL CHARACTER

In the proof of our inverse function theorem we will use the following simple

LEMMA. Let f(a) be a function with continuous and bounded partial derivatives on the open, convex set D in R. Then f(a) may be extended by continuity to all the set \overline{D} .

INVERSE FUNCTION THEOREM. Consider the map $\Phi: \mathbf{R}^n \to \mathbf{R}^n$ with coordinate functions

$$b^{i}=\Phi^{i}\left(a\right) ,\ i=1,\ldots,n$$

which satisfy the conditions:

1) The functions Φ^i have continuous and bounded partial derivatives on the whole space R".

2) There exists a positive δ so that $J(a) > \delta$ on all the \mathbf{R}^n , where J(a) is the Jacobian of the mapping Φ in the point a.

Then Φ is a diffeomorphism of \mathbb{R}^n onto itself.

Proof. Let $a_0 \in \mathbb{R}^n$ and $b_0 = \Phi(a_0)$. Then from the classical inverse function theorem there exists a neighbourhood of a_0 which is mapped diffeomorphically onto a neighbourhood of b_0 . Suppose that this second

neighbourhood is the open cube $C(b_0)$ with its centre in b_0 . The inverse function Ψ of Φ which is defined on $C(b_0)$ has coordinate functions Ψ^* with partial derivatives expressed in the form (see for example [8]

pp. 462).

$$\left\|rac{\partial \Psi^i}{\partial b^j}
ight\|_{m{eta}}^{m{a}} = -rac{1}{J(a)}rac{D\left(\eta^1,\,\ldots,\,\eta^n
ight)}{D(a^1\,,\,\ldots,\,a^{i-1},\,b^j,\,a^{i+1},\,\ldots,\,a^n)},\,i,j=1,\,\ldots,n,$$

where $\eta^i = \Phi^i\left(a\right) - b^i, \ i = 1, \ldots, n,$ and the vector a is that which corresponds to b by diffeomorphism Φ . From the conditions of the theorem it follows that the functions \Psi have continuous and bounded partial derivatives in $C(b_0)$. But then from the lemma it follows that they may be extended by continuity to the closed cube $\overline{C}(b_0)$. If we put Ψ^i for a^i in the equalities (4), they become identities on $C(b_0)$ and if we extend the functions Ψ^i by continuity to $\overline{C}(b_0)$, then from the continuity of the functions Φ^i it follows that (4) becomes an identity on all the set $\overline{C}(b_0)$, i.e. the map Ψ so extended is an inverse of Φ on $\overline{C}(b_0)$. This means that a boundary point b of $\overline{C}(b_0)$ satisfys (4) while $a = \Psi$ (b). Now, applying the classical inverse function theorem to the neighbourhoods of the points a which are counter-images under Φ of the boundary points of $\overline{C}(b_0)$, we observe that each a with this property has a neighbourhood which may be diffeomorphically maped in a neighbourhood of $b=\Phi$ (a). These neighbourhoods cover the boundary of $C(b_0)$ and because of compactness of this boundary, from the covering may be extracted a finite covering, and we conclude that there exists a cube $C_1(b_0) \supset \overline{C}(b_0)$ so that the functions Ψ^i may be extended to $C_1(b_0)$ and the map Ψ with these coordinate functions is a differentiable inverse of Φ . Applying the above method we may extend Ψ to $C_2(b_0) \supset \overline{C}_1(b_0)$, and so on. The family of such cubes has a maximal element which cannot be bounded because any bounded cube may be extended as above, and therefore this maximal element must coincide with the space \mathbb{R}^n .

4. COMPOSABLE CHEBYSHEV SYSTEMS

DEFINITION 4. Let $\varphi_1(x), \ldots, \varphi_n(x)$ and $\psi_1(x), \ldots, \psi_n(x)$ be Chebyshev systems on $[\alpha, \beta]$. They will be said to be *composable* if

(i) every sequence of n functions η_1, \ldots, η_n , where η_i is φ_i or ψ_i (generally depending on i) form a Chebyshev system;

(ii) the determinants

$$\det \| \gamma_i (x_i) \|_{i, j = 1, \ldots, n}$$

are of the same sign independent of the manner of chosing φ_i or ψ_i for η_i $i = 1, \ldots, n$. Here x_1, \ldots, x_n are distinct points in $[\alpha, \beta]$.

Example 1. Let be $\varphi_1(x), \ldots, \varphi_{n-1}(x)$ a Chebyshev system on $[\alpha, \beta]$. and let be φ_n and ψ_n two concave (or convex) functions in the sense of [2] with respect to this Chebyshev system. It is easy to see that the Chebyshev systems $\varphi_1(x), \ldots, \varphi_{n-1}(x), \varphi_n(x)$ and $\varphi_1(x), \ldots, \varphi_{n-1}(x), \psi_n(x)$ are composable.

Example 2. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be two systems of real numbers which satisfy

$$\alpha_1 \leq \beta_1 < \alpha_2 \leq \beta_2 < \ldots < \alpha_n \leq \beta_n$$

Then the Chebyshev systems $e^{\alpha_1 x}, \ldots, e^{\alpha_n x}$ and $e^{\beta_1 x}, \ldots, e^{\beta_n x}$ are com-

posable. To show this let x_1, \ldots, x_n be distinct points in $[\alpha, \beta]$. The determinants

$$\det \|e^{\Upsilon_i x_j}\|_{i,j=1,\ldots,n}$$

are of the same sign independently of the choice of γ_i , which is α_i or β_i , $i = 1, \ldots, n$. We prove the following particular case of this assertion:

$$\operatorname{sgn} \det \|e^{\alpha_i x_j}\| = \operatorname{sgn} \det \|e^{\beta_i x_j}\|.$$

The general case may be proved similarly. Suppose the contrary:

$$\operatorname{sgn} \det \|e^{\alpha_i x_j}\| = -\operatorname{sgn} \det \|e^{\beta_i x_j}\|.$$

Now letting $\beta_i \to \alpha_i$, $i = 1, \ldots, n$ monotonically, it follows that the second determinant must vanish for some distinct β_1, \ldots, β_n which is in contradiction with the fact that $e^{\beta_1 x}, \ldots, e^{\beta_n x}$ form a Chebyshev system for any distinct β_1, \ldots, β_n .

