MATHEMCAITCA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

MATHEMATICA, Tome 19 (42), No 2, 1977, pp. 183-187

NORM PRESERVING EXTENSION OF STARSHAPED LIPSCHITZ FUNCTIONS

C. MUSTĂȚA (Cluj-Napoca)

1. Let X be a normed linear space over the field of real numbers and Y a nonvoid subset of X. The set Y is called starshaped (with respect to 0) if $\alpha y \in Y$ for all $\alpha \in [0, 1]$ and $y \in Y$. If Y is a starshaped set, then a function $f: Y \to \mathbb{R}$ is called starshaped on Y if

$$f(\alpha y) \leqslant \alpha f(y),$$

for all $\alpha \in [0, 1]$ and $y \in Y$.

If (X, d) is a metric space and x_0 a fixed element in X, we denote by $\operatorname{Lip}_0 X$ the space of all real-valued Lipschitz functions on X which vanish at x_0 . Endowed with the norm

(2)
$$||f||_X = \sup \{|f(x) - f(y)|/d(x, y) : x, y \in X, x \neq y\},\$$

for $f \in \text{Lip}_0 X$, this space is a Banach space (even a conjugate Banach space, see $\lceil 3 \rceil$).

If Y is a subset of X such that $x_0 \in Y$, then for every $f \in \text{Lip}_0 Y$ there exists $F \in \text{Lip}_0 X$ such that $F|_Y = f$ and $||F||_X = ||f||_Y$ ([4]). We call the function F, an extension of f.

2. Suppose now (X, || ||) to be a normed linear space and Y a nonvoid starshaped subset of X. If $f \in \text{Lip}_0 Y$ is starshaped, then one can ask the following question: has f an extension $F \in \text{Lip}_0 X$ which is starshaped on X? (Here the fixed element at which all the functions vanish is 0).

The answer to this question is affirmative as follows from the following theorem:

THEOREM 1. Let Y be a non-void starshaped subset of a normed linear space X and f a starshaped function in Lip₀ Y. Then there exists a starshaped function F in Lip₀ X such that:

$$a) \quad F|_{Y} = f$$

b) $||F||_{X} = ||f||_{Y}$.

Proof. The function

(3)
$$F(x) = \inf \{ [f(y) + ||f||_Y ||x - y||] : y \in Y \}, x \in X.$$

is in Lip, X and verifies the conditions a) and b) ([4]). We shal show that F is also starshaped. Let $x \in X$ and $\alpha \in [0, 1]$. Then for $y \in Y$ we have

$$F(\alpha x) \leq f(\alpha y) + ||f||_Y \cdot ||\alpha x - \alpha y|| \leq \alpha [f(y) + ||f||_Y \cdot ||x - y||],$$

and taking the infimum with respect to $y \in Y$ one obtains

$$F(\alpha x) \leq \alpha F(x)$$
,

which shows that F is starshaped on X.

For a starshaped functions f in Lip_0Y , denote

(4) $P_Y^{st}(f) = \{F : F \in \text{Lip}_0 X \text{ and } F \text{ is a starshaped extension of } f\}.$ Lemma 1. The set $P_Y^{st}(f)$ is downward directed with respect to the pointwise ordering.

Proof. For F_1 , $F_2 \in P_Y^{st}(f)$ put

(5)
$$F_0(x) = \min (F_1(x), F_2(x)), x \in X.$$

For every $\alpha \in [0, 1]$ we have

$$F_0(\alpha x) \leq \alpha \min (F_1(x), F_2(x)) = \alpha F_0(x),$$

which shows that the function F_0 is starshaped on X. Since $F_0|_Y = F_1|_Y = F_2|_Y$, we have

$$||F_0||_X \ge ||f||_Y$$
.

To prove the converse inequality, let $x, y \in X$, $x \neq y$. Then

(i)
$$F_0(x) = F_k(x)$$
 and $F_0(y) = F(y)$ for $k \in \{1, 2\}$,

(ii) $F_0(x) = F_1(x)$ and $F_0(y) = F_2(y)$,

OI

(iii)
$$F_0(x) = F_2(x)$$
 and $F_0(y) = F_1(y)$.

In the case (i)

$$\frac{|F_{\mathbf{0}}(x) - F_{\mathbf{0}}(y)|}{||x - y||} = \frac{|F_{k}(x) - F_{k}(y)|}{||x - y||} \le ||F_{k}||_{X}, \quad k \in \{1, 2\}.$$

In the case (ii), we have

$$\frac{|F_0(x) - F_0(y)|}{||x - y||} = \frac{F_0(x) - F_0(y)}{||x - y||} \le \frac{F_2(x) - F_2(y)}{||x - y||} \le ||F_2||_X$$

or

$$\frac{|F_{\rm 0}(x)-F_{\rm 0}(y)|}{||x-y||} = \frac{F_{\rm 0}(y)-F_{\rm 0}(x)}{||x-y||} \leqslant \frac{F_{\rm 1}(y)-F_{\rm 1}(x)}{||x-y||} \leqslant ||F_{\rm 1}||_X.$$

Case (iii) is similar to the case (ii). In all the cases it follows

$$||F_0||_X \le ||F_1||_X = ||f||_Y$$

O

$$||F_0||_Y \leq ||F_2||_Y = ||f||_Y$$

so that

$$||F_0||_X = ||f||_Y$$

which ends the proof of the lemma 1.

