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We prove that the continuous function F(x, a) defined on [o, 8] X R” gene-
rates an n-parameter family in the sense of [7] iff fm" any distinct z,..., ¢, in
[o, B] the mapping with the coordinate functions (o) = F(z,, 4) is a homeo-~
morphism of R” onto R”. The special case when this mapping is a diffeomorphism
is considered and several results concerning n-parameter families with this pro-
perty are obtained.

0. INTRODUCTION

Denote by C[«, 8] the linear space of all continuous real-valued
functions defined on the closed interval [o, B] of the real axis. Inwhat
follows an n-dimensional linear subspace L, of C[«, ] will be said to be
a Chebyshev space if only the zero element of L, has more then n — 1
distinet zeros in [«, B]. A set of n elements of ([«, 8] will be said to be
a Chebyshev system if it spans an n-dimensional Chebyshev subspace
of Cl, B1. |

The present paper is devoted to the study of n-parameter families.
This notion is the non-linear generalization of the Chebyshev spaces
and is defined as follows:

DEFINITION 1. A family F of functions in O[«, B] is said to be
an n-parameter family if for any distinet points @y,..., @, in [«, B] and
any real-values ¥,..., %, there exists a single function f in ' with the
property

fla)y=y,1t=1,...,n

, Investigations on the n-parameter families were made by T. Motzkin
[6], L. Tornheim [7], M. I. Morozov [4], E. Moldovan [2, 3] and others.
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As observed by G. Meinardus in his book [1], a great inconvenience in
the study of the n-parameter families is the small number of concrete
exemples (loc. cit., p. 142).

The aim of this paper is to propose a topological method in the study
of the n-parameter families which seems to be very efficient in revealing
a lot of new interesting properties.

We consider the n-parameter families to be n-dimensional topological
manifolds in the space C[a, 8] which is topologized with the uniform
norm. If such a manifold is differentiable and its tangent spaces are
Chebyshev spaces of dimension n, then the n-parameter family is said
1o be differentiable. We concentrate ourselfs upon two problems :

(i) To characterise the differentiable n-parameter families which
have in every point the same Chebyshev space as tangent space.

(ii) Given two Chebyshev spaces of dimension n, does then exist
a differentiable n-parameter family for which these spaces are tangent?

The second problem is only partially solved. In particular this
partial solution permits the construction of differentiable n-parameter
families which do not have the property (i) and yield examples for non-
linear n-parameter families.

1. THE NOTION OF DIFFERENTIAL n-PARAMETIER FAMILIES

We need for our purpose the following equivalent definition of the
n-parameter families :

DEFINITION 1’. Let F(z,a) be a real-valued continuous function
defined on [, B8] X R* where ze [«, ], acR", R” being the n-dimen-
sional real Euclidean space. The function F(x, a) generates an n-parameter
family if for any distinct points @, ...,®, in [«, 8] and any vector
b = (b, ..., 0" in R" there exists a single vector ¢ in R* such that

F(z,a)=Vb,i=1,...,n

Now prove the following

THEOREM 1. The function F(x, a) which is continuous on [«, B] X R”
generates am n-parameter family if and only if for any distinct points
@y ..., @, 9 [, B] the map b =@ (a) of R" in R" with coordinate
functions ‘

(1) W =F(z,a), i=1,...,n

is a homeomorphism onto.

The sufficience of condition of Theorem 1 is obvious.

