SEMINAR OF

FUNCTIONAL ANALYSIS AND NUMERICAL METHODS

Preprint Nr. 4, 1981

CONTENTS

A. DIACONU,	Interpolation dans les espaces abstraits. Méthodes
	itératives pour la résolution des équations opéra-
•	tionnelles obtenues par l'interpolation inverse (I) 1
C. LANCU, O	n the cubic spline of interpolation52
C. IANCU et	I. PÁVÁLOIU, La résolution des équations par inter-
	polation inverse de type Hermite
P.T. MOCANU	, D. RIPEANU and I. SERB, On the order of starlikeness
	of the Libera transform of the class of starlike
	functions of order α 85
C. Mustāța,	On the extension problem with prescribed norm93
A.B. NÉMETH	, Summation criteria for regular cones with applica-
	tions99
D. RIPEANU,	Sur la longueur d'un intervalle d'interpolation (I)125
I. SERB , A	normed space admitting countable multi-valued metric
	projections155
	Normed spaces with bounded or compact strongly proxi-
	minal sets

NORMED SPACES WITH BOUNDED OR COMPACT STRONGLY PROXIMINAL SETS

pJ

IOAN SERB

In this paper we denote by X a real normed vector space. If M is an arbitrary subset of X , then, as usual, the metric projection on M is the mapping P_{M} : $X - 2^{M}$ defined by

 $P_{M}(x) = \{ m \in M : ||x - m|| = d(x, M) \},$

where d(x,M) is the distance from x to M. A set $M \subset X$ is called <u>proximinal</u> if $P_M(x) \neq \emptyset$ for all $x \in X$. We say that the set M is <u>strongly proximinal</u> if $\operatorname{card} P_M(x) \geq 2$ for all $x \in X \setminus M$. It is clear that every strongly proximinal set is proximinal. As it was shown in [4], if X is a Banach space and $M \subset X$ is a strongly proximinal set, then $\operatorname{card} P_M(x) \geq c$ for all $x \in X \setminus M$ and this property is not true in a general normed space. By a result of S. B. STECKIN [5], if M is a subset of a strictly convex normed space then we have $\operatorname{card} P_M(x) \leq 1$, for x in a dense subset of X. On the other hand, if X does not be a strictly convex normed space, then there exists a hyperplane X in X with $\operatorname{card} P_M(x) \geq c$, for all $X \in X \setminus M$.

Accordingly, the normed space I contains a strongly proximinal subset M ,if and only if, I is not strictly convex.

- S. V. KONJAGIN in [3] posed the problem of finding the Banach spaces I which contain bounded or compact strongly proximinal sets. He calls a strongly proximinal set, a set with the anti-uniquenness property. S. V. Konjagin has observed that in a finite dimensional space there exist no such sets. For some concrete spaces he have obtained the following results:
- a) If A is a complete metric space and A_0 is a closed nowhere dense subset of A, then the Banach space of continuous bounded func-

tions f on A with $f|_{A_0} = 0$, endowed with the sup norm,

- 1) contains a bounded strongly proximinal set if and only if card $A \ge \mathcal{N}_0$.
- 2) contains a compact strongly proximinal set if and only if sard $A \ge X_0$ and $A_0 \ne \emptyset$.
- b) If (A, Σ, μ) is a positive measure space and $L^1(A, \Sigma, \mu)$ is the Banach space of integrable (classes of integrable) functions on the space (A, Σ, μ) then $L^1(A, \Sigma, \mu)$ contains a bounded strongly proximinal set if and only if the measure μ is non-atomic.

We shall give in the present paper necessary and respectively sufficient conditions in order to a normed space contain compact and respectively bounded strongly proximinal sets.

Let X'' be the set of all continuous linear functionals on X. We say that $x^* \in X''$ is a support functional (exposing functional) for a given set $M \subset X$, if there exists an $m_o \in M$ so as to have either $x''(m_o) \geq x''(m)$ (respectively $x''(m_o) > x''(m)$) for every $m \in M \setminus \{m_o\}$, or $x''(m_o) \leq x''(m)$ (respectively $x''(m_o) < x''(m)$) for every $m \in M \setminus \{m_o\}$.

