"BABEŞ—BOLYAI" UNIVERSITY FACULTY OF MATHEMATICS RESEARCH SEMINARIES

PREPRINT No.1-1982

wis principle COMI, ANIAD . Egopy levi . e3.

Seminar of

NUMERICAL APPROXIMATION METHODS

outer surface IN

HYDRODYNAMICS AND HEAT TRANSFER

CLUJ-NAPOCA ROMANIA

				nr of the hydrod	
	PREPR	INT N	0.1-1982	midredations for	
	Sem	ninar	of		
NUME	RICAL APP		MATION	METHODS	ho 29
HYDR0	DYNAMICS	AND	HEAT	TRANSFER	

Timber of Market Comment of the Comm CONTESTS MARKETS

Temp Lewis out 107 bodys Japunes spinit , willie distance.

THE RESIDENTIAL CONSTRAINTS OF WHI

BRADEANU PETRE,	The mathematical considerations of the hydrodyna-	
		-
The Park	The method of weighted integral relations for un-	D
Child Sin	steady Poiseuille flow	.0
	A variational method with local potential for	
	the Mises problem	2'i
POP IOAN ,	Unsteady free convective heat transfer from the	
	outer surface	
STAN IOAN ,	Motion induced by capillary forces on an unde-	
- Palm Erannaule.	formable drop	1 21 29 38 44 64
PETRILA TITUS,	An approach to the inviscid rotational compres-	
	sible flows	14
DRAGANU MIRCEA,	Sur l'équation de Fokker-Planck en coordonnées	
	cylindriques	54
BRADEANU DOINA,	The heat transfer in a viscous unsteady flow	
	through circular ducts lo	07
where the same of	Approximation solutions for the nonstationary	
of. Es consider	heat transfer within the movement of a fluid	
	through circular cylindrical ducts 1	16
777	Description of the finite element method with	
	spline functions on a simple bilocal problem 1	23

SHECKERIU CALIN, Finite element method for the general quasi
harmonic equation
WAKSAY STEPAN,
LAUREAN MANEA, Theoretical and experimental studies concerning
the distribution of temperature in half-finished
metallic materials heated in flame furnaces14]
-mo and amplicates for soll harders, to hadron own .
not Initiated land of the Bonser Liannisation A
ES moldowy see in eds.
sal for the transfer free conventive heat transfer from the
outer surface 29
STAR ICAN , Motion induced by capillary forces on an under-
85
PETRILA TITUS, An approach to the inviscid rotational compres-
Ab awol't sidts
DRAGAMU MIRGEA, Sur 1 squetion de Fotker-Planck en coordonnées
cylindriques
BRADEANU DOINA, The heat transfer in a viscous unsteady flow
through circular ducts
approximation solutions for the nonstationary
bluil a to immerces eds middly releasest seed
through calcular cylindrical bacts
div bodies juenale estait aux to meligitored .
spline functions on a simple bilocal problem. 12

plu mas equ

or

id dary

the

only

Proc on v

APPROXIMATION SOLUTIONS FOR THE NONSTATIONARY HEAT TRANSFER WITHIN THE MOVEMENT OF A FLUID THROUGH CIRCULAR CYLINDRICAL DUCTS

by

Brădeanu Doina

The exact solution of the nonstationary energy equation for the movement of a viscous incompressible fluid through circular cylindrical ducts is given in [1] by Bessel functions and Green function.

The following lines will be devoted to the establishment approximation formulas for the heat transfer taking into consideration the same suppositions as those in the work [1]: nonstationary and axisymmetrical movement with thermal conductivity.

We shall consider the nonhomogeneous energy equation corresponding to the dissipative case with homogeneous boundary conditions

$$\Delta(\frac{\theta}{4}) = 6 \frac{\partial \theta_1}{\partial x} - \frac{4}{y} \frac{\partial}{\partial y} (y \frac{\partial \theta_1}{\partial y}) = 6 \pi \left(\frac{\partial U}{\partial y}\right)^2$$

$$\Phi_1(y,0) = 0 , \quad \theta_1(1,7) = 0 , \quad (\frac{\theta}{2}(0,7) = \text{finite})$$
(1)

where m and U (the velocity in the fluid) are known.

For this boundary problem we shall determine approximating solutions using the weighted residual method.

