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DISCONJUGACY OF AN EQUATION BY THE DISCONJUGACY
OF ITS EQUATIONS IN VARIATION

A. B. Németh, Cluj
0. Definitions and notations

Denote by C”[0,1] the linear normed space of all real valued
functions which have continuous derivatives of order » on the
interval [0,1] (in the points 0 and 1 the one-sided derivatives are
considered). In the case v = 0 we use the notation C [0, 1]. The norm
in the space C*[0, 1] is introduced by the equality

gl = max =X |gi()]. )]
t< [0,1] =0

The space C¥ [0, 1] endowed with the norm (1) becomes a separable

Banach space. In what follows we will also consider the direct

product space

Cpr=0C[0,1] X ... X C¥[0,1] (2)
(n copies), in which the norm of the element h = (hy,..., hy) is
defined by
n
Il = 2 [[Ri.- @®)
j=

The direct product space (2) endowed with the norm (3) is also a
separable Banach space.

DEFINITION 1. The n-dimensional subspace L;, of the space
Cn [0, 1] is said to be an unrestricted Chebyshev space (abbreviated
UCSp), if every nonzero element of L, has at most n—1 zeros in
[0, 11, counting multiplicities. A basis in a UCSp is said to be an un-
restricted Chebyshev system (abbreviated, UCS).

Consider the nth order differential equation
y(n) = f(t7 Y, y’ PR y(n—.l)) . (4)

In the whole paper we will suppose that the following two condit-
ions are satisfied:

(H1) f is defined, continuous and has continuous partial deri-
vatives with respect to its last m variables on the direct product
{0, 1] X R», where R” is the real n-dimensional Euclidean space.

(H2) All the solutions of (4) exist throughout on [0, 1].
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According to these conditions on (4), for any vector ¢ =
={al,...,a" in R”, the Cauchy-type conditions

Y= (0) = o, j=1,...,n (5)

solution depends continuously on the barameters o’ and has con-
tinuous partial derivatives with respect to the parameters @ =
=1,...,n The solution of 4) satisfying the initial value conditiong
(5) will be denoted by Y (t,al,..., @") =Y (t,a). Then Y is a funct-
ion defined and continuous on the direct product [0,1] X R* ang
has partial derivatives with respect to @, § — 1,...,n, which are
continuous on this direct broduct. We wil] denote in what follows
by Y the. partial derivative of order jof Y, j= 1,...,n with

respect to t. The partial derivativeg M, Li=1,...,n
at
also exist and are continuous on [0,1] X R~ (Theorem 18 in [13]).

Substituting Y in (4) we obtain an identity, which by derivation
with respect to af furnish the relation

—1
YW O 9 avi) ©
dai Z oyl  dai
=0
For a fixed barameter a, the linear differential equation
n—~1 '
x® — Z Sf(t, Y (¢, a), Y (¢, a) 10, Y1) (2, @) 20 0
dyh
=0

will be said to form the equation in variation of (4) in the point a.
Because we have
Y (-1 (0, o)
dai
where J7 is the symbol of Kronecker, and because of (6), it follows
that the set of functions
oY (t, a)
Bai '’
for a fixed, form a fundamental system of solutions of the equation
in variation (7} in the point q.
We will say that the set of numbers my, b, ki i=1,...,m
satisfies the condition (D), if

m,kiéN, tié[o,l], i=1,...,m,

= ¢, Li=1,...,n, 8)

mn
l=smga, 2ki=n, ikt  iskj,
i=1

where N denotes the natural numbers.
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DEFINITION 2. (i) The differential equation (4) is said to be
disconjugate if for eny set of numbers m, t;, k; satisfying the con-
dition (I), and for any given real numbers y;), §=10,1,...,k;—1,
i=1,...,m, there exists a single solution y of (4) satisfying the
many point boundary vaelue conditions

YD () =y, j=0,1,... ,ki—1,i=1,...,m. 9)

(iY) The differential equation (4) is said to be strongly dis-
conjugate if it is disconjugate and if its equations in variation are
all disconjugate.

