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THE STUDY OF THE FIRST ORDER PERTURBATION FOR MISES’
EQUATION FROM THE BOUNDARY LAYER THEORY BY FINITE-

DIFFERENCES METHOD

by D. BRADEANU, P. BRADEANU

An explicit method with finite differences for the perturbation of first order of Mises’
equation from the theory of boundary layer of a viscous incompressible fluid has been
studied in this paper. The paper is concluded with an application to the calculation of
the speed and skin friction on a circular cylinder with slight deformation. The calcula-
tions were scheduled in FORTRAN IV language on the electronic computer FELIX-C
256 and the results are given in tables and graphics.
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SYMBOLS

Mises coordinates for boundary layer (¢ = the stream
function)

velocities in « direction on inner and on external edge
of the boundary layer, respectively

constant velocity of the fluid to infinite

kinematic viscosity :

nondimensional speeds in the neighbourhood of stagnation
point

constants (2)

denote the mesh point (X;, ¢;); ¢ and j are integers
integer and positive numbers greater than unity
nondimensional variables given by (1)

unknown main functions, considered in (3)

net functions, which are approximations in (¢, j) points,
of G, W functions, corresponding to equation (8)
unknown coefficients in (23)

function given in (2)

parameter of D, net, equal with AX/(A{)2

the grid-point spacing in the X .and ¢ directions
Reynolds number

nondimensional skin-friction coefficient

coordinate of initial station

reference length
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INTRODUCTION

In [5] the method of small perturbaﬁions has been applied to Mises’
equation from the theory of incompressible laminar boundary layer

(21, [3]
ou? dui _ 02u?
el U —
oz dw 02

Wz, 0) = 0, U@, Vo) = Uy(@), T <7 <y
W(wo, §) = uo(d), 0< ¢ < 0, Yo
with expressions
@ = o+ emy(@) + 0(e2) 499
F="1¥+ ¥y(¥) + 0(e3), ($ =FVv) (0.2)
(7)) = Uyo(®) + euy(@) + 0(e2) > (0.3)
Wz, F) = ug(2,¥) + euy(2,¥) + 0(e?) ©(0.4)

in the closed domain
D*= {2, P00 @< @ < o, 0 < 00y Wi}
'corresponding to .the flow field in the physical plane (z, ¥).

For the zero order u,and, respectively, first order u, perturbation
the following equations have been obtained [5]

du  dul 92l
6“; =% 3 uo—a—;—;’, (z, ¥) e D* (0.5)
d 02 u, 02u d
— (U = — (UoU e T T — (U1 U
Oav( 0¥1) “oale( oU1) 5 ope +dm( 10t11) +
ifde & 0T, 02ug : 5
+ 3l 2 ) o @ VeR i

with initial and boundary values (initial station @ = ;)
wi(x, 0) =0, ﬁi(w, ©) = U(@), Ty < T < W (0.7)
U2, ¥) = u] () , 0 < ¥ €00, ¥ (0.8)
where «)(¥) is a given (calculated) function in the initial station (starting

station) # = @,, in the neighbourhood of the stagnation point, so that
%{(0) = 0 and w)(00) = (o).
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This paper describes the numerical study of the boundary-value
problem (0.6)—(0.8) which we then apply to the boundary layer which
is formed on a circular cylinder with slight deformation, considering that
the motion domain is divided in three subdomains (D°, D', D=).

