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APPROXTMATION SOLUTIONS FOR THE NONSTATIONARY
"HEAT TRANSFER WITHIN THE NOVEMENT OF A FLUID THROUGH CIRCULAR
 QYLINDRICAL DUCTS

by
Br#deann Doina

The exact solﬁtion of the nonstationary energy equation for the
movement of a viacoﬁ? incompreséihle fluid through circular cylimdrie-
cal ducts is given in il 1 by Bessel functions and Green function,

The follbwing lines will be devoted to the establishment appro=
ximation formulas for the heat transfer taking into consideration the
same suppositions as those in the wofk [1] : nonstationary and axisym-
metrical movement with thermal eonductivity.

We shall consider the nomhomogeneous energy equation ecorrespon-

ding to the dissipative case with homogeneous boundsry conditions

W, 4 9 29, Bu
}: Balhs (IR 8 _C_'_ y s } =2 (Y3 mam s e 2

%0 =05 8 (1,7) =0, (§ (0,T)=finite )

where m and U (the velocity in the fluid) are known.
For this boundary problem we shall determine approximating soluti-

ons using the weighted residual method.

1.First order approximation.The solution of the stationary energy

equation is known to have the form
(;\’.’

9, = Y-Afﬁ (1- yH

On the first approximation we .8hall choosé the solution of problem (1
in the form p
. (1) 6 m ¢

8, 7,%) -Tflmr’l(m] (1 - 34 (2)

vhere FI(Z) is an unknown function which is 1 for %= o according to
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is 1 for % = o according to

the comdition {h(y,é) =g,

In order to’determlne Fl('a) we shall use a weighted residusl) me-
thod (moments),which at first consists in imposing the orthogonali ty

condition to weight Tfunction wl(y) =1

.

1 %
S [A(e“:)) ~G¢g]ay=o g8

o
-where
) '
-a 0, A ag® Nt
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The dissipative term is calculated W £Lrat:opded approwinstioi el fo-

locity,[2],which has the form

>

2 -6
Ugys T) = (1y°)(1 - 7%
The condition (3) thus turns into the following ordinary differemnti

equation;which is nonhomogeneous ang has constant coefficients

=< f — >» : e
30F)(F) + 20 Pe(B) = 20 ¢ (2767

The general solution to this equation has the form
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and C is determined,using the initial condition Fl(o)=l,in the

402
C = mmnhgm g

(10-90)(5-30)

)
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<+ Second order epproximation.We shall consider an approximatis ;7 :aw-

lution which has the form

{9(3) ¢ 6m frH : N €§1 2,
4 (¥,%) = _‘4“ LL“'FI((;)] (1".7 ) *‘;v_:_; b § k?Zk(%)}

his solution has to fulfil the boundary condition -6(2)(1,7;‘ =
) )
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Thus we can eliminate one p:ﬁ the functions,for in.sgmam:‘f’_,éf

(2) Em § ¢ A2 g RS .
‘9 (y,7%) = o {L ~Fi(B) ] (Q=y') + .r*'u»-y“)zézw, 3 (7)

and (P w%j' (Lw ) are linear

The approximation functions

» 4
indm:‘:endgm,,they belong to a complete system and verify a boun )
a1
dary conditions as well as the symmeiry condition.Therefore,these fune.
LTan
tions fulfil the c&n«iition& of the residual
In order to determine the unknown functions Fy and e shal
.
impose the residuum to the function (y)= Maki;
and wy(y)= Yy
e U
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From the conditions Fl(e)zl and F,(0)=0 we obtain the expressions for
Cy and C, in the form
. \/'—6"1[ \1-396“13‘/'*134' V-Z’i)(*-%h) L1
ik 14(3 6>~ 2464200 (36126 +5) '
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of heat transfer

at the wall of the duct dQ_ per A2 area during dt (x'achslat;i.unary heat

transfer) is given by Pourier’s formula

aq (t) = =) ( OT’) as a
F. we 11 nov »\‘é‘” gt ) 1 r;’ \}f. r=R - .

llowing transformations (for temperature T and time t)
ept

G A ) | 4 ey
T ( ‘[‘_’9 - TO)-Q+ T'O y 0 E e R (A 8= 2R dz)

the temperature distribution (function unknown) ,

quantity whic )

goes through . the duct surface S = 2R RL du

alculated with the formula
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soresent the exact solution of the energy equationyin the nondissipa=
tive case,under nonhomogeneous conditions,which is expressed by means
~ Bessel functions.

1€ in (14), e(y, ) is v-eplaced by the approximate solutions 6’ =
=@ Q-,‘G)yizl 2,given by the residual method,we find from (13) for Eu

+h2 expressions
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In the particular case m=l, ( =1 respectively G~ =0,7,the values of
» > o ¢

Jusselt number calculeted with the formulas (16)=(17) are given in the

Tasle 1 and are graphically represented in Fig.1.

Remarks 1°.There are values of Prandtl number G*,for which the

coefficients from (5) and (lo) are senseless;although those values

’3}

bave hydro and thermodynamic signification.This situation is caused by
the approximation method we used.Except for these singular values,the
approximation method can be applied te all the other values of G~ hydrgg

dynamically admittable.

2°.In the formulas (16) and (17) the first positive roots o, i=
’ fL-

=1,4,0f the equation JO({X:) =0 are v - .
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