(iii) The differential equation (4) is said to be weakly dis-
conjugate, if all its equations in variation are disconjugate.

We observe that for the case of linear differential equations
these three notions: the notion of disconjugacy; the notions of
strong and of the weak disconjugacy, coincide. In this particular
case the condition that the differential equation be disconjugate
is equivalent with the condition that a fundamental system of so-
lutions of the respective linear differential equation forms on UCS,
or equivalently, that the space of solutions of this differential
equation forms an UCSp (see Definition 1).

Consider now the linear differential equation

fo—1
™ = 3 py_j(t) x?, (10)
=0
where p;, i=1,...,n are elements of C[0,1]. In the set of all

linear differential equations of the form (10) we introduce a topo-
logy by identification of (10) with the element (py,...,Dps) in the
product space Cx0. If we denote after this identification by M the
set of all disconjugate differential equations, then M is open and
contractible (see Proposition 9 Chapt. 3 in [2] and respectively [9]).

Applying this notation, the notion of weak disconjugacy may
be formulated as follows: The differential equation (4) is weakly
disconjugate if the set P (f) of all its equations in variation is
contained in .

The present paper aims to give an independent exposition of
the problems concerning strong disconjugacy of nonlinear diffe-
rential equations. Some results (as that of A. Lasota and Z. Opial
[5] and [6], and those in our paper [11]) are reconsidered for this
special case of disconjugacy. The principal result of our paper is
contained in Theorem 6, which establishes a sufficient condition in
order to a weakly disconjugate differential equation be strongly
disconjugate. In the proof a special topological technique .is used
which has its origin in our note [8].



239 A. B. Németh

1. Related linear differential equations

Parallel with the equations in variation of (4) we will consider
some related differential equations, which are also linear, and which
will be used in some strong disconjugacy criterions. We will con-
sider the inhomogeneous linear differential equation of the form

n—1

., 1 .
r® — Z af (t: vv,. ..- ) y(" )) 20 + R(t, v, y; yeen, y(”*l)), (11)
dy)

=0
where y < C*—1[0,1], and the function R is given by
R(t, 0wy ,... , y(n—l)) — f(t’ nY, ..., y(n—-l))__

n—1
- Z Aty v ARRE y(n—1) y(i) . (12)
dy
i=0

From the condition (H1) about f it follows that R is continuous.

Let y; and y2 be elements of Cr—1 [0,1] and consider the linear
differential equation

dix().

n—1 1 - S
( z(r’?f(t,lyﬁ A=y, ..,y "V a—pyy D,
x(®) — 1 2

dy(d

j=0\0

(13)

In this paragraph we will present a result of A. Lasota and
Z. Opial ([5] and [6]) which in a particular form was obtained
independently by G. A. Bessmertnyh and Yu. A. Levin ({1]), and
which establishes relations between the disconjugacy properties of
the differential equations (11) and (13) and the disconjugacy pro-
perties of (4). Because of the conditions (H1) and (H2) this result
may be formulated in the following form:

THEOREM 1. Suppose that the differential equation (4) has the
properties (H1) and (H2).

(A) If

(1) all the differential equations (11) with y in C1[0,1] are
disconjugate;

(&) for any given m, t; k; satisfying (I) the solutions of all the
differential equations of form (11) which satisfy the many point
boundary value conditions (9) with any given real numbers v,
form a bounded set in the space C" [0, 1]; then any many point boun-
dary value problem (I), (9) for (4) has at least a solution.

