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1. Let X Dbe a normed linear space over the field of real numbers and
¥ a nonvoid subset of X. The set Y is called starshaped (with respect to 0)
if ay =Y forall « = [0,1] and v = Y. If YV is a starshaped set, then a
function f: ¥ — R is called starshaped on Y if

(1) Hlay) < of(y),
for all « = [0, 1] and y = Y. ‘ ,
It (X, d) is a metric space and x, a fixed element in X, we denote by

Lip, X the space of all real-valued Lipschitz functions on X which vanish
at x,. Endowed with the norm

(2) I/llx = sup {|f(x) — fO)lfd(x, 3): 2, 3 = X, %2y},
for f = Lip, X, this space is a Banach space (even a conjugate Banach space,
see [3]).

If ¥ is a subset of X such that x, € Y, then for every f=Lip, ¥
there exists F = Lip, X such that F|, = f and ||F||y = ||f]|y ([+]). We call
the function F, an extension of f. '

2. Suppose now (X, || ||) to be a normed linear space and Y a nonvoid
starshaped subset of X. If f = Lip, Y is starshaped, then one can ask the
following question: has f an cxtension F = Lip, X which is starshaped on
X? (Here the fixed element at which all the functions vanish is 0).

The answer to this quastion is affirmative as follows from the following
theorem : i

THREOREM L. Let Y be a non-void starshaped subsct of a norimed linear
space X and f a starshaped function in Lip, Y. Then there exists a starshaped
Junction F in Lip, X such that: -

a) 7F|Y=f
&) I1Fllx = IIflly-

and
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Proof. The function

8) F(x) = inf {[f(y) + Ifllyllx —3||]:y =7}, 5 = X,
is in Lip, X and verifies the conditions a) and b) ([4]). We shal show that
F is also starshaped. Let x € X and « & [0, 1]. Then for ¥ € ¥ we have
Flax) < flay) + £ lly - llaw — al] < a[f(y) + A1l - 1l = 2111,
and taking the infimum with respect to ¥ = Y one obtains
Flax) < ol (x),
which shows that F is starshaped on X.
For a starshaped functions fin Lip,Y, denote
@) PUf)={F:F e Lip,X and F is 4 starshaped extension of f).

Lemma 1. The set Pi(f) is downward dirvected with respect to the
porntwise ordering.

Proof. For Fy, F, € P¥(f) put
(5) Fo(x) = min (Fy(x), Fy(x), » = X.
For every « = [0, 1] we have
Fo(ex) < « min (Fy(x), Fa(x)) = aF (%),
which shows that the function Fy is starshaped on X.
Since Fyl, = Fy|, = F,|,, we have
IEollx = 11/1ly.

To prove the converse inequality, let x, y € X, x# v. Then
() Fo(#) = Fy(x) and  Foly) = F (3) for & = {1, 2}
(i) Fo(x) = Fi(x) and  Fo(y) = Fyfy),

or
() Fofx) = Fo(x) and Fo(y) = Fy(y).
In the case (i)
|Falx) — Fyly)l = s () — Fily
lle — w1l 1 — I

)|
<IF e &= {1,2.

In the case (ii), we have

[Fol#) — Foly)| __ Fol#) — Foly) < DPal#) — Fylw)
Il — ] ¥ — ¥l [l — 21|

< |1y
or

IFo(#) — Fo)l __ Faly) — Fy(#) < Tl — Fi(x)

i . =
IE ll# — i IEE )

< |IFlx-
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Case (iii) is similar to the case (ii).
In all the cases it follows
Eollx < ”FIHEE = [flly
or

[Follx < [IFallx = lIfllys
so that

HFnH,\’ = Hf“y

which ends the proof of the lemma 1. _ _ _ )
THEOREM 2. For a starshaped function f in Lip, Y there exist two
functions Fy and F, in Py(f) such that

(6) Fy(x) < F(x) < Fafx),
Jor all x € X and F = PY(f).
Proof. Let
(7) Fi(x) =inf {F(x): F = P¥(f)}, r e X.