1. SOLUTION IN THE INNER DOMAIN (Di)

1.1 Equation with finite differences (ewplicit scheme with 4 points)
Let’s take again the boundary problem (0.6)—(0.8) and let us do the trans-
formations for variables and functions

©=LX, #, = LX,,¥ = (LU, ¥, = WLV, 1)
thyg = Yoo Uygy Uy = Ueo Uy, U3y = O X, UY, = 0, X, U3, = V() (2)
L UL (8 0k = coﬁstants)
dy 20,
Uy = U U = ) Upg? — (X, §), gty = 4 [UyUy; — WX, §)] (3)

The continous and unknown function W(X, ¢) with respect to (X , $) in the
closed domain D satisfies a linear and inhomogeneus equation, of para-
bolic type, subject to the following initial and boundary conditions

T, Sl i, g P SR S T
oX TS o
=00 ULl dx, 0
:___(_;QJr_l__l) (4)
i L R e

(X, V)eD = {X; § | X, <X <X;;0< <00, §u}
W(X, 0) = Uy, Uy, WX, §o) = 0, X, < X < X, (5)
W(Xy, ¢) = W2({) given function, 0 < ¢ < 0, Yo (6)
(G(Xy0) = Ujp(= V(2)), KX, ys) = 0)
Starting from the singularity

e )

2
VT2, — @ — o, %Zﬁoofor\peo

like in Mises’s equation, we shall divide the domain from (X, ¢) plane
corresponding to the viscous fluid moving in three subdomains IFP, P
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and D®. These subdomains will represent the body’s neighbourhood, the
inner boundary layer and, respectively, the infinite point domain.

We shall use the finite differences method for solving this problem.
‘We replace the derivative with respect to X by a forward difference.
Then we substitute the second order derivative with respect to ¢ by a
second order central difference. Using Taylor’s series and introducing
the notations W(X,, ¢;) = W, G(Xy §)) = Gi,; the formulas result

ow Wl =3 Wi j AX 02w ~ S Wy — W;
E(X“ $;) :—Jr%f—'* 5 axe (Xsy PN= —H;’X—j— (71)
i e M - gL 4 =
W g gy = Wi =Wyt W BN (3, ) »
02 Ad2 12 9t
= Wi, 341 — ZAwq:; + Wy, g1 ‘ (75)

and similar formulas concerning the G(X, ¢) function.
We represent the finite differences boundary problem associating
to (4)—(6), on D, net, by the following explicit scheme with 4 points
Wiy1,; = R I Wi, 541) T Qw5 + di, (3)

6=0,12..., I —1;§=1,2...,d —1)

Wi, o = (UloUu)i7 Wi, g = 0 (wo,J = 0)7 v = 17 27' 5 '7I 9)
we,; =WHiji=012...,J ©(10)
where
¢, =7 VVi—gi,5 (= 6))
g0 e T 21,]/‘—71.——*__%’1 _ 1 Qi1 — Gus
2R
¢ (11)
1 i1 — G [(dxl) 01] }
di-—:———/—UU el (Ve — 0
= V. =G {( 1w0U0n)i + ax ). Co(i gi.1)
(=0, 1, 2,..., I;4i=0,12, ..., J)
X, — X, Yo : X = __AX
AX = 3 A‘p—‘TI" ¢0—07 nP,,— wa: Tii= (Aq.t)z (12)

Da = (Xoy by | Ti=XoHidX, §=jBd; =01, I5 §=0,1,-- Sy 18]
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We add the zero order perturbation scheme to (8)—(13) scheme
Jir1.s = gi; + G 5(9i;5+1 — 2955+ 9i,1-1) (14)
= e sy I—1;j:.1, 2 cvigd — 1)
G0 =V -, 3 =0, Yo, 5'= G, 4 (gIven ;mlues) (15)
(1=15 25 oo Ds =000 o s el

which we can obtain starting from the (0.5) equation and using the
transformations of the form (3); G, ; are initial given values.
It has been considered that

Gi,0 = 91,59 91,5 < Gis1,) (16)

We must determine the initial solution of these explicit schemes and
analyse their consistency and stability for their electronic computer
programming. :
1.2. Iwitial solution. According to [5] wich studies the initial solu-
- tion determination X = X9 = X, section, we have, using (3), the for-
mulas
ﬁ_ :u_?l ___?1 e, U(I’OUgl R (17)

0 o 770 02 0
U Ui Ul U — @G

For initial values calculation W, ; of W function in X = X, section, the
following formulas result