(B) If in addition

(iét) each linear differential equation of form (13) with vy, and

Yz solutions of (4) is disconjugate, then the differential equation (4)
is strongly disconjugate.
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Proof. (A) Let us consider the many point boundary value pro-
blem (9). Denote by M the subset of C7—1[0, 1] of the elements which
satisfy the condition (9). The set M is obviously convex and com-
plete. We define a mapping T of M into itself in the following way:
Suppose that y is an element of M. Consider the differential equation
(11). According the condition (i) of the theorem this differential
equation is disconjugate. Let x = Ty be the solution of (11) which
satisfies the boundary value conditions (9). By the condition (i) of
the theorem, the set T (M) is bounded in C7[0,1] and therefore it
is (relatively) compact in the space C*1[0,1]. We will now prove
the continuity of the mapping T. Let {y,} ", be a sequence in
M converging to the element yp and let be x, = Ty,, v=0,1,... .
The set of vectors {(x,(0),x,” (0),...,ncv<”’“1) (0)}>2, is bounded
in R* and therefore it is compact. Suppose that this set has a limit
point, say (£ &,..., &1y which is different from (xo(0), zy" (0),...

X (()”"1) (0)), and suppose that {x,};  is a subsequence of

{=,};._, with the property that
xy(?.) 0)— &0, asi—o00,§j=0,1,...,n—1.
3

Let be x the solution of (11) with y = yo, which satisfies the initial
value conditions

() =&, j=01,...,n—1

According to the continuity of the functions 5o =0 1,...,
y(
n-—1 and R, it follows that ‘
F vty sV V) UL W Yy )

EI0) - 3yl

and
’ -~ , e

R(t’yi’byyi;‘--yyv(: ))éR(t’yO’yO )'Hvyén 1))

uniformly in [0,1] as i— oco. Therefore x,,,‘->§ in the metric of
C?[0, 1], as i— co. But this means that z satisfies (9) and because
o %Sc, it follows that the differential equation (11) with ¥ = yo
has two distinct solutions, xq and x, both satisfying (9), which con-
tradicts the condition (i) of the theorem. From this contradiction
it follows that the sequence {(z,(0),x,(0),..., xj"_l) (0))}:‘1__1 tends
to the point (x (0), o (0),.. .,xo(""l) (0)), and therefore x, tends to
xp as ¥— oo in the norm of the space C7?[0,1]. This proves the
continuity of T.
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Because M is convex, T continuous and T (M) compact, from
the Schauder’s fixed point theorem it follows that T has a fixed
point, i. e, there exists a point ¥ in M such that Ty =y. According
to the definition of the operator T, y is a solution of the many point
boundary value problem (4), (9).

(B) Suppose now that Y1 and Yy are two solutions of the many
point boundary value problem (4), (9). Then we have

, —1 , o
v~y = £ty v W) =T v, Y 2

1
, d a
zf(—(—ﬁf(t,/lw+(1-/1)y2,---,/1y1(n—1)+(l_l)yén Y)) ai=
0

-1 1 = —

_ f S5ty + 1Dy, 1" 1>+(1_My2‘” R

- § di
= \4 dyh)

W —y? ).
Because y = Y1— Y2 is a solution of (13) satisfying homogeneous
many point boundary value conditions, from the condition (¢ii) of the
theorem it follows that Y1 =Yg, i. e, the differential equation (4)
is disconjugate. To prove that it is also strongly disconjugate we
observe that from the condition (i) it follows that all the equations
in variation of (4) are disconjugate.

THEOREM 1'. [6] Suppose that the function f satisfies on
[0,1] X R~ the inequality

n—1
G0y, g S K+ 2 Pty
i=0

where K is a real number, K >0, and Pit) 20, t<[0,1], i=
= 1,..., N are continuous functions. If there exists a positive ¢ such
that each linear differential equation of the form (10) with the
coefficients p; (t) satisfying the inequalities

OIS Pi)+e, t<[0,1], i=1,... n,
is disconjugate, then any many point boundary value problem for
(4) has at least a solution. If in addition holds
. —1
AVt D | b, =0 1net, g
dyh
then (4) is strongly disconjugate.

In the original version of the theorem of A. Lasota and Z. Opial,
f is supposed to be only continuous and the condition (14) is given
in the form of a Lipschitz condition. The proof constitutes the veri-
fication of the conditions in Theorem 1
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Concrete examples for the functions P;(t) with the property
in Theorem 1’ are furnished by various de la Vallée Poussin type
theorems (see in the same paper [6]).