If $x^* \in X^*$ is a non-zero support functional (exposing functional) for $M \subset X$, it is clear that $\lambda x^* (\lambda \neq 0)$ is a support functional (exposing functional) for M. In the sequel by support functional (exposing functional) we understand such a functional of norm one.

The set of support functionals, respectively exposing functionals (of norm one) for the set M will be denoted by f(M) respective—ly by f(M). If for some $m_0 \in M$ there exists a functional $\mathbf{x}^* \in \mathbf{X}^*$ such that $\mathbf{x}^*(m_0) \geq \mathbf{x}^*(m)$ (respectively $\mathbf{x}^*(m_0) > \mathbf{x}^*(m)$), then m_0 is called a support (respectively an exposed) point of M. We denote by f(M) the closed unit ball of f(M).

LEMMA 1. If X is a normed space and M is a strongly proximinal subset of X, then:

 $[\Upsilon(U(X)) \cap \mathcal{E}(M)] \cup [\Upsilon(M) \cap \mathcal{E}(U(X))] = \emptyset$.

<u>Proof.</u> Suppose that M is a strongly proximinal subset of X, and $[Y(U(X)) \cap f(M)] \cup [Y(M) \cap f(U(X))] \neq \emptyset$. Then either

- a) there exists $x^* \in \mathcal{G}(U(X)) \cap \mathcal{E}(X)$ or
- b) there exists $x^* \in \mathcal{G}(X) \cap \mathcal{E}(U(X))$.

First, we consider the case a). From a) it follows that there exists $\mathbf{m}_0 \in \mathbb{N}$ such that either c) $\mathbf{x}^*(\mathbf{m}_0) > \mathbf{x}^*(\mathbf{m})$ for every $\mathbf{m} \in \mathbb{N}$, $\mathbf{m} \neq \mathbf{m}_0$ or d) $\mathbf{x}^*(\mathbf{m}_0) < \mathbf{x}^*(\mathbf{m})$ for every $\mathbf{m} \in \mathbb{N}$, $\mathbf{m} \neq \mathbf{m}_0$. It is enough to discuss only the case c). It follows from a), that there exists $\mathbf{x}_0 \in \mathbb{U}(\mathbb{X})$ such that $\mathbf{x}^*(\mathbf{x}_0) \leq \mathbf{x}^*(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{U}(\mathbb{X})$. (If we suppose that $\mathbf{x}^*(\mathbf{x}_0) \geq \mathbf{x}^*(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{U}(\mathbb{X})$, then $\mathbf{x}^*(-\mathbf{x}_0) \leq \mathbf{x}^*(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{U}(\mathbb{X})$, and $-\mathbf{x}_0$ will be the element which we need).

Consequently

 $-x^{*}(x_{0}) = x^{*}(-x_{0}) = \sup_{x \in U(X)} x^{*}(x) = ||x^{*}|| = 1, \text{ so that } x^{*}(x_{0}) = -1.$

But from $1 = |x^*(x_0)| \le ||x^*|| \cdot ||x_0|| = ||x_0|| \le 1$, it follows $||x_0|| = 1$ Let now: $x_1 = x_0 - x_0$. We have:

$$\|x_{1} - x_{1}\| \ge \|x^{*}(x_{1} - x_{1})\| = \|x^{*}(x_{0} - x_{1}) - x^{*}(x_{0})\| = x^{*}(x_{0} - x_{1}) + 1 >$$

$$> 1 = \|-x_{0}\| = \|x_{1} - x_{0}\|,$$

for every $m \in M$, $m \neq m_0$. Then $\|x_1 - m_0\| < \|x_1 - m\|$, for every $m \in M$ $m \neq m_0$. It follows that $P_M(x_1) = \{m_0\}$ and by hypothesis this implies that $x_1 = m_0$, i.e. $x_0 = 0$, in contradiction with $\|x_0\| = 1$.

