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1. Introduction

A well known classical theorem asserts that every convex function
defined on an open interval of the real axis satisfies the Lipschitz condi-
tion on every compact subinterval of its domain of definition (4], Ch.
III § 18). A. 1. PEROV [7] and recently, A. W. ROBERTS and D. E. VARBERG
[8] have extended this theorem to the case of convex functions defined
on convex and open subsets of a finite dimensional Fuclidean space
and of an arbitrary normed linear space, respectively. Similar results
appear in [5] p. 29, [11] and [12].

In this paper we consider convex functions defined on convex open
subsets of a topological vector space and investigate continuity properties
of these functions. Another question we consider is when such a function
is locally Lipschitz. We say that a topological vector space X has the
convex-continuity property if every convex function defined on a convex
open subset of X is continuous. In §2 it is shown that this property is.charac-
teristic for the finite dimensional normed spaces (Proposition 2.3) but
not for the’finite dimensional locally convex Hausdorff spaces (Proposi-
tion 2.4). The extension theorem 31 in §3 is used in §4. T'heorem 4.1
asserts that the convex functions defined on a convex open subset of a
locally convex space are locally Tipschitz. A similar rgsult, with a different
definition of the local Lipschitz condition, was obtained A. J. BRANDAO

' LOPES PrnTo [2]. The main result of this paper is contained in Theo-

rem 4.2, which extends the classical result mentioned at the begi-
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2, Continuity of convex functions

a non-void convex subset of a vector space X. A functioy
P CIﬁtRCi;Jecalled conpex if flax 4+ (1.~ w)y) < af(x) + (1 - a)f(y) fgr
all x yeCand 0<o<1 Itis obvious that a function {: C—R i
convex if and only if its epigraph, epi f= {r(x a) e CX R:f(x) < a},
is a convex subset of the Cartesian product X X R, _

If C is an open subset of a topological space then a I[ill]CtI_O]l FiE - K
is called locally bounded from above (from below) at x, € C, if there exist
a neighborhood ¥V < C of x, and a real numlger a such that f(x) < 4
(respectively, f(x) > a) for all x « V. The function f is called locally boun-
ded@ on C if it is locally bounded from above and from below at every
point x € C.

The following theorem appears in [1], II. § 2.10 and [6] §3.2.3. in
a slightly modified form : '

2.1. THEORE)M.
vector space X and f:
are equivalent

(i) f is locally bounded Sfrom above

(i) £ is locally bounded on C s
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923. Proposition If every linear functional defined on a normed
jincar space X 1is conlinuous, then X 1is finite dimensional.
' Proof. Suppose X is an infinite dimensional normed space. Let E =
fe,im = N} be a linearly independent countable subset of X such that
= 1, for » € N, and let B o E be an algebraic basis of X. The
lle"“ar functional f on X, defined by f(e,) =#, % = N, and f(x) = 0 for
ImGB\E is not locally bounded from above at 0, since f(r-¢,) = rn — o,
:nefir -e,: e{x<eX:||x|]| £7}, » €N, for all »r > 0.

iti J nfinite di onal locally con-

A4 Proposition There exists an infinite dammswnq ‘

% czomj)letc Hausdorff space X such that every comvex fumction defined on
1;; arbitrary non-void convex open subset of X is contzmgous. '

Proof. et X be an infinite dimensional vector space. Equipe the
Cartesian product ¥ = X X R with the finest locally convex topol.ogyé
Tf;n the absolutely convex and absorbing subs’ets of Y form_ 4 basas (0)

ichborhoods of the origin for this topology. The topology induce 351
neli X % {0} =« Y will be also the finest locally convex topology on X.
}é:—cernin% vector spaces with the finest }ocal]y convex topologies, see
( 811 56 and Exercise 7 on page 69). It is easy to see that, every co.a—1
[,1 'u[;d absorbing subset U of Y is a neig_hborhood of the oglg{n ];‘;.lsis
:f;\l)e_cct to this topology. Indeed,i lé;lt {2, )E e 1)’} 6{bee a[t(l)l ei.igec r(ajm e

5 - ~ s —2Z. 4 —] F,Z‘- e — o —-Z‘ « U ) L
?]f * im'[}’] jllélgmg ({;4,- f']e I}{JU {—z;11 = I}) is absolutely cogvei)x a}cr}li

el It ¥ i ei f the origin and, by

' i 's that V is a neighborhood o '
abi?l;]i'li]’ltf- oIft l[JO“:'\;ngt; V < U, so that U is also a neighborhood of the
convexity ’ .