2. Unrestricted differential n-parameter families

Suppose that the differential equation (4) is strongly disconju-
gate and denote by Y (t, a) the integral variety of this differential
equation which is parametrized by the initial value conditions (5).
Then the integral variety Y (t,a) is an unrestricted differential n-
parameter family in the sense of [10], which is defined as follows:

DEFINITION 3. Let Y (t,a) be a function having continuous

partial derivatives of the form % aa. Y(ta), j=0,1,...,n, i=
i  dai
=1,...,n on the direct product space [0,1] X R* Y (t,a) is said

to form an unrestricted differential n-parameter family (abbreviated
UDnF), if for any system of numbers m, t;, k; satisfying the condition
(1), there exists a single point a in R” such that

Y(])(tl’a)zylj, i;‘l,...,m,j=0,1,...,ki-———1,
where Yy are any given real numbers and Y7 denotes the j*t partial
derivative of Y with respect to t, and if in addition, the partial

8Y. ,i=1,...,n form an UCS (see Definition 1), for
at

derivatives

any a in R

The notion of the UDnF’s is closely related to the strong dis-
conjugacy. This relation is given by the following theorem (see
also [11}).

THEOREM 2. The function Y (t,a) forms an UDnF if and only
if it is an integral variety of a strongly disconjugate differential
equation of the form (4).

In the proof of this theorem we will use the following result,
which will be important also in our technique developed later:

THEOREM 3. The function Y (t, @) with continuous partial de-
rivatives of form ~aa—~ YD(a), i=1,...,n j=0,1,...,n on

at

[0, 1] X B®, forms an UDnF if and only if for any system of numbers
m, ti, k; satisfying the condition (I) the mapping @ with the coordi-
nate functions

Qhte AR = YO (8, ),
15
i=1,...,m, j=0,1,...,ki—1 (15)

is a diffeomorphism of R” onto itself.
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Proof. From the definition of the UDnF-s it follows that the
mapping @ defined above is onto and one-to-one. The Jacobian of
the mapping @ in the point a €R” is of the form

7 (@) = det H Y () (t;, a) {
dal |
i=1,...,m; j=01,....,.ki—1;1=1,...,n

and it is different from zero because the system of functions
%, i=1,...,n forms an UCS. Therefore @ is an immersion
which is one-to-one and onto, and therefore it is a diffeomorphism
onto.

Conversely, if @ is a diffeomorphism of B* onto itself for any
system of numbers m, t;, k; satisfying (I), then all the conditions
of the Definition 3 are satisfied and it follows that Y (t,a) forms
a UDnF. This completes the proof.

Proof of Theorem 2. If Y (t, a) is an integral variety of a strongly
disconjugate differential equation of form (4), then it has partial

derivatives of the form 58_ Y@ (t,a), j=01,...,mn, i=1,...,n
ai
which are continuous on the direct product [0, 1] X R» (Theorem 18,
[13]). The functions g—Y , #=1,...,n form a fundamental system
at

of solutions of the equation in variation of (4) in the point a, and
therefore they form a UCS. This means that the integral variety
Y (t,a) forms a UDnF, which proves the sufficiency part of our
theorem.

To prove the necessity we begin with the following

LEMMA. Suppose that

(i) @ :[0,1] X R*— R” is a continuous mapping;

(i) all the partial derivatives of the coordinate functions of @
with respect to its last n wvariables are continuous on [0, 1] X R~

(i) for any fixed to in [0, 1] the mapping

a-> @ (t, a)

is a diffeomorphism of R” onto itself.

