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384, AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS*
Alexandru Lupag?

In this paper we denote by F one of the following functionals which are
well-defined by the relations

f P (X) S (x) dx
F(f): =—— ff(x)dv, F(f):=25———— (a<b),
fp(X)dx
) F(f): =S nfw) (nElabl k=0,1,...,n),

k=0
where p:[a,b]— R is a positive, integrable function on [a,b]. Likewise we

suppose that p, =0 (k=0,1,..., n), Zpk—l Clearly, if F is in such a

manner defined then F(1)=1. Sometlmes instead of F we write F,, in order to
put in evidence the corresponding variable. For instance

/4
()= [f(dx and F(f@2) =/ (2)

Lemma. If f, g:[a, b] > R are convex functions on the interval [a, b), then
2 F(fg)[F(e)—F(ey’1-F(S)F(g) F(e?)
2 F(ef)F(eg)—[F(f)F(eg)+F(g) F(ef)]-F(e)

where e(x)=x, xE[a,b). If f or g is a linear furction then the equality holds
in (2).

Proof. Let [x,y,z;f] be the divided difference of a certain function f.
Under our conditions, for all distinct points x, v, z from [a, b}

X, »,2z; f}-[x. y. 2, 8120

* Presented December 31, 1971 by D. S. MITRINOVIE.
1) This paper was partially supported by the Alexand:r von Humboldt Foundation,
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[
[g(x)dx=1. The ordinary means of order r are the special cases of (2)

obtained by setting all qk=—1—. We note that if 4 is a constant sequence (fis
n :

a constant function) or if n=1, then M(r) is a constant, and the middle
term in (1) is not defined. For this reason we shall always assume that g is
not a constant sequence (that f is not constant), and that n=2. In this case
it is well-known (see [2, 16—18], [3, 26—27] and [6, 74—76]) that M (r) is
a continuous, strictly increasing function of r, and that rlog M (r) is a strictly
convex function of r. The left-hand inequality in (1) follows at once from
the first of these results, and we shall now show that the strict convexity of
M (r~*) for r>0 follows from the second. In what follows, we deal with (2),
the proof for (3) being essentially identical.

In. order to prove that f(r)=M(r~!) is strictly convex for r>0, it suffi-
ces [3, 77] to show that f"'(r)>0 for r>0, or since

S (D==r2M (Y, S/)=r M"Y +2r3M (r Y,
it suffices to prove that

4 gMN=y*M"(»)+2yM'(y)>0 for y>0.

Now we have

(5) M () =y~ [Ml—y ) S gualoga,— M(y) logM(y)},
k=1
and so
(6) M 0)= -y M1 5 g, 021080, Miog m)
1

+y~! [(1 - NM?M' Y ga2loga, + M=%y qea (loga, ) — M’ — M’ log M] .
1 1
From (4)—(6) it follows that

n n 2
7 eg=M [(log MY -2 M~ log M g, a?log ak+M‘2y(Z g, a log ak) }
1 1
n n 2
+}’{M“’ log M 3 g, alog a, — M1—2» (qu a/ log ak)
1 1

+ M-y >4 (log ak)z] .
1

The first term of (7) is

b

n 2
M(log M—M™54,a2log ‘"‘)
1
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and so it suffices to prove that the second term of (7) is positive. To prove
this we use the strict convexity of h(y)=ylog M (y) (see the suggested proof
of this in [2, p. 18]), or rather the fact that

M MM'—M'?

h" =2 MM =M -
=27 +r——

€3] 2MM +yMM" ~yM'?>0 for all y.

Substituting from (5) and (6) into (8) we obtain finally

>0,

M*-7log M 5 q, a2 log a, — M™% (Z q. a;? log ak) +M*7 Y g, a (loga,)*>0
1 1 1

for all y. It follows from this thac the second term of (7) is positive for all
y>0, completing the proof of (1).

We note in passing that, since (YM(»))' =yM" +2M' =y~ (y>* M" +2yM"),
it follows that yM (y) is also strictly convex for y>0. (This also follows from
3, TH. 119)]).

The proof of the right hand inequality of (1) is now almost immediate
since it is equivalent to

©) MEO< 2+ 55Dy, o<r<s<e.
s(t—r) s(t—r)

Setting A=t(s—r)/{s(t—r)}, we have O<i<1l for the s in question.
Hence, setting r=1/y, t=1[x, s=1/{Ax+(1—-2)y}, we see that (9) is equi-
valent to

(10) M(M)<)\M(§—)+(I—A)M(%), (O<x<y, 0<i<l),

and this follows from the strict conv'exity of M(r~1) for r>0.
We also note that, using the strict convexity of yM(y) for y>0, one
can prove that M satisfies the inequality

(E—~r)M(rt[s)<(s—r) M (r)+(t—s) M(¢) O<r<s<y),
or, setting r=as, the inequality

a)s

(11) M(at)< (0O<s<t, 0<a<l).

L. C. Hsu also asserted that the mequalities (1) were best possible. Using
the continuity of M at r this is obvious for the left hand inequality of (1)
if we let s approach r. We shall prove that both inequalities of (1) are best
possible for arbitrary (fixed) r, s, ¢ such that 0<r<s<t. To prove this we
first take a,=a,=:--=a,.,=¢>0, a,=a>0, and note that for each n=2,

n—1 1r
M(r)=[e’z qk+q,,a'} —q,'"a as e—>0+.
1

It follows that
M@©O-M@©) _ a,"—a," _
M@—M()  qM—gF 1—ps-T

—yR-T
i =A(y) as e—>0+,

(12)