Ongnll.-t now C be a non-void convex open subset of X il.ld lgeft !{E:CSSS—E:I'SI/’?
be a tonvcx function. Without loosing the generahtz (ta ﬁgxl) gy ¥
C — iy instead of G, for a fixed x = €, ane /i) 40T nd 70) < 0.
_Fl ; a5 Tstest, o ) \l\;u CaI} S}‘/}PPO%G ;hal.et We shall show that
The epigraph of is a convex subset of ¥ =/ L R tre
thf(ililglig an slfbsorbing set in Y. Let (%, -a) ke lli]e ?efmcjt‘ion{ g: T —R
LEC is an open interval of the real axis, and t et_ ‘:mus 2 by 2.1,
defined by g(t) = f(tx) is convex. By Z.Z,g(gb) 1S<C(§mlltnfollows it 2ol g
is an interior point of epi g, since ). & Tt
'(1(;)’ a(l)l) z:.?)silrlbillllgcéltﬁ)sel‘z of Re. Therefore, there exists A >0, suc
1.‘«(1 a) < cpi g, and successively we have:

(», 2a) € epi g < g(h) = M f(rx) < A<
« (A%, 2a) Sepif<e 2z, a) = epif.
‘ i in Y. The set
i ¢ i f is an absorbing set 1 st
i le}; _1351: Iellli?}(:nailzlo\;.%st)};%?nfgl,n \]:rill be a neighborhood of the origin
epl f, being conve

i f is continnous
in Y. Therefore, int (epif) # @ and, by 2.1, the function f s
on C. '
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3. Extensions of continuous eonvex functions

Let X be a locally convex space and € a directed family of Semj.
€

norms generating the topology of X. If Y is a vector subspace of X,

then the family £ of all restrictions of the semi-norms in g to Y, gene.

tes the induced topology for Y. Denote by # the restrictioy of a semi-
ririfl Feg to Y.IfY is dense in X, then every p € & is uniformly
n .

continuous and hence has a unique extension p € €. Furthermore, we
have:

(1) [ eViply—yo) <7} ={x € X:p(x =3 <7},

where y, €Y, # >0 and the closure is taken in X. If C is an open

subset of Y (in the relative topology) 'then CecintlC (th_e interior and
the closure being taken in X). Indeed, if y, € C, there exist p € & anqg
r>0 such that {y € Y:p(y —y,) <7} < C, so that, by (1), {xr = X
plx—y) <y ={y €Y:p(y —3) <7} < C, which shows that y, is
an interior point of C.

We are now prepared to state the main result of this section :

3.1. THEOREM Let X be a locally convex Hausdorff space, Y be a dense
vector subspace of X, and C be a non-void comvex open subset of Y. Then
cvery continuous convex function f: C — R has a unique contfinuous convey
extension F:int C — R.

Proof. Put

E=epif, E,={a s R: (x, a) € E},
and define F:int C - R by

@) F(x) =inf E, = inf {a= R: (x, a) < E).

The function F is well defined, convex, continuous and F|; = /, as follows
from the following lemma : ¢ ’

32. Lem ma a) (x, q) € E implies (x, b

b) x € int C implics E. @ and inf

¢) F is convex and Continuous ;

‘2 Flg =1

00, ; epi f,

i ep{foc{o féigi)néfto(?;,ai).e 1;51'1 t=( :pl /. then there exists a net {(x;,
and the net {(x,, a; + ¢)

b) Firstly, we prove th
trary, but fixed, point in C,
2 =g x —(1 — o)x')

) €S E forall b> a;
Ex>‘—00;

o @ + €) is also in epi f for € > 0,
converges to (x, ¢ + ¢), which proves a).
at E, £ @ for 4 € int C.

Sin_c_e X € int E, there is o

/ < 10, 1[ such that
Sint C. By the loca] boun

dedness of f at #’
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(Theorem 2.1), it follows that there exist » €&, >0 and 2 R such
that V=1y €Y:p(y — %) <7 < C, and

(3) f(¥) < a, for all y € V.