Then the relation
@ (t? a) =Db

determines an implicit function
a=wy(tb),

which maps the set [0, 1] X R” onto R” and has the properties (i), (ii)
and ().
Proof. Denote by y the mapping defined by

1> (teEa).
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Then x will be a homeomorphism of [0,1] X R* onto itself. Really,
the mapping y is one-to-one according to the condition (iii) of the
femma. It is also continuous by (i). To prove the continuity of ¥,
we will prove in fact that x is an open mapping. Let U be an open
set in [0,1] X B» and let be (to, ap) a point in U. Then (to, ap) has
a neighbourhood Uy of the form Us =V X W, which is contained in
U and has the property that V is open in [0, 1] and W is open in R”.
We have
2(U0) =V X (V,W)

The set ¢ (V, W) is open. Really, we have

eV, W)= U o(tW)
t<vV

and the openess follows from the condition (iii). This proves that z
is an open mapping and completes the proof of the continuity of y—.

Denote by
4 (t7 b) = prz° X—l (t’ b) ’

where prz denotes the projection onto R? in the direct product
[0,1] X R®. Then we have

@ (t,p(t,b) =@t preo (1, ).
But y—1(t, b) = (t, @), where b = @(t, ¢) and therefore
@ (ty Yy (t: b)) =@ (t’ a) =b ) (16)

that is, w(t,b) is the required implicit function. The condition (i)
for w(t,b) is obviously fulfilled. To prove (it) and (iit) denote by
@={(p,...,p") and y = (y!,...,y") and let be

Wi(t:a:b)=‘€0i(t,a)—~bi, 'L=1,,n

Applying these notations, from the implicit function theorem we
have for a fixed t

- ’

obi | b J{@) Dfal,...,a1,biai+l,. .. a")

M 1 D@, ..., 7™ (1N

L,j=1,...,m,
where J (a) is the Jacobian of the mapping
a—> @t a)

and the second expression on the right hand side of (17) denotes the
Jacobian of the mapping # = (7!, ..., %") with respect to at,..., a1,
bl at,...,a" But v is continuous with respect to t and b and the-
refore if we put a =y (t,b) in the above formula, we obtain the
partial derivatives of y! as functions of t and b. Because all the
functions on the right hand side of (17) are continuous and
J (y (t, b)) = 0, the continuity on [0, 1] X R» of the partial derivatives
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of the coordinate functions of ¢ with the respect to the last n va-
riables, follows. This proves the condition (ii) for .

Let now ty be fixed in [0, 1]. From the condition (iii) and from
(16) it follows that the mapping

b— w(tor b)

is a diffeomorphic mapping of R” onto itself. This proves the con-
dition (iii) for v, and completes the proof of the lemma.

We prove now the necessity of the condition of Theorem 2.
Let be t fixed for a moment and introduce the notations

YO (t,a) =y, j=01,...,n—1 (18)
and
Y@ (t,a) = y® . (19)

I¥f (v,v,...,y"» V) is considered to be a point in R?, then the
equalities (18) determine a mapping of R” into itself, which by
Theorem 3 is a diffeomorphism onto. According to the lemma, there
exists a continuous function g :[0,1] X R*— R? which for a fixed
t will be the inverse of the mapping defined by (18). That is, we
may write

a=9@tyYy,. .., y*"b),

where g is continuous, has partial derivatives with respect to its
last » variables which are also continuous on [0, 1] X B* and for
any fixed t it is a diffeomorphism of R” onto itself. By substitution
in (19) we get

ym =Y (9t y, Y, ...,y ) =

=f(t7y,y',---,y(”"1))-

But for a fixed a, the values 4,%’, ..., Y™ may be interpreted as the
consecutive derivatives of a function of t, and therefore (20) is a
differential equation. According to the differentiability of Y® and
g with respect to ¢, it follows that f in (20) has partial derivatives
with respect to ¥y, j=0,1,...,n—1, which are continuous on
[0, 1] X R”. From the construction it follows also that Y (¢, a) serves
as integral variety for the differential equation (20). But this means
that (20) is a strongly disconjugate differential equation, and the
proof of Theorem 2 is completed.