THEOREM 2. For a starshaped function f in Lip₀ Y there exist two functions F_1 and F_2 in $P_Y^{st}(f)$ such that

$$(6) F_1(x) \leq F(x) \leq F_2(x),$$

for all $x \in X$ and $F \in P_Y^{st}(f)$. Proof. Let

(7)
$$F_1(x) = \inf \{ F(x) : F \in P_Y^{st}(f) \}, \quad x \in X.$$

We want to show that $F_1 \in P_Y^{st}(f)$. Then, for $\alpha \in [0, 1]$, $F \in P_Y^{st}(f)$ and $\alpha \in X$, we have

$$F_1(\alpha x) \leq F(\alpha x) \leq \alpha F(x),$$

and taking infimum with respect to $x \in X$, one gets

$$F_1(\alpha x) \leq \alpha F_1(x),$$

which shows that the function F_1 is starshaped.

Obviously, $F_1|_Y=f$. Prove now that $\|F_1\|_Y=\|f\|_Y$. Evidently $\|F_1\|_X\geqslant \|f\|_Y$. Suppose that $\|F_1\|_X>\|f\|_Y$. Then, there exists $\delta>0$ such that $\|F_1\|_X=\|f\|_Y+\delta$ and by definition of the norm in Lip_0 X, there exist $x,y\in X$, $x\neq y$ such that

$$\frac{F_1(y) - F_1(x)}{||x - y||} \ge ||f||_Y + \varepsilon,$$

where $0 < \varepsilon < \delta$. By the definition of F_1 , for $0 < \eta < \varepsilon ||x - y||$, there exist G_1 , $G_2 \in P_Y^{st}(f)$ such that $G_1(x) < F_1(x) + \eta$ and $G_2(y) < F_1(y) + \eta$. The set $P_Y^{st}(f)$, being downward directed (Lemma 1) there exists $G_3 \in P_Y^{st}(f)$ such that $G_3 \leq G_1$ and $G_3 \leq G_2$. Consequently

$$F_1(x) \le G_3(x) < F_1(x) + \eta,$$

 $F_1(y) \le G_3(y) < F_1(y) + \eta.$

or equivalently

$$0 \leqslant G_3(x) - F_1(x) < \eta,$$

$$0 \leqslant G_3(y) - F_1(y) < \eta.$$

From these inequalities it follows

$$G_3(y) - G_3(x) > F_1(y) - F_1(x) - \eta$$

and

$$\frac{G_3(y) - G_3(x)}{||y - x||} > \frac{F_1(y) - F_1(x)}{||y - x||} - \frac{\eta}{||y - x||} \ge ||f||_Y + \varepsilon - \frac{\eta}{||y - x||} > ||f||_{Y^{\eta}}$$

But then $||G_3||_X > ||f||_Y$, contradicting the fact that G_3 is in $P_Y^{t}(f)$.

Let F_2 be the function defined by (3). By the proof of Theorem 1, F_2 is in $P_Y^{st}(f)$. It was proved in [5] that the function F_2 verifies

(8)
$$F(x) \leq F_2(x), \qquad x \in X,$$

for every extension F of f. The inequality will be true, a fortiori, for every function F in $P_Y^{sl}(f)$. Theorem 2 is proved.

3. Let X and Y be as in section 2, \mathcal{S}_Y and \mathcal{S}_X be the cones of starshaped functions in Lip₀ Y and Lip₀ X, respectively. By Theorem 1, the cone \mathcal{S}_Y is a P-cone (see Definition 2 in [6]).

If

$$(10) X_S = \mathfrak{S}_X - \mathfrak{S}_X,$$

is the space generated by the cone S_x and

(11)
$$Y_s^{\perp} = \{ f \in X_s, \ f|_{V} = 0 \}.$$

is the null space of the starshaped set Y in X_S then, for $f \in \mathcal{S}_X$, the distance from f to Y_S^{\perp} may be exprimed in the following way:

(12)
$$d(f, Y_{\overline{S}}^{\perp}) = ||f|_{Y}||_{Y},$$

and all the elements $g \in Y_S^{\perp}$ of the best approximation of f is exactly of the form g = f - F, where $F \in P_Y^{st}(f|_Y)$ (see Theorem 1 in [6]).