We consider now the case b). There exists $\mathbf{m}_0 \in \mathbb{M}$ such that \mathbf{c}^*) $\mathbf{x}^*(\mathbf{m}_0) \geq \mathbf{x}^*(\mathbf{m})$ for all $\mathbf{m} \in \mathbb{M}$. We have as in the preceding case $\mathbf{x}^*(\mathbf{x}_0) = -1$ and $\|\mathbf{x}_0\| = 1$, if $\mathbf{x}_0 \in \mathbb{U}(\mathbb{X})$ and $\mathbf{x}^*(\mathbf{x}_0) < \mathbf{x}^*(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{U}(\mathbb{X})$. Let $\mathbf{x}_1 = \mathbf{m}_0 - \mathbf{x}_0$ and $\mathbf{m} \in \mathbb{M}$, $\mathbf{m} \neq \mathbf{m}_0$. If $\mathbf{x}^*(\mathbf{m}_0) > \mathbf{x}^*(\mathbf{m})$ then

with the same proof as in the case a) we have

$$\|x_1 - m\| > \|x_1 - m_0\|$$
.

If $x^*(n) = x^*(n_0)$ then, $x^*(x_1 - n) = x^*(x_1 - n_0) = 1$, and from $x_1 - n \neq x_1 - n_0 = -x_0$, it follows that $x_1 - n \neq U(X)$, since, if contrary, $x^*(x_1 - n) < 1$.

Hence $\|x_1 - m\| > 1 = \|-x_0\| = \|x_1 - m_0\|$, $m \in M$, $m \neq m_0$. Then for every $m \in M$, $m \neq m_0$, if $x^*(m_0) \geq x^*(m)$ we have

hence $P_{\underline{M}}(x_1) = \{m_0\}$. It follows that $x_1 = m_0$ i.e. $x_0 = 0$, in contradiction with $\|x_0\| = 1$. Then, in both cases a) and b) it follows that $[\mathcal{G}(\underline{M}) \cap \mathcal{E}(\underline{U}(\underline{X}))] \cup [\mathcal{G}(\underline{U}(\underline{X})) \cap \mathcal{E}(\underline{M})] = \emptyset$.

Remarks. 1) If X is a finite dimensional Banach space then X does not contain bounded strongly proximinal sets. Indeed, if M is a bounded strongly proximinal subset of X, M is a closed set (since it is proximinal) so that it is a compact set. Then $\mathcal{G}(M) = U(X^T)$. But, from the Krein-Milman property $\mathcal{G}(U(X)) \neq \emptyset$ and $\mathcal{G}(U(X)) = U(X^R) \cap \mathcal{G}(U(X)) = \mathcal{G}(U(X)) \neq \emptyset$, relation contradicting the condition of our lemma.

2) If in a normed space X, there exists a compact strongly proximinal subset M, then U(X) contains no exposed points. If contrary, then $\mathcal{G}(U(X)) \cap \mathcal{G}(U(X)) = U(X^*) \cap \mathcal{G}(U(X)) = \mathcal{G}(U(X)) \neq \emptyset$ and by lemma, M is not a strongly proximinal set.

As usual, m is am extremal point of M means that m is not the midpoint of any segment of positive length contained in M.

We shall give in the next proposition a sufficient condition in order to exist a bounded strongly proximinal set in a normed space. PROPOSITION 2. If X is a normed space and U(X) hash't extremel points then U(X) is a strongly proximinal set in X.

<u>Proof.</u> Let $x_0 \in X \setminus U(X)$ and let $y_0 = x_0/\|x_0\|$. It is clear that $\|x_0 - x\| \ge \|x_0 - y_0\| = \|x_0\| - 1 = \lambda > 0$, for all $x \in U(X)$. Since U(X) hasn't extremal points, it follows that there exist $y_1, y_2 \in U(X)$, $y_1 \ne y_2$, such that $y_0 = (y_1 + y_2)/2$ and $\|y_1\| = \|y_2\| = \|y_0\| = 1$.