The mnecessity. From the definition of the continuous function
F(x, a) which generates an n-parameter family it follows the one-to-ones
and the continuity of the mapping ®. To demonstrate that ®~! is also
continuous, it is sufficient to show that ® is an open map. Let G be an
open subset of R” and be® (G), i.e. b = ®(a), acG Denote by V
a bounded neighbourhood of a with the property that ¥V C G. From the
compacteness of V it follows that @|V is a homeomorphism. Applying
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the Brouwer theorem of invariance oi the domain it follows that
ut @ (V)T @ (@) and be® (V) and therefore b belongs

y) is open. B ( ( v _
o (@) together with the nelghbourhoodd) (V). Because b was arbitrary

u(l)cI)(G) it follows that this set is open, which completes the proof. )
DEFINITION 2. 1f for any distinet points @y, -+ s P in [« the
dinate functions (1) is also a diffeo-

ing @ of R” in R* with coor
hism (i.e. b is a h_omeomorphism and the partial derivatives of
a) with respect to @' are continuous functions and the Jacobian is
pverywhere different from zero), then the m-parameter family generated
py F(2, a) will be called differential n-parameter family (Dn).
Consider F(x, a) as & manifold in Ol«, p). I F(x, a) generates &

in any point acR" forms & Chebyshev

pnF, then its tangent space
space of dimension n, which will be denoted DY L, (@)-

9. UNISPATIAL DIFFERENTIAL n-PARAMETER FAMILIES

perzirion 3. I the DnF generated by F (x, a) has the property
that its tangent space L, (a) in any point acR" is the same Chebyshev
space L,, then it will be called unispatial DnF with the tangent space L,.

THEOREM 2. 4 function F (%, a) generates & unispatial DnF with
ihe tangent space L, if and only if the function T (x, @) may be represented

én the form

@ Fla,0) = 57 (@ ¢/@ + @

awhere @, t =1y M is a basis of the spaceé L,fhyi=1...," are the
coordinate functions of & diffeomorphfism of R” onto R" and () 15 an

element in Cla, B1.
The necessity. Suppose that the function F(x, a) generates & uni-
spatial DnF and show that it may be represented in the form (2).

The functions

M—, ’i:l_.. n
aa’ ’ ’

sorm a basis of the Space L,. Fix now the distinet points &y, « -y ¥ in
{«, p] and suppose that @y .- 1P is a basis of L, with the property

‘P¢(w1) = o, i .7 =1,...,N
Then we have
oF{x, a ki ]
3) ___,(__’.4._—2-—:2au(a)q;,(w),z:l,‘..,n.
da j=1

———————————————

1) This simple proof was suggested by M. Bognér.

8 — . 4032
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a, la)]] is 2 non-singular # X » matrix. Putting ¢ — @, in
a (3) v?e‘ obtain

M: 2, k=—-"1,...,%

a, (@) = oo

aaid then the formula (3) becomes

ij (x)7 ?::17 “ e ,%.4

By integration with respect to a' we obtain

F(x, a) = Y, F(,,a) ¢, (x) + x, (@, a'y ..., a""1 "L, .y "),
j=1

t=1,...,n.

From the above equalities it follows that all the functions x,, ¢ = 1,... f,
are equal with a function () depending only on @, which according to
the condition imposed on # (¢, @) must be continuous on [e, B]. Fi-
nally, the map with the coordinate functions F(w,, a)=f(a), j=1, .. TR
form a diffeomorphism of R” onto R” because F(z, a) is supposed to
generate a differential »-parameter family, which proves the necessity
part of the theorem. -

The sufficience. By representation (2) it follows that for fixed
T3 ..., &, in [o, B] the map with the coordinate functions b’ =Mz, a)
¢t =1,..., n is the composition of the map with coordinate functions
b'=/f (a),i=1,... n and the map with coordinate functiong bF —

=Y a o (x), i=1,... n, which are both diffeomorphisms onto, and
j=1

an z;:iditional constant vector (Y(x,), ... » 9(2,)), and therefore it is also
a diffeomorphism onto. Moreover, by (2) we have

oF(z, a " 0f (& ;

ie. -every tangent space I (a) is generated by oy, ..., ¢, and therefore
is identical with L , which completes the proof of sufficience.

n

3. PREPARATORY RESULT: AN INVERSE FUNCTION THEOREM
LOF GLOBAL CHARACYTER

In the proof of our inverse function theorem we will use the follow-
ing simple : : :

LEMMA. Let f(a) be a Junction with continuous and bounded partial
derivatives on the open, convex set D in R*. Then f(a) may be extended
by continuity to all the set D. _ S
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INVERSE FUNCIION THEOREM. Consider the map @ : R* — R* with
coordinate functions

(4) V=0 (a), i =1,...,m

which satisfy the conditions : ‘

1) The functions @' have continuous and bounded partial deriva-
tives on the whole space R”.