C .
WO,J’ :FlGo,n J =0, 17 27"'7 J(Wo,J 0) (18)
0

W} = Wy, G = Gy, )
where the initial values @, ; are calculated in zeroth order approximation
(in [6] the W, = G/Uj, function has been used instead of G).
1.3 COonsistency. Using the (7) type formulas we show easily that
the truncation error 7(X;, ¢;) = 7, ; of (8)—(13) scheme has the expression

L AX{mW 162G[ w _(gloUu+dX1 01)]} bus
(2, 7)

T j —

% T A x|y Dg -\ g Mg g,
2 4
L (VvaaW . (19)
12 0 ),

The scheme with finite differences (8)—(13) approximates theboundary
value problem (4)—(6) with an error of AX 4 A2 order, hence it is
consistent on Dj grid (D = grid of points from D?).
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1.4 Stability. Consideration of some linear schemes of positive type,
that is of some schemes in which the coefficients of w;, ;_;, w;, ;) Wi, ;41
must be nonnegative in D}, is the starting point in the study of
the stability of some parabolic schemes of (8)—(13)type, inhomoge-
neous and with variable coefficients. In these conditions the explicit
scheme (8)—(13) is stable. Indeed, equation (8) is of positive type if
the condition

i o — il
< gi.O gi,a gt+l,J

o b (r > 0) (20)
i,0 — di,7d

(6=p 3y L By =2y, iy )

is verified in each point (¢, j)e DA.

*

Obs. If we admit that the net function g,, ; satisfies . the (15)—(16)
conditions on the D, net and that it is monotonously decreasing with
respect to ¢ and increasing with respect to X, then condition (20) can be
replaced by

: 1
or r < min

r ——— = (20
2U,(X) xexe.xn 2U,o(X)  2U;(Xy)

if we adopt a constant value for » and admit that U(X) is an increasing
function for X e [X,, X,].

*

Moreover, let’s suppose that the coefficients sum of wz j—1y Wi, §y Wi 141
does not exceed the unity. As it has been found directly, this is true if

Zcf_].:l—lgﬂlwgl’ (s =—1,0,1) (21)
s 2 Gio— Yis

which is verified in every point with conditions (16).

-Let’s metion that using the approximative method of determi-
nation of the initial solution and formulas (18), we introduce errors. So,
we begin the calculation with the approximate values wg;, not with
the exact values w, ;. Without introducing other errors, we calculate, in
station X = X,,,, the values w,,;, depending on w;_i, w¥;, Wi, with
an equation which has been obtained from (8), replacing w by w*. The
calculation error (the stability error) z;, ; = w; ; — wf; [w; ; — the exact
solution of equation (8)] satisfies equation

war gl 0
Ziv1, i = G, iR, -1 T % 501) T Gs%0g
Zio=0,2,;=20,2%;=¢ t= D iljee sV E

where e¢; are the initial errors.
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As a result of inequalities (20) and (21) one can obtain

|%41,;] < max 1% el d = 15 2., d (22)
(B=u1,051) '

which proves the stability of scheme (8) in éompayrison with the step in
X direction. The error z; ;,, due to the initial error ¢;, doesn’t increase
in comparison with the step AX, if condition (20) is satisfied.

2. SOLUTION IN THE NEIGHBOURHOOD OF THE BODY'S SURFACE (D?)

2.1 Determination of pefturbation speed of first order. We look,
in the body neighbourhood, for the solution of the following form

mzi%awakzih@MW‘ (23)
(¢ = little values)

The perturbation of zero in order U, (= U from [5]) is determined in [6]
by the aid of the coefficients

44 1442 8043 v |
Qg — — ——y Mg = — ——.. @ =y = U 10 24
Bt b= ey = =) s
knowing that a, satisfies an algebraic equation of 3rd degree.

