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384. AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS* 

Alexandru Lupaşl) 

In this paper we denote by F one of the following functionals which are 
well-defined by the relations 

b 
f P (*)/(*) dx 

f(x)dx, F (/):=-•_ (a<b), 
Jp(x)dx 
a 

(1) W ) = = 2 p * / K ) foeMl; ¿ = 0 , 1 , . . . , « ) , 
0 

where p: [a, b] R is a positive, integrable function on [a>b\. Likewise we 
n 

suppose that pk^0 (fc = 0,1,... , n), Clearly, if F is in such a 
*=o 

manner defined then jF(1)= 1. Sometimes instead of F we write Fx in order to 
put in evidence the corresponding variable. For instance 

6 

F x { f ) - - ^ { f M d x and F, ( / ( * ) ) - / ( z ) . 
b—a J 

Lemma. I f f are convex functions on the interval [a, b]t then 

(2) F (fg) [F{*) - F (e)2] - W ) F (g) F (*) 

^ F(ef)F(eg) - [ F ( f ) F(eg) + F(g) F(ef)]. 

w/iere = b\. If f or g is a linear function then the equality holds 
in (2). 

Proof. Let [x,y, z ; f ] be the divided difference of a certain function /. 
Under our conditions, for all distinct points x, y, z from [a, b] 

[x,y,z;/]•[*>y, z\ 

* Presented December 31, 1971 by D. S. Mttrinovió. 
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b 
¡q{x)dx= 1. The ordinary means of order r are the special cases of (2) 
a 
obtained by setting all & = —. We note that if a is a constant sequence (/is 

n 
a constant function) or if « =1 , then M(r) is a constant, and the middle 
term in (1) is not defined. For this reason we shall always assume that a is 
not a constant sequence (that / is not constant), and that n ̂  2. In this case 
it is well-known (see [2, 16—18], [3, 26—27] and [6, 74—76]) that M(r) is 
a continuous, strictly increasing function ofr , and that r log M (r) is a strictly 
convex function of r. The left-hand inequality in (1) follows at once from 
the first of these results, and we shall now show that the strict convexity of 
M (r~l) for r>0 follows from the second. In what follows, we deal with (2), 
the proof for (3) being essentially identical. 

In order to prove that f(r)=M{r~l) is strictly convex for r>0 , it suffi-
ces [3, 77] to show that/"(/•)>0 for r>0, or since 

/ ' ( r ) = _ r-2 M ' ( O , / " (r) = r~4 M " {r~l) + 2 /-3 M' (r"1), 

it suffices to prove that 

(4) g(;>)=y2M"(y) + 2yM'(;>)>0 for y>0. 

Now we have 

(5) M'(y)=y-i Jm'- 'OO | qkaky\ogak-M{y)\ogM(y)^, 

and so 

(6) M"0>)= qk aky log ak - Mlog m| 

+ y~l J(1 -y) M-y M' | qk a^log ak + M ^ qk af (log aky -M'-M' log A i j . 

From (4)—(6) it follows that 

(7) g{y) = M j(log Mf - 2 M-y Iog M p k a/log ak + M~*yqk af log ^ J 

+ y[Ml-y log Mpk a^y log ak — Ml~ly (^qk a/ log akJ 

+ Mi-ypkaky (log ak?y 

The first term of (7) is 

M|log M — M~y 2 qk aky log a^j , 
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and so it suffices to prove that the second term of (7) is positive. To prove 
this we use the strict convexity of h (y)=y log M(y) (see the suggested proof 
of this in [2, p. 18]), or rather the fact that 

h " ( y ) = 2^+yMM"-M'2>0, 
7 M M1 

(8) 2MM'+yMM"-yM'2>0 for all y. 

Substituting from (5) and (6) into (8) we obtain finally 

M2~y log M a/log ak — M2~2y {^qk ak*log a^j + M2^ ( loga k ) 2 >0 

for all y. It follows from this thac the second term of (7) is positive for all 
j>>0, completing the proof of (1). 

We note in passing that, since (yM{y))" = yM" + 2M'=y-x{y2 M" + 2yM'), 
it follows that yM(y) is also strictly convex for .y>0. (This also follows from 
3, TH. 119]). 

The proof of the right hand inequality of (1) is now almost immediate 
since it is equivalent to 

(9) M t i X ^ M W + ^ I W , 0 <r<s<t. 
s(t-r) * ( / - r ) 

Setting X = t (s - r)/{s (t - r)}, we have 0<X<1 for the s in question. 
Hence, setting r=\/y, t=\/x9 s= \/{kx + (i -X)j>}, we see that (9) is equi-
valent to 

(10) M( ^ < x m ( - W ( 1 - X ) m / - M , (0 <x<y9 0< X<1 ) , 
VXa:-h(1— \)y) \x J \y/ 

and this follows from the strict convexity of M(r~l) for r>0. 
We also note that, using the strict convexity of yM(y) for y>0y one 

can prove that M satisfies the inequality 

(t~r)M(rt/s)<(s-r)M(r) + (t-s)M(t) (0 <r<s<t), 

or, setting r = a.s, the inequality 

(11) M ( a r ) < ( 1 " " a ) 5 M(oLs) + l ^ - M ( t ) (0<^</, 0 < a < l ) . 
/—as /-aj 

L. C. Hsu also asserted that the inequalities (1) were best possible. Using 
the continuity of M at r this is obvious for the left hand inequality of (1) 
if we let s approach r. We shall prove that both inequalities of (1) are best 
possible for arbitrary (fixed) r, s, t such that 0 < r < s < t . To prove this we 
first take . • . = < ^ = £>0, an = a>0, and note that for each n^2, 

= | q k + qnarJ lr-+qnllra as + . 

It follows that 