2) There ewists a positive S so that J(a) > 8 on all the R", where
J (a) is the Jacobian of the mapping @ in the point a.

Then ® is a diffeomorphism of R onto itself.

Proof. Let a,e R” and b, = ®(a,). Then from the classical in-
verse function theorem there exists a neighbourhood of @, which is mapped
diffeomorphically onto a neighbourhood of ,. Suppose that this second
neighbourhood is the open cube C(b,) with its centre in b,. The inverse
function ¥ of @ which is defined on C(b,) has coordinate functions ¥*
with partial derivatives expressed in the form (see for example [3]
pp. 462).

AV 1 Dl ., )

5 %: J(a) ml,...,ai‘l,b",ai“,...,a

—y 0, j=1,...,M

where o' = @ (a) — b, ¢ =1,...,n, and the vector a is that which
corresponds to b by diffeomorphism @. From the conditions of the theo-
rem it follows that the functions ¥ have continuous and bounded partial
derivatives in C(b,). But then from the lemma it follows that they may
be extended by continuity to the closed cube C(b,). If we put ¥ for o in
the equalities (4), they become identities on C(b,) and if we extend the
functions ' by continuity to C(b,), then from the continuity of the func-
tions @ it follows that (4) becomes an identity on all the set C(b), i.e.
the map ¥ so extended is an inverse of @ on C(by). This means that a
boundary point b of C(b,) satisfys (4) while a =¥ (b). Now, applying
the classical inverse function theorem to the neighbourhoods of the points
@ which are counter-images under @ of the boundary points of C(b,),
we observe that each a with this property has a neighbourhood which
may be diffeomorphically maped in a neighbourhood of b'= @ (a). These
neighbourhoods cover the boundary of C(b,) and because of compactness
of this boundary, from the covering may be extracted a finite covering,
and we conclude that there exists a cube 0,(b,) D C(b,) so that the func-
tions ¥* may be extended to Cy(b,) and the map ¥ with these coordinate
functions is a differentiable inverse of ®. Applying the above method
we may extend ¥ to Cy(by) D Cy(b,), and so on.The family of such cubes

- has 2 maximal element which cannot be bounded because any bounded
cube may be extended as above, and therefore this maximal element
must coincide with the space R".
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4. COMPOSABLE CHEBYSHEV SYSTEMS

DEFINITION 4. Let ¢,(a),. .., ¢,(¢) and ¢, (@),..., §,(x) be Cheby-
shev systems on [«, B]. They will be said to be composable if

(i) every sequence of n functions %, ..., v, Where n, is o, or ¢,
(generally depending on 4) form a Chebyshev system ;

(ii) the determinants

det [|n, (@) lli-1....n

are of the same sign independent of the manner of chosing ¢, or ¢, for v,
i=1,...,n Here #, ..., s, are distinct points in [a, B].

Ewxample 1. Let be ¢,(2), ..., ¢,—1(®) a Chebyshev system on [«, 8].
and let be ¢, and ¢ two concave (or convex) functions in the sense
of [2] with respect to this Chebyshev system. It is easy to see that the
Chebyshev systems y(®),..., ¢, (@), @, (2) and ¢x(®),. - -, @,_1(2), §, ()
are composable.