Denote by $\alpha = \|y_1 - y_2\|/2$. Then $\alpha = \|y_1 - y_2\|/2 \le (\|y_1\| + \|y_2\|)/2 \le 1$.

Let be $\beta = d (\min \{1, \lambda\})$ and $z_0 = y_0 + \beta (y_1 - y_2)/2$. We have $0 < \beta \le 1$ and $\beta \le \lambda \lambda \le \lambda$.
But

$$\|z_0\| = \|y_0 + \beta(y_1 - y_2)/2\| = \|(y_1 + y_2)/2 + \beta(y_1 - y_2)/2\| =$$

$$= \|(1 + \beta) y_1/2 + (1 - \beta) y_2/2\| \le 1, \text{ hence } z_0 \in U(X).$$

On the other hand we have :

$$\|\mathbf{x}_{0} - \mathbf{z}_{0}\| = \|\mathbf{x}_{0} - \mathbf{y}_{0} - \beta(\mathbf{y}_{1} - \mathbf{y}_{2})/2\| = \|\lambda\mathbf{y}_{0} - \beta(\mathbf{y}_{1} - \mathbf{y}_{2})/2\| = \|$$

From this, it follows that $\mathbf{z}_0 = \mathbf{y}_0 + \beta(\mathbf{y}_1 - \mathbf{y}_2)/2 \in P_{\mathbf{M}}(\mathbf{x}_0)$. But $\beta \neq 0$, $\mathbf{y}_1 + \mathbf{y}_2 \neq 0$ implies $\mathbf{z}_0 \neq \mathbf{y}_0$. Then $P_{\mathbf{M}}(\mathbf{x}_0) \supset \{\mathbf{y}_0, \mathbf{z}_0\}$ and since \mathbf{x}_0 was an arbitrary element of $\mathbf{X} \setminus \mathbf{U}(\mathbf{X})$, it follows that $\mathbf{U}(\mathbf{X})$ is a bounded strongly proximinal set in \mathbf{X} .

In particular, if we denote by (A, Σ, μ) a positive measure space it is well known (see for instance R. B. HOLMES [2]) that $U(L^1(A, \Sigma, \mu))$ contains an extremal point if and only if Σ contains at least an atom. If A_0 is an atom of Σ then $f = \frac{1}{2} \chi_{A_0} / \mu(A_0)$, where χ_{A_0} is the characteristic function of A_0 , is

an extremal point of $U(L^1(A, \Sigma, \mu))$. Then if Σ does not contain atoms, then $U(L^1(A, \Sigma, \mu))$ contains no extremal points and hence by the preceding proposition $U(L^1(A, \Sigma, \mu))$ will be a convex, bounded strongly proximinal set.

We shall give in the sequel a generalization of the notion of exposed points.

The point $x_0 \in \mathbb{N}$ is called a k-exposed point of the set \mathbb{N} if there exist the linear independent functionals x_1^n , x_2^n , ..., $x_k^n \in \mathbb{U}(\vec{X})$ such that :

$$x_1^{*}(x_0) \ge x_1^{*}(x)$$
 for all $x \in \mathbb{N}$
 $x_2^{*}(x_0) \ge x_2^{*}(x)$ for all $x \in \mathbb{N} \cap \mathbb{H}_1$

$$\begin{array}{lll} \mathbf{x}_{k-1}^*(\mathbf{x}_0) \geq \mathbf{x}_{k-1}^*(\mathbf{x}) & \text{for all } \mathbf{x} \in \mathbb{M} \cap \mathbb{H}_1 \cap \dots \cap \mathbb{H}_{k-2} \\ \mathbf{x}_k^*(\mathbf{x}_0) > \mathbf{x}_k^*(\mathbf{x}) & \text{for all } \mathbf{x} \in \mathbb{M} \cap \mathbb{H}_1 \cap \dots \cap \mathbb{H}_{k-1} \setminus \{\mathbf{x}_0\}, \end{array}$$

where by H_1 we understand the hyperplanes of equations $x_1^n(x) = x_1^n(x_0)$, i = 1, 2, ..., k-1. If k = 1, then $x_0 \in M$ is 1-exposed point if and only if it is an exposed point. If the dimension of X is at least k + 1, then a point $x_0 \in M$ which is a k-exposed point is also a k + 1 exposed point.

