UNIVERZITET U BEOGRADU

PUBLIKACIJE

ELEKTROTEHNIČKOG FAKULTETA

SERIJA:

MATEMATIKA I FIZIKA

 $N_{2} 381 - N_{2} 409$ (1972)

BEOGRAD

№ 381 — № 409 (1972)

384. AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS*

Alexandru Lupaș1)

In this paper we denote by F one of the following functionals which are well-defined by the relations

$$F(f) := \frac{1}{b-a} \int_{a}^{b} f(x) \, dx, \quad F(f) := \frac{\int_{a}^{b} p(x) f(x) \, dx}{\int_{a}^{b} p(x) \, dx} \quad (a < b),$$

(1)
$$F(f) := \sum_{k=0}^{n} p_k f(w_k) \quad (w_k \in [a, b]; \ k = 0, 1, \dots, n),$$

where $p:[a,b] \to \mathbb{R}$ is a positive, integrable function on [a,b]. Likewise we suppose that $p_k \ge 0$ $(k=0,1,\ldots,n)$, $\sum_{k=0}^{n} p_k = 1$. Clearly, if F is in such a manner defined then F(1) = 1. Sometimes instead of F we write F_x in order to put in evidence the corresponding variable. For instance

$$F_x(f) = \frac{1}{b-a} \int_{-a}^{b} f(x) dx \text{ and } F_x(f(z)) = f(z).$$

Lemma. If $f, g: [a, b] \to \mathbb{R}$ are convex functions on the interval [a, b], then

(2)
$$F(fg)[F(e^2) - F(e)^2] - F(f)F(g)F(e^2)$$

$$\geq F(ef)F(eg) - [F(f)F(eg) + F(g)F(ef)] \cdot F(e)$$

where e(x) = x, $x \in [a, b]$. If f or g is a linear function then the equality holds in (2).

Proof. Let [x, y, z; f] be the divided difference of a certain function f. Under our conditions, for all distinct points x, y, z from [a, b]

$$[x, y, z; f] \cdot [x, y, z; g] \ge 0$$

^{*} Presented December 31, 1971 by D. S. MITRINOVIĆ.

¹⁾ This paper was partially supported by the Alexander von Humboldt Foundation,

² Publikacije Elektrotehničkog fakulteta

 $\int_{a}^{b} q(x) dx = 1$. The ordinary means of order r are the special cases of (2) obtained by setting all $q_k = \frac{1}{n}$. We note that if a is a constant sequence (f is a constant function) or if n = 1, then M(r) is a constant, and the middle term in (1) is not defined. For this reason we shall always assume that a is not a constant sequence (that f is not constant), and that $n \ge 2$. In this case it is well-known (see [2, 16–18], [3, 26–27] and [6, 74–76]) that M(r) is a continuous, strictly increasing function of r, and that $r \log M(r)$ is a strictly convex function of r. The left-hand inequality in (1) follows at once from the first of these results, and we shall now show that the strict convexity of $M(r^{-1})$ for r > 0 follows from the second. In what follows, we deal with (2), the proof for (3) being essentially identical.

In order to prove that $f(r) \equiv M(r^{-1})$ is strictly convex for r > 0, it suffices [3, 77] to show that f''(r) > 0 for r > 0, or since

$$f'(r) = -r^{-2}M'(r^{-1}), \qquad f''(r) = r^{-4}M''(r^{-1}) + 2r^{-3}M'(r^{-1}),$$

it suffices to prove that

(4)
$$g(y) = y^2 M''(y) + 2yM'(y) > 0$$
 for $y > 0$.

Now we have

(5)
$$M'(y) = y^{-1} \left\{ M^{1-y}(y) \sum_{k=1}^{n} q_k a_k^y \log a_k - M(y) \log M(y) \right\},$$

and so

(6)
$$M''(y) = -y^{-2} \left\{ M^{1-y} \sum_{1}^{n} q_{k} a_{k}^{y} \log a_{k} - M \log M \right\}$$

$$+ y^{-1} \left\{ (1-y) M^{-y} M' \sum_{1}^{n} q_{k} a_{k}^{y} \log a_{k} + M^{1-y} \sum_{1}^{n} q_{k} a_{k}^{y} (\log a_{k})^{2} - M' - M' \log M \right\}.$$