- For the determination of the b,(X) coefficients we use compatibility
conditious (on the body), deduced from (0.6), of the form

Z(X, ) = — B(X) }
$=0 (25)

7/ 08 |

¢
9 A

°3ﬂ“5ﬂ““¢=°

where
92 1 e OR1
Z(X, q") == UOW (UQUI) o E Ul 04}2

(26)
d Fediliz, rd.x d
B(X)«:“‘(Uwvu) T '—J(_l =l _¢‘1) -
dx 2 dX \dx dy
We observe that

8 0
W (U, U1) T "gz

n—1 n
n — -1
— Wby Y2
T b
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Using the above conditions, we shall obtain, after elementary calculations,
the following formulas for the b (X) coefficients

b4} ok iy )
a; v»0 0y
4
by(X) = — (20,4 — B) | (21)
3011
bo(X) = S22 (55,4 — 20,B)
a

il

We shall use a method of successive approximations to determine _
the b, coefficient. For the W function, we have the expression ‘

WX, ) = U oUn — [0y + (@05 + ash;) 432 +
+ (aybg + ashs + agb;) 2]

(28)

Considering the points ¢ =0, ¢ = A¢ and ¢ = 2A¢ and using only
the first three terms of Taylor formula, there results the approximation

formula of zeroth order
31'01',0 _—— 4?'01',1 + wi_ 2 (29)
2AY

(a1b1)(0) i

Considering four terms from Taylor’s series of W function and taking into
consideration the coefficients expressions a, and b, we find the approxi-

mation of first order
g-s/2]/ Ay B
() e
oY Jy—o

(a’lbl)(o) a8

1
p-32)/ A A (
S E

III

ab;, =

(0 < 6<1)

We have the following expression for the perturbation speed w,
u

;l‘l =U,= bqul/z + byd + b34,?/2 (31)

9.2 Caleulation of skin friction =,(X). The Ibcal skin friction, on
the body surface, t,, has been calculated in the first approximation of
the small perturbations method, with the formula

e () (@) () ()

y=
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Taking into account that w = w, -+ eu, it results the formula

e ] -

and, for the local skin friction coefficient c.,, we have the formula

- Tu(X)

VRe ¢:(X) = T, + T, (33)
where
C
T,=a, T, =2ab'—La 34
( il 1) 2 AL 200 L ( )
2 ©
(CTw =7 — ’ Re = ’pﬂ)
PU @
APPLICATION

INCOMPRESSIBLE BOUNDARY LAYER ON A CIRCULAR CYLINDER SLIGHTLY DEFORMED

3.1 Expression of the x coordinate. Let be a circular cylinder repre-
senting a slight (small) deformation. The perpendicular section on the
surface is the deformed circle (C) having the
following equation in the polar coordinates #*
and 0 (fig. 1) 1

r* = R(1 — esin2 0), (e = 0) (35)
where the small quantity e is the perturbation
parameter. The deformed circle (C) can be
considered as the first approximation of an
ellipse with semi-axes 0,4 = E and O,B =

v N
= K1 — ¢). et ;be. o = OP, where P i8
a point on (O) in the second quadrant, the co-

ordinate of boundary layer. We observe that Fig. 1
dr* ~ 0(g), dr*2 ~ 0(e?), d& = —r*d0 = — R(1 — e sin2 6) d6
Integrating, it results
e . E .

i —RS'(l N esinﬂ))d@:R[a——s(v gL i ]

( £ 2 2
(0. =m — 0)
If compared with the general formula considered in (0.1) we infer that
o — By :

wlz-——'—l—z—(oc-isin 21) , _ (363
2 2
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3.2 Determination of external velocity u, of boundary layer. The ex-
ternal speed is given by the distribution of ideal fluid speed on the cylin-
der surface. Let us suppose, therefore, that the cylinder is perpendi-
cularly attacked on its generatrices by an ideal incompressible stream,
which is in uniform translation to infinity with u. speed in the direc-
tion of big axis 0A. We can use the small perturbations method [1],
[3] in the study of motion, looking for the stream function ¢ a har-
monic function like