20

3. Criterions for strong disconjugacy

THEOREM 4. Suppose that (4) satisfies (H1) and (H2) and that
it is weakly disconjugate. Then (4) is also strongly disconjugate
if and only if for any m, t;, k; satisfying (1), for any sequence of
parameters {a,} such that | a,|— oo, if »— oo, it holds | D (a,) |~
— 0o for v— oo, where

D = (PL,..., ")
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and
0057 Tl o b o YW (ti, . ) ;
) ) (21)
i=1,...,m,3§=0,1,...,ki—1,
Y (t, a) being the integral variety of (4) defined by the initial value
conditions (5). :

Proof. Because of the weak disconjugacy of (4), it follows that
the mapping @ with the coordinate functions (21) is an immersion
of R into itself. By a result of R. S. Palais (Corollary 4.1 in [12]),
it follows that @ will be a diffeomorphism onto, if and only if the
condition in the theorem is fulfilled. Applying now Theorem 3 the
assertion follows.

- THEOREM 5. Any differential equation (4) with the property
(H1) and with § satisfying the condition

Ft, v,y ..., yr—1) <K j=01

..,n—1
Ay

which is weakly disconjugate and for which any many point
boundary value problem has at most a solution, is also strongly
disconjugate.

Proof. The assertion follows from the theorems I1.1.1 and I1.1.2
of Ph. Hartman [4] and Theorem 1” of A. Lasota and Z. Opial, given
above.

Let us denote

e R I TR U

the tensor product of n copies of the space C»—1[0, 1] endowed with
projective topology (i. e., with the strongest topology on the tensorial

product TZ“I in which the canonical n-linear mapping (x1,-..,Zn) =
R, R, is continuous). Denote the canonical projection of
Cz—l onto TZ_I by .

Suppose that the system of numbers m, t; ki, i =.1,...,m has
the property (I). We define the n-linear mapping J (m, t;, ki) of C:n1L
in R in the following way: If (x1,...,%s) is an element in the space
Cz—l, we put

J(m, ti, k) x =

_ det || @it . .. ;clfk‘_” ]

g

where the determinant in the right hand side is represented by
the it row. Denote by J* (m,t; ki) the linear functionsl defined on

“1 - i s:
the space TZ , which occurs in the factorization

J (m1 ti kl) = J* (m7 ty, k?) 7.
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—1
Let be 2 the set in T: with the property that for any x in £,
J¥(m, t, k) x==0 for any m,t,k; having the property (I).

If we denote by i the inclusion mapping of C,* in C:_1 then
it is obvious that £ contains the images under m.% of all the n-tuples
(x1,...,xs) in Cp* for which the functions x1,...,%, form an UCS
(Definition 1), and conversely, if some x = (x1,..., %) in Cp* is
mapped by z#°i in 2, then x1,...,x, form an UCS.

We define now the mapping ¢ :Cp?— Cy* as follows: If p=
={p1,...,Pn) is an element of C;% then let be x = (1,...,%n) =
= @ (p) the element of C,* for which x1,...,%, is the fundamental
system of solutions of the differential equation (10) (having the
functions p1,Pz,...,D0n as coefficients), which satisfy the initial
value conditions

(i—1)
i

) =6i, ij=1,...,n. 22)

The mapping ¢ so defined is an imbedding of C,? into Cy"

Applying the introduced motations we have the following
theorem: ‘

THEOREM 6. Suppose that the differential equation (4) satis-
fying (H1) and (H2) has the property that the weak closure of the

—1
set moie@(@(f) in T, , where M(f) denotes the set in Cx? of all
the equations in variation of (4), is weakly compact and is contained
in Q2. Then (4) is strongly disconjugate.

We observe that (4) is weakly disconjugate. Really, from the
conditions of the theorem it follows that each equation in variation
of (4) has a fundamental system of solutions which is mapped by
7mei in £, i. e., according to the above observation it is an UCS,
and therefore the respective equation in variation is disconjugate.
Thus Theorem 6 gives a sufficient condition in order to a weakly
disconjugate differential equation be strongly disconjugate.