As U ={yeX: Ply — =) < (20)71 — )7} is a neighborhood of % C,
the set UN ¢ iS_ nou;void. Let yo=UnC,ie p(y, — x') < (2a)™(1 — o&)r.
From % € int C < C, it follows that there exists a net {x;:4i<I} in C,
which converges to x. Choose 7, < I such that Plx; — x) <271 — «)7 for
i = 1o Then z, = (1 — &)™ x; —y,) € V, for 7 > 1, since p(z; — x') =
= p((1—a) Mxi—yg) + (1 —a) 0" — (I — a) 2" — ') = ((1— o)z, —
= = &) T — 2] — (1 — &) %) = (1 —a)7p(x; — %) + « (1 — o’c)_l
P(¥o — x") <) r/2 4 r/2 = r, (by the definition of 1" we have x = ax’ +
L1 — e)a’).

A Put l); = max(0, of(y,) + (1 — «)a) and ¢; = f(x;) + |f(%,)] Then, by
(3) and the convexity of f we have:

) = flove + (1 — a)z) < af(yo) + (1 — o)f(z) < af(ye) + (1 — aJas<
fslb) fo]r((a‘lln-i > to. Therefore, 0 < ¢; £ 2b, and the net {c_‘-} contains a
Szlbljlct {eij} converging to a mnumber ¢. But f(x;) < ¢, le (% ¢5) =
e cpi /, so that (¢, x) € epi f = E, which shows that ¢ = E,.

Let prove now that inf I, > —oco. Suppose, on the contrary, that

inf E, = —oo for a point ¥ € int C. Let y, be an arbitrary point in C,

eg, r>0 V= {v e Y:p(y — ) <1} « C— a neighborhood of
vo, and & be a real number. Put

lj == {_\’ e .\’ ; ﬁ(}l - x) S )’}, T/II == 1’ n Lr, o = r(r + ﬁ(x —3][]))_1

and ¢ = (b — (1 — @)f(yo))«~ " Then, there exists " = W such that
(4) Jx') < e

d i = — it follows that there exists a real number a
i:fﬁ‘{lm{{(z? Z;I;s‘ji audUcJL'< cﬂc U X ]—.— 0, c,[ 1s'a nelgpborh;oshztf:
(¥, a)in X X R, and since E = epi f, there}exlstsl (x', @') = epifsuc
¥ elUnY =W and a <c, so that f(x) < a <ec. i sl

Observe now, that &’ = (1 — &)y, + % belongs to i

P — yo) = 0P (¥ — Yo) < w(B(x — 2) + P —yi)) =
< alr + plx — ¥o)) = 1- .
By (4), f(x") < (1 — ) f(¥o) + af(x) < (1— «)f(ve) + ac=b, which shows

: db
that / is not bounded from below on the neighborhood V of y,, and by

p i i inuity of f on C. )
b Snspiﬁ;ngailﬁz tl;;::c((;:?ttgu;yE ajrrld x € int Cr}. Since the sets E

that
and int C are convex, the set G is also 'con\r(::;c.l:\ﬁﬁ S(It;alla) Siog’ thzn
epi F = G, which will imply the convexity ol I'. ;
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ivalently (%, @) € ep; 5

i . B 2 ] F(x) S a’ Or eqU1va R i Ep1 F

b e\ e e bt C then, by e et
R 7 and a, - F(x). The set E = ep;

ce {a,) in R, such that (%, &) < ) it "follows that (x, F()) Elléf

ity ] F(x)) = liln(x; a, :
%3115) CEESES), efsroEmfo(rx all (a))z F(x). Since x < int C, we have (x, a) = ¢

: " i " Therefore, epi F = G-
which shows that epi F < G e o . i Z By 2.1 itis sufficie

We have to prove the continuity O o at & Bt iy 3 nt
to prove that F is locally bounded_fro_m above (2112 iOII:lh poimnt in 1t C,
Choose %, € C < int C. By the continuity of / an 1. ere GZISt peg
7~ 0 and a € R such that f(y) < a (or, equivalently (y, a) fpl_f) for
all ¥ € V={yeY:ply — %) <7 cC. Put W={x < X: plx —
— %,) <7} and observe that U = in‘_c W = {x e X:p(x - %q) < 7} is a
neighborhood of %, in X and U=intV C_Ult £ If % 1s an arbitrary
point in U < U = V, there exists a net {x}in V which converges to g,
Then (x;, a) — (%, @) €epif= E. By (2), F(x) < a, which shows that
F is locally bounded from above at x,.