‘p("‘*y 0, ¢) = %(7*7 0) + € 4’1(7‘*7 )

where the harmonic function ¢, coresponds to the motion around the cir-
cular cylinder (e = 0), and function ¢,, satisfying Laplace equation
(in polar coordinates), has been determined as part of boundary problem

by the form
V2 dy(r*, 6) =0

$y(r* — 00, 0) =0

Ruy

§y(r* = R, 6) = (3 sin 6 — sin 36)

After determination. of {,;, using expressions like ¢, = A(r*)sin 6 + B
(r*) sin 36 we find the following formula for the distribution of the speed

on the cylinder [3], [1]
U, = Ueo(28in 0 + €8in360 +...)
By comparison with the expression u;, given by the general theory (0.3),
we have the formulas ;
‘ Uyg = U SID &, Uy = Ue SN 3 (37)
3.3 Calculation -of speed and skin friction in the boundary layer.
We admit that the domain of the plane ¢X ¢ of the boundary layer of

viscous incompressible fluid is covered by the net D,, considered in
(13), and we observe that, taking L = R, there results

R VTt =N N Xlz—é—(X—%siHZX)

(X =4, &= BX))

o )
U,, = 2 sin X, U, = sin 3X, Uf, = 2X, U}, =3X
' = 'V'
U U ,~=2S' X,3SinX,—4SIH3X =_‘L. 3_V
( 10U11) in X;( P) : ( 5) (38)
(gio = Vi = (Ul = 4 8in% X))
L 220] = —gin2 X; = — —1— okt = __AX —'0.33
dXx i 4 Aqﬂ

A — 0.1; AX — 0.0033; %:%; oo {ginn
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Let’s denote the approximative values of function W(X, ¢) in the
nodes (X;, ¢;) by w(X;, ;) = w; ;. These approximative values have
been calculated by finite differences, according with the scheme (8) —(12)
and (14)—(15) taking into account formulas (38).

We add to the schemes (14)—(15) and (8) —(12) the following data :

V, = 4 sin2 (0.1745 + 0.00337),7 =0, 1, ..., 265 (39)

Schemes (14) — (15) and (8) — (12) Table 8, 2
with these data were scheduled in ;
FORTRAN IV language (Appendix 1) J Go,j=Aj | Wo;=B;
and calculated on the electronic
computer FELIX-C 256. The results S%ias ol
of the calculation, relating to ¢ and (1) o s
W, are given in tables 2 and 3 5 ST o
(for 8 cross sections of the boundary 5 = G
Iayer]. - 4 0.0033 0.0050

— The D’ domain of the body’s 5 0.0008 0.0014
neighbourhood. We use formula 5 0.0002 0.0003
(30) in the calculation of the product 7 0.0000 0.0000
a,b;, where 8 0.0000 0.0000

6-3%2 = 6,6668, | 6 = L AEAUE—10.1.
3.6

A(X,) = 4; = 28in2X,

4
BT B, s _;_ (18 — 28 sin® X,) sin 2X, — (—Tg,,o + 18) 54

0-3/2 | A/6 = 0.3515

approximation (a,5,)® is given by formula (29), where the values
wy;,;(j = 0, 1, 2) came from the Table 3. For the calculation of the coef-
ficients b, and b; we use formulas (27) where coefficient a;,, deter-
mined in the study of zeroth approximation [6], has the values given
in Table 4. Function W has been calculated, then, for ¢ = 0.1 and ¢ =
= 0.2 with the help of formula (28), and its values are given in Table
5. These values can be compared with the corresponding ones in Table 3.
We can consider the values W from Table 3, for 0 < ¢ < 2A¢ as initial
approximative values in the method of determination with successive
approximations of function W in the domain near the body.