1. First order approximation. The solution of the stationary energy equation is known to have the form

$$\theta_1(y) = \frac{\sigma m}{4} (1 - y^4)$$

On the first approximation we Shall choose the solution of problem (1 in the form

$$\theta_1^{(4)}(y, 7) = \frac{6^{-}m}{4} [1 - F_1(7)] (1 - y^4)$$
 (2)

an

2012

lut

Thi

where $F_1(7)$ is an unknown function which is 1 for 7 = 0 according to

nary energy equation for the id through circular cylindrictions and Green function. to the establishment approtaking into consideration the 1]: nonstationary and axisym-

ous energy equation corresponneous boundary conditions

$$(\frac{\partial y}{\partial y})^2$$
 (1)

(0, (0, %)=finite)

are known.

ermine approximating soluti-

n of the stationary energy

is payous i se the solution of problem (1)

$$1 - y^4) \tag{2}$$

is 1 for % = o according to

the condition $\theta_1(y,0) = 0$.

In order to determine F1(%) we shall use a weighted residual method (moments), which at first consists in imposing the orthogonality condition to weight function $w_1(y) = 1$:

$$\int_{0}^{1} \left[A(\Theta_{1}^{(1)}) - G \mathcal{E} \right] dy = 0$$
(C3)

Thus we can eliminate one or the f

where

$$\Delta(\theta_4^{(1)}(y, Z)) = 6\frac{\partial \theta_4^{(1)}}{\partial z} - \frac{1}{4}\frac{\partial \theta_4^{(1)}}{\partial y} - \frac{\partial \theta_4^{(1)}}{\partial y^2}$$

g(y, %) = m(
$$\frac{\partial U}{\partial y}$$
)²

The dissipative term is calculated by first order approximation of velocity,[2], which has the form

$$U_1(y, 7) = (1-y^2)(1 - e^{-67})$$

The condition (3) thus turns into the following ordinary differential equation, which is nonhomogeneous and has constant coefficients

$$3 \text{ GF}_1(\mathcal{Z}) + 20 \text{ F}_1(\mathcal{Z}) = 20 \text{ e}^{-6\mathcal{Z}} (2-\text{e}^{-6\mathcal{Z}})$$
 (4)

The general solution to this equation has the form

$$F_1(%) = C e^{-\frac{20}{36}} + \frac{20}{10-90} e^{-6\%} - \frac{5}{5-90} e^{-12\%}$$

and C is determined, using the initial condition
$$F_1(0)=1$$
, in the form
$$C = \frac{816^{-2}}{(10-9\sigma)(5-9\sigma)}$$
(6)

2. Second order approximation. We shall consider an approximating and lution which has the form

$$\theta_{1}^{(2)}(y, \mathcal{E}) = \frac{Gm}{4} \left\{ \left[1 - F_{1}(\mathcal{E}) \right] (1 - y^{4}) + \sum_{k=1}^{2} y^{2k} F_{2k}(\mathcal{E}) \right\}$$

This solution has to fulfil the boundary condition $\theta_{1}^{(2)}(1, \mathbb{Z}) = 0$.

Thus we can eliminate one of the functions, for instance $F_4(\mathcal{Z})$:

$$\theta_{1}^{(2)}(y, \pi) = \frac{\delta^{2}m}{4} \left\{ \left[1 - \mathbb{F}_{1}(\pi) \right] (1 - y^{4}) + y^{2} (1 - y^{2}) \mathbb{F}_{2}(\pi) \right\}$$
(7)

The approximation functions $\phi_1(y)=1-y^4$ and $\phi_2(y)=y^2(1-y^2)$ are linear independent, they belong to a complete system and verify all the boundary conditions as well as the symmetry condition. Therefore, these functions fulfil the conditions of the residual methods.

In order to determine the unknown functions F_1 and F_2 we shall now impose the residuum orthogonality condition to the functions $w_1(y)=1$ and $w_2(y)=y$:

 $\int_{0}^{4} (A(\theta_{1}^{(2)}) - Gg) y^{1} dy = 0, i=0, i=1$ (8)