The set $P_Y^{st}(f)$, $f \in \mathcal{E}_Y$, being nonvoid, the extension of f is unique if

and only if Y_s^{\perp} is $\$_x$ -Chebyshevian (see Theorem 2 (b) in [6]).

Let $f \in \mathbb{S}_X$ and G(f) be the set of elements of best approximation of f by elements of Y_S^{\perp} , in the norm (2). Suppose Y_S^{\perp} is not \mathbb{S}_X -Chebyshevian. Let Z be a bounded nonvoid subset of X and denote by $\operatorname{Lip}_0 X|_Z$ the space of all restrictions of functions $f \in \operatorname{Lip}_0 X$, to the set Z. Then, in $\operatorname{Lip}_0 X|_Z$ may be defined the uniform norm $||\cdot||_u : \operatorname{Lip}_0 X|_Z \to \mathbb{R}_+$:

(13)
$$||h||_{u} = \sup_{z \in \mathbb{Z}} |h(z)|, \ h \in \operatorname{Lip}_{0} X|_{\mathbb{Z}}.$$

Problem (A). For $f \in \mathcal{S}_X$, find two elements g_* and g^* in G(f) such that

(14)
$$||f|_{Z} - g_{*}|_{Z}||_{u} = \inf \{||f|_{Z} - g|_{Z}||_{u} : g \in G(f)\},$$

and

(15)
$$||f|_{Z} - g^{*}|_{Z}||_{u} = \sup \{||f|_{Z} - g|_{Z}||_{u} : g \in G(f)\}.$$

THEOREM 3. The problem (A) has a solution for all $f \in \mathcal{S}_X$. Proof. By Theorem 2 b), for every $f \in \mathcal{S}_X$, there exist the extensions F_1 , $F_2 \in P_Y^s(f|_Y)$ such that

$$F_1(x) \leq F(x) \leq F_2(x), x \in X, F \in \mathcal{P}_Y^{st}(f|_Y),$$

i.

$$f(x) - g_1(x) \le f(x) - g(x) \le f(x) - g_2(x),$$

for $x \in X$, where $g_i = f - F_i$, i = 1, 2. Consequently

$$\begin{array}{ll} \min \; (||f|_Z - g_1|_Z||_u, & ||f|_Z - g_2|_Z||_u) \leqslant ||f|_Z - g|_Z||_u \leqslant \\ \leqslant \max \; (||f|_Z - g_1|_Z||_u, \; ||f|_Z - g_2|_Z||_u). \end{array}$$

It follows that a solution of the Problem (A) is given by $g_* = g_i$ and $g^* = g_j$, where $i, j \in \{1, 2\}$ are such that

$$||f|_z - g_i|_z||_u = \min(||f|_z - g_1|_z||_w, ||f|_z - g_2|_z||_u)$$

and

$$||f|_z - g_j|_z||_u = \max (||f|_z - g_1|_z||_u, ||f|_z - g_2|_z||_u).$$

Remark. The Problem (A) is solved analogously in the case when the function f is in K_X — the cone of convex functions in $\operatorname{Lip}_0 X$ — (see [1]). If Y is a convex nonvoid subset of X, such that $0 \in Y$, then the cone K_Y of convex functions in $\operatorname{Lip}_0 Y$, is a subcone of \mathcal{S}_Y . If $X_K = K_X - K_X$ is the space generated by the cone of convex functions in $\operatorname{Lip}_0 X$ and Y_C^L is the null space of convex sets Y in X_K , then, for $f \in K_X$ it follows that

$$d(f, Y_c^{\perp}) = d(f, Y_s^{\perp}).$$

(see, for exemple [5]).

REFERENCES

[1] Cobzas, S., Mustăța C., Norm Preserving Extension of Convex Lipschitz Functions, (to appear in Journal of Approx. Theory).

[2] Czipser, J., Gehér, L., Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6, 213-220, (1955).

[3] Johnson, J. A., Banach Spaces of Lipschitz Functions and Vector-Valued Lipschitz Functions, Trans. Amer. Math. Soc. 148, 147-169, (1970).

[4] Mustăța, C., Asupra unor subspații cebișeviene din spațiul normat al funcțiilor lipschitziene, Rev. Anal. Numer. Teoria Aproximației, 2, 81-87, (1973).

 O proprietate de monotonie a operatorului de cea mai bună aproximație în spațiul funcțiilor lipschitziene, Rev. Anal. Numer. Teoria Aproximației, 3, 153-161,(1974).

[6] - , A Characterisation of Chebyshevian Subspace of the Y⁺ - Type, Mathematica - Revue d'Analyse Numérique et de Théorie de l'Approximation, L'Analyse Numérique et la Théorie de L'Approximation 6, 1, 51-56, (1977).

Received, 19. X. 1977