From (4)—(6) it follows that

(7)
$$g(y) = M \left\{ (\log M)^2 - 2 M^{-y} \log M \sum_{1}^{n} q_k a_k^{y} \log a_k + M^{-2y} \left(\sum_{1}^{n} q_k a_k^{y} \log a_k \right)^2 \right\}$$

$$+ y \left\{ M^{1-y} \log M \sum_{1}^{n} q_k a_k^{y} \log a_k - M^{1-2y} \left(\sum_{1}^{n} q_k a_k^{y} \log a_k \right)^2 + M^{1-y} \sum_{1}^{n} q_k a_k^{y} (\log a_k)^2 \right\}.$$

The first term of (7) is

$$M\left(\log M - M^{-y} \sum_{1}^{n} q_k \, a_k^{y} \log a_k\right)^2,$$

and so it suffices to prove that the second term of (7) is positive. To prove this we use the strict convexity of $h(y) \equiv y \log M(y)$ (see the suggested proof of this in [2, p. 18]), or rather the fact that

$$h''(y) = 2\frac{M'}{M} + y\frac{MM'' - M'^2}{M^2} > 0,$$

(8)
$$2MM' + yMM'' - yM'^2 > 0$$
 for all y.

Substituting from (5) and (6) into (8) we obtain finally

$$M^{2-y}\log M\sum_{1}^{n}q_{k}a_{k}^{y}\log a_{k}-M^{2-2y}\left(\sum_{1}^{n}q_{k}a_{k}^{y}\log a_{k}\right)+M^{2-y}\sum_{1}^{n}q_{k}a_{k}^{y}(\log a_{k})^{2}>0$$

for all y. It follows from this that the second term of (7) is positive for all y>0, completing the proof of (1).

We note in passing that, since $(yM(y))'' = yM'' + 2M' = y^{-1}(y^2M'' + 2yM')$, it follows that yM(y) is also strictly convex for y > 0. (This also follows from 3, TH. 119]).

The proof of the right hand inequality of (1) is now almost immediate since it is equivalent to

(9)
$$M(s) < \frac{r(t-s)}{s(t-r)} M(r) + \frac{t(s-r)}{s(t-r)} M(t), \quad 0 < r < s < t.$$

Setting $\lambda = t(s-r)/\{s(t-r)\}$, we have $0 < \lambda < 1$ for the s in question. Hence, setting r = 1/y, t = 1/x, $s = 1/\{\lambda x + (1-\lambda)y\}$, we see that (9) is equivalent to

$$(10) M\left(\frac{1}{\lambda x + (1-\lambda)y}\right) < \lambda M\left(\frac{1}{x}\right) + (1-\lambda)M\left(\frac{1}{y}\right), (0 < x < y, 0 < \lambda < 1),$$

and this follows from the strict convexity of $M(r^{-1})$ for r>0.

We also note that, using the strict convexity of yM(y) for y>0, one can prove that M satisfies the inequality

$$(t-r)M(rt/s)<(s-r)M(r)+(t-s)M(t)$$
 (0

or, setting $r = \alpha s$, the inequality

(11)
$$M(\alpha t) < \frac{(1-\alpha)s}{t-\alpha s} M(\alpha s) + \frac{t-s}{t-\alpha s} M(t) \qquad (0 < s < t, \quad 0 < \alpha < 1).$$

L. C. Hsu also asserted that the inequalities (1) were best possible. Using the continuity of M at r this is obvious for the left hand inequality of (1) if we let s approach r. We shall prove that both inequalities of (1) are best possible for arbitrary (fixed) r, s, t such that 0 < r < s < t. To prove this we first take $a_1 = a_2 = \cdots = a_{n-1} = \varepsilon > 0$, $a_n = a > 0$, and note that for each $n \ge 2$,

$$M(r) = \left\{ \varepsilon^r \sum_{1}^{n-1} q_k + q_n a^r \right\}^{1/r} \rightarrow q_n^{1/r} a \quad \text{as } \epsilon \rightarrow 0 + .$$

It follows that

(12)
$$\frac{M(t) - M(r)}{M(t) - M(s)} \to \frac{q_n^{1/t} - q_n^{1/r}}{q_n^{1/t} - q_n^{1/s}} = \frac{1 - y^{R-T}}{1 - y^{S-T}} = A(y) \quad \text{as} \quad \varepsilon \to 0 + ,$$