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494. FUNCTIONAL EQUATIONS FOR WALLIS AND
GAMMA FUNCTIONS*

llija B. Lazarevi¢ and Alexandru Lupas

The aim of this note is to find all convex solutions of the functional
equation

) S+ D=T0f@,  x€[0, + =)

where f:R, >R, R, =[0, + ) and 0 is a prescribed number on (0, ). Set-
ting f(0)=1/T'(6) we shall see that the unique solution is the ,,Wallis fun-
ction” W(-, 08):R, = R defined as

Lo+l

W (x, 0) L(x+6)

Further we establish some inequalities for the WALLIS function. At the
end of this paper a new characterization of the Gamma function through
functional equation is given.

Theorem 1. Let AER,, «a&(0, + ), 0E(0, 1) be fixed elements. There is a
unique solution f:R,— R of (1) defined by

_ T@T(x+1)
AQR T(x+9)

which is convex on (A4, + ) and such that f(0)=«.

Proof. It is easy to see that for a natural number n

N _ (x+n)(x+n—1)--(x+1) K R
f(l+")—(x+n+0——l)(x+n+0—2)---(x+0)f(A)’ xeR.
or
__I‘(x+n+l)1‘(x+0)
@ f(x+n)—P(x+n+0)r(.t+l)f(x), *ER,.
Therefore
T+NT({(»+0)
SO+ P =D ey ey, +
SO =L W1+ D= P DD YELL + )

* Presented May 5, 1974 by D. D. Apamovic,
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which confirms that it is sufficient to suppose x€[0, 1). Let n=2+[A]. Since f
is convex (non-concave) on (A, + ) we may write
[n=1, m; fl1=[n, n+x 1, n+1; fl, x€(0, 1),
where the symbol [a, &; f] denotes the divided difference.
Using (1) and the above inequalities one obtains

1—6 Sn+x)—f () 1_—-_0
I WsT s o/

which can be written as
152029 ) < f ) < 22U £,
n n+0

But from these inequalities as well as from (2), for x&(0, 1) we have

I‘(n+x+l)I‘(x+6)f(x) < n+6+x(l—6)f(”)

n+x(1—0)
2209 )5 =

=Tm+x+0) T (x+1)
From these inequalities we may write

a(n+x (1—0)) T ®) T(x + 1)
(3) o nl (x+e) I;'n (x’ e) §f(x)

<t(n+0+x(1=0)TO) T (x+1)
- (n+0) I (x+0) F, (% 9)

where
C@a+l) Tr+x+0)

C+0) T@mix+1)

. We remark that (3) is trivially verified at the point x=0, i.e., the ine-
qualities (3) are valid on [0, 1).

According to a well-known theorem by H. Bour and 1. MoLLERUP [3]
(see also [1—_2]) the restriction at (0, + o) of the Gamma function, is the
unique logarithmic-convex function on (B, + »), B=0, which satisfies

Px+D)=xPx), T()=1.
This means that for O<a<b<c< + o the inequality
[@,6,¢c; InT'(:)}>0
(T @)~ <(T @)~ (T (e))>~.
Setting a =2z, b=z+E c=z+1, EC(0, 1), we get

Qs (@),

F,(x,0)=

implies

or T'(z+¥¢)
4 Tl
@ e =1

T(@z+%)
which holds also at z=0,
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On the other hand the following may be proved (see (4], Lemma 1): If
g:R, x(0, 1)—> (0, + o) is such that for all (z, ) ER, x(0, 1)

T+
Ty >g(z,0),
then
T@E+D z+0
, 0 , 1),
T'(z+0) g(z+0, 1—6) €O
In this manner, by means of (4), we conclude with the inequalities
_ T+
5 1-0 -3 ' 1-6
(3 z <r(——z+0)<(zT0) , (2, ©)ER, x (0, 1.

Put z=n, z=n+ x respectively in (5); we find

_ T@+)) _
1~ Wt ) gy-o
S0 (n-+9)
and
1 T@r+x+0) 1

(n+x+0)l—° Tp+x+1) +x)t=%"

From these inequalities as well as from (2), by mutual multiplications of the
corresponding members we get

(s )1—0<F,.(.\‘,0)<(”+0)1'0’ (x, )ER, x (0, 1).

n+x+0 n+x

In conclusion, (3) implies that for x&R,, 0(0, 1),

a(n+x(l—0))( n )"e TOITx+1) E
n n+x+0 T T(x+0) =f()

< a(n+0+x(1—0))(giq)‘—°_ r®rx+1)
= ns+0 n+x, Tx+6) °

For n—> + o the general convex solution of (1)

_ TOL@+D
f(x)=a T(x+0)

is found and the theorem is proved thereby.

We note that a similar functional equation was treated by J. ANASTAs-
siaDIs [1] by a different method and supposing that f is positive and loga-
rithmic-convex.

Theorem 2. Let W(-,0):R, =R, be the Wallis function. There exists a de-
creasing, convex function €a:R, — (a, b] where

1
a=2, b=C O, 00D
such that
(6) W(x, 0)=(x+¢g (.\‘))"“ o’ X&R,.
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Proof. On account of (5) we observe that there is a function gg: R, — R

with o
Wx 0)=(x+e ()", 0<0(®)<b xeR,.