Other examples for composable Chebyshev systems may be constructed according to M. A. Rutman's results [6].

5. THE CONSTRUCTION OF A DIFFERENTIAL n-PARAMETER FAMILY WITH GIVEN TANGENT SPACES

THEOREM 3. If $\varphi_1(x), \ldots, \varphi_n(x)$ and $\psi_1(x), \ldots, \psi_n(x)$ are composable Chebyshev systems on $[\alpha, \beta]$, then there exists a function F(x, a) which generates a DnF and has the property that

(5)
$$\frac{\partial F(x,0)}{\partial a^{i}} = \psi_{i}(x) \text{ and } \frac{\partial F(x,1)}{\partial a^{i}} = \varphi_{i}(x), i = 1, \ldots, n.$$

(Here 0 and 1 stand for the zero vector, respective for the vector with all the components 1.)

Proof. Construct the functions $f(x, a^i)$, i = 1, ..., n in the following

manner:

$$f(x,a^i) = \begin{cases} \psi_i\left(x\right) & a^i \leq 0 \\ a^i \varphi_i\left(x\right) + (1-a^i) \psi_i\left(x\right) & 0 < a^i < 1 \\ \varphi_i\left(x\right) & a^i \geq 1 \end{cases} \qquad i = 1, \dots, n.$$

The functions $f(x, a^i)$ have the following properties

(i) they are continuous functions of two variables;

(ii) for each $a=(a^1,\ldots,a^n)$ they form a Chebyshev system.

The property (i) is obvious. For (ii) we consider the distinct points x_1,\ldots,x_n in $[\alpha,\beta]$. Let $a=(a^1,\ldots,a^n)$ be a vector in \mathbb{R}^n . With a reordering of the components (with respective reordering of the indices of the Chebyshev systems) we may realize $a^i \leq 0$ $i = 1, ..., m, 0 < a^i < 1$, $i=m+1,\ldots,p,\ a^i\geq 1,\ i=p+1,\ldots,n.$ We have then

where
$$\nu(x_j, a^k) = a^k \psi_k(x_j) + (1 - a^k) \varphi_k(x_j), \ j = 1, ..., \ n, \ k = m + 1, ..., \ p.$$

If we decompose this determinant into the sum of determinants then from the composability of the Chebyshev systems $\varphi_1(x), \ldots, \varphi_n(x)$ and $\Psi_1(x), \ldots, \psi_n(x)$ (the composability remains after a simultaneous reordering of the indices of the Chebyshev systems) and the positivity of the numbers a^i and $1-a^i$, $i=m+1,\ldots,p$, it follows immediately that the above determinant is different from zero.

Let now

$$F(x, a) = \sum_{i=1}^{n} \int f(x, a^{i}) da^{i}.$$

The function F(x, a) generates a DnF. Really, if x_1, \ldots, x_n are distinct points in $[\alpha, \beta]$ then the map $\Phi: \mathbf{R}^n \to \mathbf{R}^n$ with coordinate functions

$$b^{i} = \Phi^{i}(a) = F(x_{i}, a), i = 1, \ldots, n$$

is a diffeomorphism of \mathbb{R}^n onto itself. This follows from the inverse function theorem. The condition 1.) of this theorem is obviously satisfied and for condition 2) we have

$$\inf_{a \in R^n} |J(a)| = \inf_{a \in R^n} |\det \|f(x_j, a^i)\| = \min_{\substack{0 \le a^i \le 1 \ i = 1, \dots, n}} |\det \|f(x_j, a^i)\|| > \delta > 0$$

because the determinant is a continuous function on the closed cube $0 \le a^i \le 1$, $i = 1, \ldots, n$ and attains on it its minimum, which cannot be zero. From the continuity of the partial derivatives, J(a) must be everywhere positive or negative and therefore all conditions of the inverse function theorem are fulfilled.

Finally, we observe that the conditions (5) are satisfied and a simple

application of the Theorem 1 completes the proof of our theorem.

Received November 30, 1968

Institute of Calculus of the Academy Cluj

DEFERENCES

- 1. G. Meinardus, Approximation von Funktionen und ihre numerische Behandlung. Springer V. Berlin, 1964.
- 2. E. Moldovan, Sur une généralisation des fonctions convexes, Mathematica, 1959, 1 (24), 49-80.
- 3. Introduction à l'étude comparative des ensembles de fonctions interpolatoires, Mathematica 1964, 6 (29), 145-155.
- 4. М. И. МОРОЗОВ, О некоторых вопросах равномерного приближения непрерывных функций посредством функции интерполяционных классов, Изв. Акад. наук СССР, 1952, 16, 75—100.
- 5. T. Motzkin, Approximation by curves of a unisolvent family, Bull. Amer. Math. Soc., 1949, 55, 789-793.
- 6. М. А. РУТМАН, Интегральное представление функций, образующих ряд Маркова, Докл. Акад. наук СССР, 1965, 164, 989—992.
- 7. L. Tornheim, On n-parameter families of functions and associated convex functions, Trans.

 Amer. Math. Soc., 1950, 69, 457-467.
- 8. Г. М. Фихтенгольц, Курс дифференциального и интегрального исчисления I, Физматгиз, Москва, 1962.