d) Let & € C. Then x < int C and (¥, f(x)) € epi f < E so that, by
2), F(x) < f(x). If F(x) < f(x), then it would exist a number @ € R such
that (x, a) € E and a < f(x). If {(; a;)} is a net in epi / which conver-
ges to (%, a), then the continuity of f on C, implies f(x) < a, which contra-
dicts the relation & < f(x) . We have proved that I(x) = f(x) for x < C,
i.e. F|, = f which ends the proof of the lemma 3.2.

4. Locally Lipschitz convex functions

Let X be a locally convex space and £ a directed family of semi-
norms generating the topology of X. Let f be a real-valued function
defined on a non-void subset C of X. The function f is called Lipschitz on
M < C if there exist $ € & and L > 0 such that

() |/(x) — f(3)| < Lp(x — 9) for all x, vy = M.

It is easily seen that this property d i
It is ; : y does not depend on the directed
family of semi-norms which generate the to 4 i
S I pology of X. If C is an open
iu‘t;seg c::fh X thevjfunctmn f :C— Riscalled locally Lipschitz on C if for evlgry
ere exists a neighborhood V< C, such that f is Lipschitz on V.

“ﬁng%};tierzgy {;he locally Lipschitz functions are continuous. The follo-
shows that a continuous convex function is locally ILipschitz.

4.1. THEORE)
g M Every convex conts 7 .
void comvex open subsct% owtsnuous function f defined on a non

g of a locally convex space X 1is locally Lipschitz

Proof. : s
gy of X.fIfL;t QE I(D;e i}chdlre]c;ted family of semi-norms generating the topolo-
and a number @ ~0 suecllll tgafll_lf’(;)llleie e;{ o ill weighbacioad 1/ = € of £
L p(x — Satorall x . :

7 x"); r}for p = ¢ and » > 0. Then the set [{’ -E_eEer_X{'xPTx}{-

o
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i) £ 7/2} is a neighborhood of x,, contained in C. Put L — 4

et % ¥ <V ’]lii“or e>0 put a=¢e+4 p(x —y) >0 and z=y+ﬂ(22)tl_dl
(y — x) € U. Then y = 2a(r + 2a)72 + 7(r + 2«)~1x and, by the conve-
ity of f, f() < 2a(r + 20)7Y(2) 4+ 7(r + 20)"'f(x) so that

119) — [(%) < 2alr + 20)(f(2) — () < daaly + 2007 < Le + Lp(x — 3).

since € >0 is arbitrary choosen, it follows that f(y) — f(x) < La(x —
apd changing the roles of x and y, we obtain | f(zg-)y)— f{g(i)l)s L;g)((x —43?3)
which shows that f is Lipschitz on V. Theorem 4.1 is proved.

From 4.1‘ fol}ows the well known characterization of the continuity
of linear applications between two locally convex spaces:

42 Proposition. Let (X, &) and (Y, Q) be two locally convex spa-
ces whose topologies are generated by the directed families of semi-norms &
and Q, respectively. A linear application A: X —Y is continuous if and

only if for every q € Q there exist p <& and L > 0 such that q(Ax) <
< Lp(x) for all x = X.

Proof. Take C = X and f(x) = q(4%) in 4.1.
Now we state the main result of this paper: WA

’

4.3 THEOREM If fis a conlinuous convex function defined on a non-
void comvex open subset C of a locally comvex Hunsdorff space X, then f is
Lipschitz on every compact subset of C. '

Proof. Firstly suppose that the space X is complete, and let K be a

compact set contained in C. Then the closed convex hull M = conv (K)
of K is compact ([10], Ch. II. §4): Furthermore, we have M C C. This
is evidently true if C = X. If C # X, then the boundary fr C of C is non-
void. Fix an clement %, € K and define the function y:fir C — R by

(%) = sup {& € [0, 1]: (1 — a)xo + ax = K}, %< C,
Then 0 < y(x) < 1 for all x=fr C, since KX n fr C =@. We have further
[ =sup {y(»): 2 €frC} < 1.