Proof. Suppose that Y (t,a) is the integral variety of (4) para-
metrized by the initial value conditions of type (5). Then for the

functions %Z—, i=1,...,n are satisfied the initial value conditions
at
(8), and from the definition of the mapping ¢ of C0 into C,* given

above, we have for a given value of the parameter a the equality
(af tY,Y,..., Y1) 3, Y, Y’,...,Y(n—l)))_

gy

dyln—1) dy }

- (-aft’— aY-). 23)
2al dan
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Denote by 4 the weak closure of @i (DE(f)) in TZ—I . Because
Ac @, from the definition of € it follows that for any m, t; ki
satisfying the condition (I), and for each element x in 4 we have

J* (m> 1, ki) x :7(: 0,
and because 4 is weakly compact and J*(m, t;, ki) is a continuous

. n—1 . crs
Jinear functional on Tn , there exist positive numbers & and A

such that
A> |J*(m,t,~, ki)(A)|>s.

This means that we have also
A>T (m, ty k) emoio (M) >e. (24)

Consider a given element of 700 (M (f)). It may be written accord-
ing (23) in the form

noi(aY . iY'—), (25)

? A
Jdal dar

for a fixed value of the parameter a. Applying mnow to (25)
the linear functional J*(m,t;,k:) and employing the factorization
J(m, ti, ki) = J*(m, t, k) o7, we have the equality

JE(m, ti, kYoot (-ai yeens oY ) -
dal dan
= J(m, ti, ki)oi (ﬁ’— o aY) -
dat dan
- det ’ Y (t1, @) Y (k1) (t1, @) Y (tm, @) Y (E,—1) (tp, @) ;
dai dai U dw dai |’

But this is the Jacobian of the mapping @ defined by (15) in Theorem
3. From (24) it follows that

A>T (m, b, k) tep ()| >, (26)

i e, the Jacobian of the mapping @ is everywhere different from
zero and satisfies the inequality similar to (26). An immersion of B»
into itself having the property that its Jacobian is in each point of
R” between two given numbers of the same sign, is in fact diffeo-
morphism onto (see [8] and [14]). It follows then that for any m, t;, k;
satisfying (I), the mapping @ is a diffeomorphism of R" onto itself.
According Theorem 3, Y (t, a) is then an UDnF which combined with
Theorem 2 gives the assertion of our theorem.

Theorem 6 is a disconjugacy criterion formulated in the most
general conditions which permit the employing of the theorems 2
and 3 and the above cited condition about an immersion of R” into
itself; in order to be a diffeomorphism onto, and uses standard not-
ions of the functional analysis. It may be expected that using cha-
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racterizations of the diffeomorphisms of R» onto itself as those
given by R. S. Palais [12], Corollary 4.3 or I Vidav [14], other

a corollary of this theorem, in which the conditions are given
directly on the set I¢ (f) of all the equations in variation of (4).

COROLLARY 1. ([11], Theorem 5) Suppose that the differential
equation (4) with the broperties (H1).and (H2) has the property that
the set M (f), where M (f) denotes the set of all the equations in
variation of (4), is compact and is contained in M, the set of all
linear disconjugated differential equations of form (10). Then 4) is
strongly disconjugated.

We remind (see the paragraph 0) that the set ¢ of all dis-
conjugate differential equations (10) is considered to be topologized
by the identification of the differential equation (10) with the
n~tuple (py,...,p,) of its coefficients in C,).

Proof. Because the mappings g, i and « are all continuous, the
Set oio (M (f)) will be compact. It will be contained in 0 because
MF) =M and 7oio@ (M) = .0, and such the Theorem 6 may be
applied.

4. Remarks

Theorem 6 has merely a theoretical meaning. Because of its
character: the establishing of a connection between the disconjugacy

(C) Consider the linear differential equation (10) and denote by
A1 (t0), A2 (k) , ..., dn (to) the roots of the characteristic algebraic
equation of the differential equation with the constant coefficients
Di(t),i=1,... n If for any t in [0, 1] these roots are reql numbers
and there exist numbers M1s.-vo, tin-1 Such that

/h(t)émglz(t)éueé---ém-1__<.ln(t), @7
for any t in [0, 1], then the differential equation (10) is disconjugate.
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Corollary 1 contains a strong restriction about the differential
equation (4). But even in this case it may be used to derive the
unicity of the solution of a many point boundary value problem for
some differential equations of particular form. Such we have
following result:

COROLLARY 2. Let the differential equation (4) be given and
suppose that .