Since ]
Q) go (x) = W (x, 0)1-9 - x,
it is clear that €g:R, — (0, 6) is convex on its domain. Indeed according to
the first theorem W (-, 0) is convex on R,. On the other hand, for x>0 we
have

, _x+e0(x) I"(x+])_I"(x+0))_1
&' (%)= 1—6 (I’(x+l) T (x+0)
<EHOY (40 - I<——.

where n,b(x)=ad—ln1"(x). Further, &’ is increasing on R, and
X

Go’ (X) < lim 80’ (X) = 0,

X—r 0

that is gy is a decreasing function. This implies

Ee(x)§30(0), XER+,

1
with equality only for x=0. From (7), ¢ (0)=(I'(6)) =%, and in this way
gg (x) b, xER,.
Finally, by means of STIRLING series we prove that
. 0
1 =
x—lyToo % (x) 2’

i.e.,

6 .
a=—= lim g(x)<g(x), xER,,

X—r+ o
which completes the proof.

Corollary. For (x, 0)ER, x(0, 1) we have
B\~ _T(x+1) Lyi-e
(x+ 2) <1,(x+e)<[x+(l“(e))l 0} .
The case 6=1/2 leads to G. N. WATSON’s result [6], namely

1\12 _ T(x+1 1\12
(x+:) <-—*1)§(x+_) , xER,.
F(x+—) R
2
 For other information regarding the inequalities involving Gamma fun-
ction see [5].
Now we intend to find all solutions of the functional equation

Sx+D=xf(x), xe(0, + )
in some classes of functions.
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Theorem 3. There exists a unique function f:(0, + c0)-> R, positive on (0, 1) and
satisfying:

@) fx+D=xf(x), xE(O, + o)

(ii) f is logarithmic-concave of the second order on (A, + ), A being a
prescribed non-negative number;

@ii) f()=1.

More precisely, this function coincides with the restriction at (0, + o) of the
Gamma function,

Proof. If n is a natural number, then any solution of (i) has the property
®) Sr+ExX)=xx+1)- - (x+n=-1)f(x).
Let py&(1, 4+ ), y=[y]+{y} it is clear that

FOYy =+ - -DIEYD.

Therefore the positivity of f at (0, 1) implies that f:(0, + «)— R is positive
on its domain. '

As usual, a logarithmic-concave function f of the second order on
(4, + ), has the properties: [ is positive on (4, + ) and [a, b, ¢, d; In f]<0
for any points A<a<b<c<d< + o, which may be written as

) (f (b)) @D€EDE=9 (1 (g))CDG-a=a

<(f(a)) (c—b) (d—c) (d-b) (f(c)) (d-a)(d-b) 6-a)
If we select

a=n~1, b=n+x—1, ¢c=n, d=n+x, x&(0, 1), n=22+[4]
we obtain .
(10) (F+x- D) (fr+2) < (L= 1) (S (@)™

- Taking into account (i) as well as the fact that f(n)=(n—1)! and

fln+x=1) =n+x_lf(n+x), from (10) we get
[f(n+x)]2<((n-1)!)2£'—_x—‘_)‘+i‘

(n—1)1—~=x

2 5. 1 \l-x 1—x \~-1-x
=((n-1)!) 112(1+;_—1) (1+n+x—-l) .

On the other hand [5, p 262, § 3.6.3] we have

2(1—-x2) I-x

| 4= )l'”>e'2—"_+-‘_—7» (l+———l )l_x< en1.
n+x—1 n--1




1. B. Lazarev:¢ and A. Lupag

250
Therefore
1 \i—* l—x \=-I—-x
x(n—1)! B l+—~—_)
Sl v ) \/(l +n—l) ( n+x—1
TI=x_ 2(1-x%)_
<n*(n—1)! \/en—x Tade—T
<n* (n—1)! (=1
i.e., |
(1) Fox) < (n—D1eTED, x£(0,1), n22+[A].

Further, with
a=n+x-1,
from (9) we have

(S (for+ )Y <(f@+x=- D) (S +x)7%,

(n—=D'n-1yp<fn+x), x&(,1), nz2+[4]
This last inequality holds also if n is substituted by n+ 1. Therefore we
have

b=n, c¢c=n+x, d=n+1, x&(0, 1), nz2+[A4],

ie.,

nl nx

(12) <f(n+x), x&(0,1), n=2+[A4]
n+x
On account of (8), (11) and (12) we conclude
1

13 n! nx n! nx . MEX ey
(13) x(x+1)--(x+n) <f(x)<x(.\'+l)---(x+n) n ¢
Since

I'(x)= lim m

n—too X (x4 1) (xbn)
if n— + oo, the inequalities (13) show that
Jx)=T(x) on (0, 1).
It is clear that from the above remarks (see (8)) we have
JS(x)=T(x) on (0, + ).
Now let k£ be a natural number, and let us denote
Fe(xy=(=1)*'In f(x)
where the function f:(0, + )~ R is positive. In a similar way, w.th the
proof of the above theorem, we may establish
Theorem 4. If f:(0, + o0)— R is positive on (0, 1) and satisfies . the following
conditions
D) fx+D=xf(x), x€(0, + ),

() Fy is a convex function of the order k on (A, + o), A being a
fixed non-negative number,

(iii) f(N) =1,

then we have

S)=T"(x) for xE(0, + o).
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