We want to show that F, = Pi‘-(f). Then, for » = [0, 1], I = PY(f) and
x = X, we have

Filax) € Flax) € o F(x),

and taking infimum with respect to % = X, one gets

Fo(ox) < aF,y(%),

which shows that the function F, is starshaped. ) .
Obviously, F,|, = f. Prove now that |1Fylly = HfH.],. E\:‘ldently IFdl =
= || flly. Suppose that [|[Fy||y > ||f|l. Then, there exists § > 0 such that
[[Filly = [Iflly + 8 and by definition of the norm in Lip, X, there exist
¥, v X, x#y such that
Fi(y) — Fy(x [
TS0 i+
s — 2l
where 0 <= < 3. By the definition of F,, for 0 < 7 < gl|lx — ||, there
exist Gy, G, & PY(f) such that Go(x) < Fy(x) + 7 and G,(y) < Fyly) + .
The set Py(f), being downward directed (Lemma 1) there exists G, € P}(f)
such that Gy < G, and G, < G,. Comsequently

Fi{x) € Gylw) < Fy(x) + =,
G

<
Fi(y) < Galy) < Fuly) +
or equivalently

0 < Gylx) — Fy(x) <,
0 < Gy(y) — Fily) < E
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From these inequalities it follows

Ga(y) — Ga(x) > Fily) — Fy(x) — B

and
Galy) — Gy{x) _ Fy(v) — F(x)
o S B S ) s i flly e —T > 1l
[y — af] ly — =] v — ¥ Iy = =l

But then ||Gyly > |If]l, contradicting the fact that G, is in PY(f).

Let F, be the function defined by (3). By the proof of Theorem 1, Fy
is in PY(f). It was proved in [5] that the function I, verifies
®) ‘ F(x) < Fylx), x <X,
for every extension F of /. The inequality will be true, a fortiori, for every
function F in Py(f). Theorem 2 is proved.

3. Let X and Y be as in section 2, & and 8, be the cones of sta,rshape;d
functions in Lip, ¥ and Lipy X, respectively. By Theorem 1, the cone &, 1is
a P-cone (see Definition 2 in [6]).

It
(10)° Xs =38, -8,
is the space generated by the cone 5, and
(11) V& ={f< X fly =0},

is the null space of the starshaped set 1" in X then, for f = &4, the dis-
tance from f to Y& may be exprimed in the following way : !

(12) d(fs Y& = (Ifilly

and all the elements ¢ = YV of the best approximation of f is exactly of the
form ¢ = f — F, where F € P¥(f],) (see Theorem 1 in [61).

The set PY(f), f = &,, being nonvoid, the extension of f is unique if
and only if ¥ is Sx-Chebyshevian (see Theorem 2 (b) in [(6]).

Let f = 8, and G(f) be the set of elements of best approximation of f
by elements of ¥¥, in the norm (2). Suppose Y+ is not 5y-Chebyshevian.
Let Z be a bounded nonvoid subset of X and denote by Lip, X|; the space

of all restrictions of functions f = Lip, X, to the set Z. Then, in Lip, X|,
may be defined the uniform morm || |[,: Lip, X|, >R, :

(13) [1A]l, = sup |&(z)], % = Lip, X|s.
282

Problem (4). For f = §,, find two elements g and g¥ in G(f) such
that

(14) ”ij - g=£=]ZHu == nﬁ {”sz - gJZ“u : 4 = G(f)}’
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and

(15) flz = g*lelle = sup {||flz — glalle: € = G(A).

THEOREM 3. The problem (A) has a solution for dll f < &,

Proof. By Theorem 2 b ), for every f = §,, there exist the extensions
Fy, Fy = PY(f|y) such that
Fy(x) < F(x) < Fu), x = X, F = P¥(f}y),
) — &%) < flx) — g(x) < flx) — gal),
for x « X, where g, =f—F, i =1, 2.

ie.

Conseguently -
min (1f1z — &lelle  Iflz = galzll) < 11flz — glzll, <
s max (Hf‘l = gl'ZH:u HfJZ _g’lJZHu)'
It follows that a solution of the Problem (4) is givenby g = g, and g* = g,

where ¢, j = {l, 2} are such that

flz — &lzll, = min (flz — &ulzlle I1flz — &alzll.)

and )
F1z — gilzll, = max flz — @zl 1Sz — Zalzll i)

Remark. The Problem (4) is solved analogously in the case when the
function £ is in Ky — the cone of convex functions in Lip, X — (see [1]).
If Y is a convex nonvoid subset of X, such that 0 = Y, then the cone
Ky of convex functions in Lip, ¥, is a subcone of §. If Xp=K,— K,
is the space generated by the cone of convex functions in Lip, X and 12
is the null space of convex sets YV in X, then, for f = K, it follows that

d(f, Y&) = d(f, V).
(see, for exemple [5]).
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