We have formulas (33)—(34) for the calculation of the local skin
friction on the deformed cylinder surface. Table 4 contains the resulted

values. Functions T, T, and c,,}/Re are represented by points in the
figures 2 and 3.
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Table 2

9.5 = 9(X; ;)

\\\ N 0.1745 ‘ 0.3494 0.5408 0.7157 0.7850 0.8411 0.9599 1.0490

4’;‘ \ !
0.0 0.1208 0.4688 1.0602 1.7221 1.9984 2.2223 2.6839 3.0062
0.1 0.0555 0.3132 0.8134 1.4089 1.6648 1.8750 2.3180 2.6333
0.2 0.0230 0.2103 0.6292 1.1607 1.3958 1.5913 2.0112 2.3155
0.3 0.0091 0.1396 0.4861 0.9570 11713 1.3519 | 1.7465 2.0374
0.4 0.0033 0.0910 0.3787 0.7876 0.9817 1.1474 1.5156 1.7916
0.5 0.0009 0.0581 0.2854 0.6462 0.8209 0.9719 1.3134 ﬂ
0.6 0.0002 0.0362 0.2162 10.5281 0.6842 0.8211 1.1359 ﬂ
0:7 0.0000 0.0219 0.1622 0.4296 0.5682 0.6915 0.9801 1.2075
0.8 0.0000 0.0129 0.1205 0.3477 0.4700 10.5803 0.8435 1.0543
0.9 0.0074 0.0886 0.2798 0.3870 0.4852 0.7238 M&
1.0 0.0041 0.0644 0.2239 0.3171 0.4040 0.6193 0.7980
1.1 0.0022 0.0462 0.1781 0.2586 0.3349 0.5281 0.6915
1.2 0.0011 0.0328 0.1407 0.2098 0.2765 0.4489 0.5975
1:3 0.0006 0.0230 0.1104 0.1692 0.2271 0.3802 0.5148

71i__ 0.0003 0.0158 0.0860 0:1357 0.1857 0.3208 0.4422
1.5 0.0001 0.0108 0.0666 0.1082 0.1510 0.2697 0.3787
1.6 0.0000 0.0062 0.0485 0.0822 0.1180 0.2206 0.3232
17 0.0000 0.0017 0.0307 0.0566 0.0854 0.1720 0.2750
1.8 0.0008 0.0130 0.0311 0.0529 0.1235 0.2286
1.9 0.0008 0.0065 0.0056 0.0204 0.0750 0.1827
2.0 0.0004 0.0028 0.0028 0.0102 0.0266 0.1369
2.1 0.0002 0.0014 0.0014 0.0056 0.0133 0.0912
2.2 0.0000 0.0005 0.0004 0.0024 0.0088 0.0456
213 0.0000 0.0001 0.0002 0.0012 0.0064 0.0228
2.4 0.0000 0.0001 0.0005 0.0046 0.0057
2.5 0.0000 0.0000 0.0002 0.0029 0.0029
2.6 0.0000 0.0000 0.0014 0.0015

0.0003

0.0007
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Table 3
wi; = w(X;, 4;]-)
y{i 0.1745 0.3494 0.5408 0.7157 0.7850 0.8411 0.9599 1.0490
q"j S
0.0 0.1812 0.5932 1.0283 1.1003 1.0008 0.8641 0.4242 | —0.0094
0.1 0.0833 0.3980 0.7912 0.9028 0.8361 0.7309 0.3654 | —0.0126
0.2 0.0345 0.2672 0.6102 0.7395 0.6952 0.6130 0.3052 | —0.0275
0.3 0.0137 0.1768 0.4680 0.6019 0.5734 0.5088 0.2475 | —0.0468
0.4 0.0050 0.1146 0.3558 0.4861 0.4686 0.4173 0.1941
0.5 0.0014 0.0726 0.2677 0.3889 0.3789 0.3379 0.1458
0.6 0.0003 0.0447 0.1990 0.3079 0.3028 0.2696 0.1032
037 0.0000 0.0267 0.1459 0.2410 0.2388 0.2114 0.0663
0.8 0.0000 0.0155 0.1055 0.1863 0.1855 0.1625 0.0349
0.9 0.0000 0.0087 0.0750 0.1419 0.1416 0.1218 0.0088
1.0 0.0047 0.0525 0.1064 0.1059 0.0885
11 0.0024 0.0361 0.0783 0.0772 0.0615
1.2 0.0012 0.0243 0.0564 0.0545 0.0401
13 0.0006 0.0161 0.0396 7.0369 0.0235
1.4 0.0002 0.0104 0.0270 0.0234 0.0108
1.5 0.0001 0.0065 0.0176 0.0134 0.0015
1.6 0.0001 0.0040 0.0108 0.0062
14471 0.0000 0.0023 0.0060 0.0011
1.8 0.0000 0.0014 0.0028
1.9 0.0000 0.0007 0.0007
2.0 0.0003
2.1 0.0002
2.2 0.0000
2.3 0.0000
2.4 0.0000
2.5 0.0000
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APPENDIX 1