Example 2. Let oy ..., «, and B, ..., 8,betwo systems of real
numbers which satisfy
=0 <uo=p< ... <GL=Py

Then the Chebyshev systems e, ..., e and e®, ..., ¢"" are com-

posable. To show this let #y, ..., ®, be distinet points in [«, 3]. The
determinants

det [ li,j = 1,...,»

are of the same sign independently of the choice of y,, which is «, orpé,
i=1,...,n We prove the following particular case of this assertion :

sgn det || ™%l = sgn det| e
The general case may be proved similarly. Suppose the contrary :
sgn det || = — sgn det || &7i]].

Now letting 8, - «,, 2 =1,...,n monotonically, it follows that the
second determinant must vanish for some distinet g, ..., 8, which is in
contradiction with the fact that €=, ..., ef» form a Chebyshev system
for any distinet 8,,..., B,.

Qther examples for composable Chebyshev systems may be cons-
tructed according to M. A. Rutman’s results [6]. ~
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5. THE CONSTRUCTION OF A DIFFERENTIAL A-PARAMETER FAMILY WITH GIVEN
TANGENT SPACES

TeEoREM 3. If 0y(®@), - 1 @l®) and Yy(@), -+ 5 ba (@) are compo
sable Cheboyshefv systgm(splgn ’[oc, (3’], then there emst?s‘ a function F(w, a) which

generates a. DnF and has the property that

(5) M:q)i(m)andMs@i(ao),i:i,...,n.
da’ oa

(Here 0 and 1 stand for the zero vector, respective for the vector with

all the components 1.)
Proof. Construct the functions f(z, a'), ¢ =1,..., % in the following
mnanner :

4, (@) ! <0
fla, @) =3¢ g (Pi(w)+(1—a¢)q:i(m) 0<a <1 t=1,...,n
¢ (@) a =1

The functions f(x, o') have the following properties

(i) they are continuous functions of two variables;

(ii) for each a = (at, ..., a") they form a Chebyshev system.

The property (i) is obvious. For (i) we consider the distinet points
Byy ooy @, 0 [a, B Tet ¢ = (at,...,a") be a vector in R*. With a
reordering of the components (with respective reordering of the indices
of the Chebyshev systems) we may realized < 0i=1,...,m,0 <a' < 1,
i=m 4 1,..,p 0=l i=p+ L., We have then

det || f(a;y )l j=1. 0. » =
Py () - - - ,, (@) v(, a™tl) ... v(@y, 0F) @1 (@) @, (1)

Gy (@) - - - b, (22) V(@ a™) ... V(@ 7 (@) -9, (@)

« 8 @

Gol) o @u(@,) Y@y @) <. (@05 ) Ppar (Z) - P (.)

where .
v(@,0%) = e (@) + (1 — aF) @)y J=1y0y My k=m + 1,..., p.

If we decompose this determinant into the sum of determinants then
from the composability of the Chebyshev systems @y(&), « - 5 Pa (z) and
Yy (@), .- .5 4. (@) (the composability remains after a simultaneous reorder-
ing of the indices of the Chebyshev systems) and the positivity of the
numbers o and 1 —af, s =m +1,...,0, b follows immediately that
the above determinant is different from zero.
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Let now

n

F(z,0) =Y Sf(x, a)da'.

i=1

The function F(x, a) generates a DnF. Really, if 2,,..., », are distinet
points in [«, B] then the map @ : R* —~ R” with coordinate functions

b = @ (a) =F(z,0a), i =1,...,7 .

is a diffeomorphism of R” onto itself. This follows from the inverse func-
tion theorem. The condition 1.) of this theorem is obviously satisfied and
for condition 2) we have

inf |J(a)| = inf |det| fiz, a)jl = min [det]f(z, a)|| >5 >0
)

because the determinant is a continuous function on the closed cube
0<a'<1,i=1,...,n and attains on it its minimum, which cannot
be zero. From the continuity of the partial derivatives, J(a) must be
everywhere positive or negative and therefore all conditions of the inverse
function theorem are fulfilled.

Finally, we observe that the conditions (5) are satisfied and a simple
application of the Theorem 1 completes the proof of our theorem.
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