Indeed, suppose I' = 1 and choose two sequences, {x} in fr C and {o,}
in [0, 1], such that «, — 1 and z, = (1 — «,)% + o,x, = K. By the com-
pactness of K there cxists a subnet {2,} of {z,} which converges to an ele-
ment z, « K. But, then the net ¥ = (0t,) zn, — (1 — ,) % < fr C,
converges also to z,. Since fr C is closed, we have z, € fr C and 2z, € K n

n fr C in contradiction to K nfrC — (. Consequently I' < L. .
Choose now o such that T <a <1l Then D = (1 — @)%, + o 1? a
closed convex set contained in C (see [10], Ch. II, § 1, 1.1). We have also

K C D. Indeed, let x € K and let 9;;;6= {x + B(x — %o): B2 0}. If
e ’ = —~C. and x=(1— @)% + oan €
%% C C then # = %, + & (% — %) € %¥x C G, and % 0
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' —_
eD If xpx ¢ C—:I-,-
x=(l— B) %o
w = a— (o — B) %o + B2] € C, so th i &
refore K C D, and the set D being clos .
M = conv(K) < Dc C. By 4.1, for every % e M there exist @an open convey
neighborhood V, of %, such that 7, < C, a semi-norm $, € € and a numbe,

L, > 0 such that

0. But then B< Y(2) < P <a<l,
Bz for a B> o e [T = o) %o +'au = D. T];li
d and convex it follows that

(©) ) — @) < Lpslp — 2), for all 3.7 < Ve
ini i he open covering {J/ .
Let {Vs, ...., Vi, be a finite subcovering of t ] g (7.
= E{M} of M. Denote V;=V,, p; = Py Li=L,, ¢ = L2, a2
L = max{L,, ...., L,} and choose p < @suchthatp, <p,2=1,2,.., 5
We shall show that .
(7) If(x) — f(»)| < Lp(x — y) for all x,y < M.
Iet %,y € M and let E = {x + Ay — %) : 2= 0}. We shall construct
a finite sequence Vy, ..., V; ofsets belonging to the family {V,, ...., ¥}

and a finite sequence x = 2, 2y, ...., % = y of elements in M such that

s
zisxy, j=0,....k and %, z, €V, fe=lp.um #— 1. To %his

end observe that, for x € M |J V,, there exists. ¢y € {i,, ....,7,} such
_ i=1 -
that x € V. If y € V;, put z; =, and stop. If y & V,;, let 2, be the
. . - . =3
only point in the interesection xyn fr V;, and choose 7; € {1, ...., n}\ {7y}
such that z; € V;. If y € V;, put 2z, =y and stop the construction. If

y & Vi, we continue as above, and after a finite number of steps we ob-
tain the desired sequences {z;} and {V,}. pee
tj

Thenzy= % + Ay — %), § =0, ..., b with 0 =
... <=1, so that 7 =0, hwith0 =2 < <2 < ..
k-1
and
o) -

Py —x) =J__§0 Pz, — 2).

As z:,2:., 7.,, for 4 =
i1 ip 10T 7=01....,k—1, by (6) and (9) we get

) = SO T i) = el < 3 Ly .42

k~1
: ng Pliva — z)) = Lp(y — x).

let z be the only point of the intersection xex n fr C, They -

S—
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{n particular, the inequality (7) holds for all x, y s K « M
theorem is proved in the case when X is complete. o Al s

If X is not complete let Xbea completion of X and identify X to a
dense subspace of X. The topology of X is generated by the family @ of
gemi-norms p which are uniformly coutinuous extensions of the semi-norms

e €. By 3.1, f has a unique continuous convex extension F: int C — R
By the first part of the proof, F is Lipschitz on the compact set K « C <

c int C, i.e there exist $ =2 and L >0 such that |F(x) — F(y)| <
< Lp(x — y) forall 2,y € K. Since %,y € KcCc X, this is just the rela-

tion |f(x) —f(W) < Lp(x) — ) for all x, ¥ € K. Theorem 4.1 is completely
proved.