C FORTRAN IV
C SCHEMES CALCULATION (14)—(15), (8)—(12), (39)
DIMENSION X(200)
DIMENSION G(26, 160), W (26, 160)
M = 160 ,
NRLIN = 25
NRLINII = 26
FORMAT (8F6. 4)
11 FORMAT (4X, 11 (F9.6, 1X, 1Hx))
13 FORMAT(1H1, ///30X, "TABELUL W’)
14 FORMAT (1H1, 5X////4X, 121(1Hx))
325 FORMAT (4X, 121(1H*)/3X, 1Hs, 121(1Hx))
READ (105.1) (G(1,J), J = 1,8)
READ (105.1) (W(1,J), J = 1,8)
DO 2 K = 9,160
G(L, E)i=0
2 W1, K) =0
DO 4 N = 1,18
X(1) = 0,1745 + NRLIN#(N — 1)x0.0033
DO 3 I =2, NRLINII
X(I) = 0.1745 4 0.0033«(I — 1 + (N — 1)*NRLIN)
VI = 4+SIN(X(I))##2
G(I, 1) = VI
W(I, 1) = VI«(3 — VI)/2
BB e e
DO 5 J = 2, LIM
16) = AL e A i)
H=GI—1, J+ )+ G6I -1, J—1) — 2:G(I =1, J)
G(IL, J) = G(I — 1,J) + 0.33+H+SQRT(D)
S1 = 0.33+SQRTD)*(W(I —1,J — 1) + W(I — 1,J + 1)
DIF = G(I, J) — G(I — 1, J)
$2 = 1 — 0.66+SQRT(D) — DIF/(2+D)
S2 = S2:W(I — 1, J)
83 = DIF#((6 + VI)sG(I — 1, J) — 3,VI++2)/(8+D)
W(I, J) = S1 + S2 + S3
CONTINUE
CONTINUE
NCRES = 3
LIMITA = 31 + 5+(N/NCRES)
D@ 8L = 1, NRLIN
MR = NRLIN#(N — 1) 4 L
WRITE (108, 325)
9876 FORMAT (4X, 1H,, I5, F8.4)
WRITE (108,9876)MR, X(L)
WRITE (108,1) (G (L, J), J = 1, LIMITA) °
CONTINUE
WRITE. (108,13)
D@ 888L = 1, NRLIN
MR = (N, — 1)«NRLIN + L

(=1

w Ot

oo

326 FORMAT (4X, 1Hx, I5)
WRITE (108, 326)MR
WRITE (108,11)X(L), (W(L, J), J = 1, LIMITA)
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Appendix 1 — continued

=N

(S

888 CONTINUE
D@ 20 K = 1, LIM
G(1, K) = G(NRLINII, K)

20 W(1, K) = W(NRLINII, K)
DO 21 K = LIM, 160
GENE)— 0

21 W(1, K) =0
WRITE (108, 14)

4 CONTINUE

STOP
END
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