On the other hand there exist k-exposed points, which are not k-1-exposed points. We will give an example of a 2-exposed point which is not an exposed point.

If we consider in \mathbb{R}^3 the convex body obtained from a cylinder completed with two semi-spheres it is easy to see that a point p of the circle of contact of the cylinder with a semi-sphere is not an exposed point but it is a 2-exposed point. Here \mathbb{R}_1 is the unique supporting plane in the point p, to this convex body and \mathbb{R}_2 $(\mathbf{x}_2^*(\mathbf{x}) = \mathbf{x}_2^*(\mathbf{p}))$ is for instance, the plane containing the circle of contact passing through p.

Concerning k-exposed points and compact strongly proximinal sets we have :

PROPOSITION 3. If the normed space I contains a compact strong by proximinal set, then U(I) contains no k-exposed points, for k & N.

<u>Proof.</u> Let M be a compact strongly proximinal set of I. We suppose that $x_0 \in U(X)$ is a k-exposed point of U(X), for a given $k \in \mathbb{N}$. Then, there exist the functionals $x_1^k \in U(X^k)$, $i = 1, \ldots, k$, such that

$$x_1^*(x_0) \ge x_1^*(x)$$
 for all $x \in U(X)$
 $x_2^*(x_0) \ge x_2^*(x)$ for all $x \in U(X) \cap H_1^x$

 $x_k^*(x_0) > x_k^*(x) \qquad \text{for all } x \in U(X) \cap H_1^X \cap \ldots \cap H_{k-1}^X \setminus x_0\},$ where H_1^X are the hyperplanes $x_1^*(x) = x_1^*(x_0)$, $i = 1, \ldots, k-1$. From the proof of lemma we have $\|x_0\| = x_1^*(x_0) = 1$. Since M is a compact set it follows that the sets defined inductively by

are all nonvoid and compact.

Let be $\mathbf{x}_0 \in \mathbf{M}_k$. We have :

$$\begin{array}{lll} x_1^*(n_0) \leq x_1^*(n) & \text{for all } n \in \mathbb{N} \\ x_2^*(n_0) \leq x_2^*(n) & \text{for all } n \in \mathbb{N} \cap \mathbb{H}_1^m \\ & & & \\ x_k^*(n_0) \leq x_k^*(n) & \text{for all } n \in \mathbb{H} \cap \mathbb{H}_1^m \cap \dots \cap \mathbb{H}_{k-1}^m. \end{array}$$

Let
$$x_1 = x_0 - x_0$$
 and $x \in \mathbb{N}$, $x \neq x_0$. If $x_1^*(x_0) < x_1^*(x_0)$, then

 $\begin{aligned} &x_1^*(\mathbf{m} - \mathbf{x}_1) = x_1^*(\mathbf{n} - \mathbf{n}_0 + \mathbf{x}_0) > x_1^*(\mathbf{x}_0) = 1. \text{ Hence } \|\mathbf{m} - \mathbf{x}_1\| \geq \\ &\geq |x_1^*(\mathbf{m} - \mathbf{x}_1)| > 1 = \|\mathbf{x}_0\| = \|\mathbf{n}_0 - \mathbf{x}_1\|. \text{ In this case it is clear that } \\ &\mathbf{m} \notin P_{\mathbf{M}}(\mathbf{x}_1). \text{ If } &x_1^*(\mathbf{n}_0) = x_1^*(\mathbf{n}) \text{ , then } &x_1^*(\mathbf{m} - \mathbf{x}_1) = x_1^*(\mathbf{n}_0 - \mathbf{x}_1) = \\ &= x_1^*(\mathbf{x}_0) \text{ and it follows that } &\mathbf{m} - \mathbf{x}_1 \in \mathbf{H}_1^*. \text{ If in what follows we } \\ &\sup_{\mathbf{x} \in \mathbb{R}^n} \sup_{\mathbf{x} \in$