5. Locally Lipschitz eonvex funetions on metrizable
topologieal vector spaces

ILet X be a topological vector space whose topology is given by a
metric d. A function f defined on an open subset C of X is called locally
Lipschitz (with respect to @) on C if for every x € C there exist a neighbor-
hood V <C of x and a number L > 0 such that

(10) | f(y) — f(2) < Ld(y, 2), for all y,z € V.

We give some results analogous to theorem 4.1 in the case of some
concrete metrizable topological vector spaces. For 0 < p <1 denote by
I the space of all sequences x = (%), ¥a, ....) of réal numbers such that

o o0
2 |2,|# < o0. Then d(x,y) = 2 |%, — ¥,|? is a metric on /? and (/2 d)
n=1 n=1

is a metric topological vector space. ‘ 7

5.1. Proposition. Every conlinuous convex function f defined on
a convex open subset C of 1?7, 0 < p <1, is locally Lipschitz on C with respect
lo the metric d.

Proof. et x, € C. By 2.1 there exist a neighborhood Uc<C of %,
and a number a > 0 such that |f(x)| < a for all x € U. We can suppose
that U = {x e P:d(x,, x)< 7} for 7 >0. The set V={x<i"
d(xo, %) < 7/4} = C, is also a neighborhood of %,. Denoting L = 4afr we
have

! _aol=[——dy—=x0=
d[zd(x,y) by = ). ) [%(m)] (¥

- lzﬂl(fv,y)]p ax, 3} = (%)ﬂ (d(x, y))? <7[2

= 2d(x, y))
for all x, yeV, x #Y. Consequently, the element z =7y + 7( %
or Sl a g Ve G T since die — o O 4Ly — o 00+ SRALR I

4 - Mathemalica — Revue d'analyse numérique et de théorle I'approximation, tome {R{aL) Blay LSRG
- il — Rev ; ;
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0)<rfd+r2<T Reasg;xing'now & 8
i R < A "
! 3 uality (1 > - . .
of 4.}2“';;}? ta;)x;oi)lgesfggg 5.1 remains val1dée;7&'1’l:i11e ﬂ;ﬁ c;ar?}fatpr;(cf;; 161) ’
il : : tor spaces, lL.e. S " f
homogeneous metrlC topo]oglcalte\;ztilons ng 5.1 are given in [3].

9]). Some €X and let &€ = f4
— |«f? d(x, 0) (see [ . _able locally convex space 4 =

é‘ e&}n({)\: ;X cginialélleetré??ecfed family of semi-norms Which generate
in

the topology of X. It is well known (see [10], Ch, I, §6) that the topology
of X is ggnerated by the metric

t the end of the pry

=

1 _palE=9) %, veX.
(11) o =2 pTipmn’ 7

’ following result: ;
;VZe I}’mr‘ g pt}:)es iot i00 n.ngt X be a melrizable locally convex space. If §

is a conlinuous comvex function defined on a non-void CONVEX oljblm subset C
of X then f is locally Lipschitz on C with respect to the metnccl (U ). "

Proof. Let %, € C. By 4.1 there exist a neighborhoo < C of x,
a semi-norm p,, € £ and a number L, > 0 such that

12) () — f)l < Lopuz —3) for all xy < U.

Let #>0 be such that the neighborhood W = {x € X :d(x,, x) < 7}
is contained in {x € X : pu,(%x — %)< 1} n U. Put L =3.2%.L,. If x,y
e W then by (12) we obtain [f(x) —f(¥)| < Lopu(x — ¥) = 2% L4(1 +

1 pylr—2) 21 plr—3)
- y o AR S 9% L — AW 2 = L (3
+on(x =) e P Gy ,.2=1 25 1+ pulx — 3) (%, ),

which shows that f is locally Lipschitz on C with respect to the metric (1).

Remark. The metrics in 5.1 and 3.2 are translation invariant, i.e.
d(x —y,0) = d(x, y) for all x, y € X. The following example shows that
this hypothesis 1s essential. Consider on the real axis R the metric d(z, v) =
= |x* — »°| which generates the usual topology on R. The function f(x) = ¥

for x = R is continuous and linear, but it is not locally Lipschitz on R,
as follows from the following relations

f(8) = F() = 15 — 5] = —]

o E Y =1y 91 d (s, )
if we let x and y to tend to 0.
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