(i) § is bounded function;

(i) the partial derivatives ay]:n ,j=0,1,...,n—1 are boun-
ded functions;

(#id) azi]_) ,j=0,1,...,n—1 are uniformly continwous funct-
10NnS;

(iv) each equation in variation of (4) has o property of the
type (C) given above.

Then the differential equation (4) is strongly disconjugate.

Proof. The existence of a solution for any many point boundary
value problem in the conditions (i), (H2) and the continuity of f
is well known (it follows for example from the original form of
the theorem of A. Lasota and Z. Opial [6], and the theorem of de la
Yalée Poussin). To prove the strong disconjugacy we will prove
in fact that in the conditions of our corollary the set M (f) of
the equations in variation is relatively compact and holds M = M.

For proving the relatively compactness of the set M) it is
sufficient to show that the set of functions

. —1
M; = {af(t’ Y. Y "'."y(u ) .y solution of (4)} 28)
Ay

is equally continuous (j = 0, 1,...,n—1). From the boundedness of
f it follows that the set of the ntt order derivatives of the solutions
of (4) is bounded and therefore the set of the continuous functions

N; = {y@ :y solution of 4} (29)

is equally continuous for each j= 0,1,...,n—1
of
dyh
follows that for any ¢ > 0 there exists a 6. >0 such that
W, Yy ...,y e x ..., 20T) |
dy) dy

as far as |t'—t"|<<d; and 1y(i)—x(f)|<<5e, j=0,1,...,n—1L
From the equal continuity of the sets (29) it follows that there
exists an %, >0 such that

[ Yy () —yD ")

From the uniform continuity of on its domain, it

<8, ji=01,...,n—1,
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for any solution of (4), if [t'—t"| <. It follows that

G, Y)Yy (), .., yn—1) )
dy)

A,y "), v’ @), .., yr—1 @)
Sy

as far as [t'—t”| <min (., 7.), and it follows the equal continuity
of the sets (28). This, together with (i}) assures the relative com-
pactness of I (f).

Let now 1,, »=1,2,... form a Cauchy sequence of elements
in M (). From the relative compactness of I (f) it follows that
l,—1, as v — co, where 1 is a differential equation with continuous
coefficients. According to (iv) for any » there exist the numbers

wEw<. . <)

n—1

such that 1, has the property (C) with respect them. It is easy to
see that the sequences {u?}, have limit points u; such that

MEwS . L g

and that ! has the property (C). with respect to these numbers.
This means that 1 < M. The inclusion I¢ (fy = M is then proved and |
our assertion follows from Corollary 1. |
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DISKONJUGACLIA JEDNADZBE POMOCU DISKONJUGACLIE
VARIRANIH JEDNADZBI

A. B. Németh, Cluj

SadrZaj

Kave se da je diferencijalna jednadzba n-tog reda
y® =t %Y,y )

diskonjugirana na [0, 1] ako svaki problem interpolacije hermitskog
tipa ima jedinstveno rjefenje u skupu rjefenja te jednad?be. U
¢lanku se pretpostavlja da f ima parcijalne derivacije po posljednjih
n varijabli, ako su one neprekidne u [0, 1} X BR”, te da su sva rjeSenja
diferencijalne jednadzbe definirana na ¢itavom segmentu [0, 1]. Kaze
se da je diferencijalna jednadZba s navedenim svojstvima slabo dis-
konjugirana, ako su sve njoj odgovarajuce jednadZbe u varijaci-
jama diskonjugirane. Koristeéi jedan teorem I vidava [14], kojeg
je nezavisno dokazao i autor [8], daje se dovoljan uvjet da slabo
diskonjugirana diferencij alna jednadzba bude diskonjugirana.