Suppose now that $\mathbf{x}_2^*(\mathbf{m}_0) = \mathbf{x}_2^*(\mathbf{m})$. We obtain inductively that $\mathbf{x} \in P_{\mathbf{y}}(\mathbf{x}_1)$ if at least one inequality $\mathbf{x}_1^*(\mathbf{m}_0) \leq \mathbf{x}_1^*(\mathbf{m})$ is sharp. Suppose that $\mathbf{x}_1^*(\mathbf{m}_0) = \mathbf{x}_1^*(\mathbf{m})$ for $\mathbf{i} = 1, 2, \ldots, k$. This implies that $\mathbf{x}_1^*(\mathbf{m} - \mathbf{x}_1) = \mathbf{x}_1^*(\mathbf{m}_0 - \mathbf{x}_1) = \mathbf{x}_1^*(\mathbf{x}_0)$, $\mathbf{i} = 1, \ldots, k$ i.e. $\mathbf{m} - \mathbf{x}_1 \in \mathbb{R}_1 \cap \mathbb{R}_2^\times \cap \dots \cap \mathbb{R}_k^\times$. Now, since $\mathbf{m} \neq \mathbf{m}_0$, it follows that $\mathbf{m} - \mathbf{x}_1 \neq \mathbf{m}_0$. But $\mathbf{x}_k^*(\mathbf{m} - \mathbf{x}_1) = \mathbf{x}_k^*(\mathbf{m}_0 - \mathbf{x}_1) = \mathbf{x}_k^*(\mathbf{x}_0) > \mathbf{x}_k^*(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{U}(\mathbf{X}) \cap \mathbb{H}_1^\times \cap \dots \cap \mathbb{H}_{k-1}^\times \setminus \{\mathbf{x}_0\}$. Hence $\mathbf{m} - \mathbf{x}_1 \notin \mathbb{U}(\mathbf{X})$, i.e. $\mathbf{m} \notin \mathbb{P}_{\mathbf{M}}(\mathbf{x}_1)$. Therefore in all of the cases $\mathbf{m} \neq \mathbf{m}_0$ implies $\mathbf{m} \notin \mathbb{P}_{\mathbf{M}}(\mathbf{x}_1)$. Then $\mathbb{P}_{\mathbf{M}}(\mathbf{x}_1) = \{\mathbf{m}_0\}$ and this contradiction shows that $\mathbb{U}(\mathbf{X})$ does not contain \mathbf{k} -exposed points.

Remark. If A is a separable metric space and x_1, x_2, \dots is a dense sequence of points in A, if C(A) is the Banach space of bounded continuous functions defined on A, normed with the sup norm, then it is clear that the continuous linear functional on C(A) given by

 $x^*(t) = \sum_{i=1}^{\infty} f(x_i)/2^i$,

has the property that

$$x^{*}(e) > x^{*}(f)$$
,

for all $f \neq e$, with $\|f\| \leq 1$. (Here e stands for the function identically 1). This implies that e is an exposed point of C(A) and by the preceding proposition C(A) does not contain compact strongly proximinal sets.

REFERENCES

- [1] Day, M. M., Normed Linear Spaces, Springer-Verlag Berlin Heidelberg New York, 1973.
 - [2] Holmes, R. B., Geometric Functional Analysis and its
 Applications, Springer-Verlag New York
 Heidelberg Berlin, 1975.
 - [3] K o n j a g i n, S. V., Approximation properties of arbitrary sets in Banach spaces (russian) Dokl. Acad. Nauk S.S.S.R. 239, (1978), 2, 261-264.
 - [4] S, e r b, I., A normed space admitting countable multi-valued metric projections (this preprint).
 - [5] Stečkin, S. B., Approximation properties of sets in normed linear spaces (russian) Rev. Math. Pures Appl. 8 (1963), 5-18.