In this way we are lead to the ordinary differential equations

$$2GF_{1}'(\mathcal{T}) - 8F_{1}(\mathcal{T}) + 14F_{2}(\mathcal{T}) = -8e^{-6\mathcal{T}}(2-e^{-6\mathcal{T}})$$

$$6F_{2}'(\mathcal{T}) - 64F_{1}(\mathcal{T}) + 52F_{2}(\mathcal{T}) = -64e^{-6\mathcal{T}}(2-e^{-6\mathcal{T}})$$
(9)

which has the general solution

$$F_{1}(%) = (7 + \sqrt{21}) c_{1} e^{\lambda_{1} 7} + (7 - \sqrt{21}) c_{2} e^{\lambda_{2} 7} + a e^{-67} + b e^{-127}$$

$$F_{2}(%) = 16 c_{1} e^{\lambda_{1} 7} + 16 c_{2} e^{\lambda_{2} 7} + c e^{-67} + d e^{-127}$$
(10)

where

$$\lambda_{1} = \frac{4}{6} \left(-6 + \sqrt{21} \right) , \quad \lambda_{2} = \frac{4}{6} \left(-6 - \sqrt{21} \right)$$

$$= \frac{4(6 + 10)}{36^{2} - 246 + 20} ; \quad b = -\frac{6 + 5}{36^{2} - 246 + 5} ; \quad c = \frac{64}{36^{2} - 246 + 20} ; \quad a = \frac{-46}{36^{2} - 126 + 5}$$
(11)

From the conditions $F_1(o)=1$ and $F_2(o)=0$ we obtain the expressions for G_1 and G_2 in the form

$$c_{1} = \frac{\sqrt{21} 6^{-2} \left[(36^{-2} - 396 + 94) - (7 - \sqrt{21})(-36 + 8) \right]}{14(36^{-2} - 246 + 20)(36^{-2} - 126 + 5)}$$

3 · 4

tran

Maki

where the l

We in

that time.

numbe

In th

[1],i

or instance F₄(%):

$$y^2(1-y^2)F_2(7)$$
 (7)

 $\phi_{y}(y)=y^{2}(1-y^{2})$ are linear and verify all the bounition. Therefore, these funcmethods.

ns F1 and F2 we shall now to the functions w1(y)=1

erential equations

$$\frac{646}{^2-246+20}; a = \frac{-166}{36^2-126+5}$$

tain the expressions for

$$(7-\sqrt{21})(-36+8)$$

 $5^2-126+5)$

$$c_2 = \frac{\sqrt{21} \, 6^2 \left[(7 + \sqrt{21})(-36 + 8) - (36^2 - 396 + 94) \right]}{14(36^2 - 246 + 20)(36^2 - 126 + 5)} \tag{12}$$

3. Approximation formulas for heat transfer. The rate of heat transfer at the wall of the duct dQ per dS area during dt (nonstationary heat transfer) is given by Fourier's formula

$$\frac{\partial \mathcal{T}}{\partial h} = -\lambda \left(\frac{\partial \mathcal{T}}{\partial h} \right)_{r=R} dS dt$$

Making the following transformations (for temperature T and time t)

$$T = (T_W - T_0) + T_0$$
, $t = \frac{gR^2}{\mu}$ %, (a.g. = 2 πR dz)

where (y, 7) is the temperature distribution (function unknown), the heat quantity which goes through the duct surface S = 2 RRL during t is calculated with the formula

$$Q_{W}(Z) = -2\pi L \lambda (T_{W}-T_{0}) \frac{gR^{2}}{\mu} \int_{0}^{\infty} \left[\frac{\partial \theta(x_{0})}{\partial y} \right]_{y=1} dz$$

We introduce

that is, the variation of the heat flow per unit area at the wall with

In nondimensional form, the heat transfer coefficient or Nusselt

number Nu is an
$$Nu(\mathcal{E}) = \frac{q_w(\mathcal{E})}{\lambda \frac{T_w - T_v}{R}} = -\int_0^{\mathcal{E}} \left[\frac{\partial \theta(y, \varepsilon)}{\partial y} \right] d\mathcal{E}$$
 (43)

In this formula, A(y, 6) is the solution of the dissipative thermal problem under nonhomogeneous conditions which is exactly determined in [1], in the form is loop swill add (74) bas (84) established add

$$e^{(y,T)} = 1 - 2 \sum_{k=1}^{\infty} \frac{J_{k}(d_{k}y)}{d_{k}J_{k}(d_{k})} = -\frac{1}{G} d_{k}^{2}$$
 (45)

represent the exact solution of the energy equation, in the nondissipative case, under nonhomogeneous conditions, which is expressed by means of Bessel functions.

If in (14), $\Theta_1(y, \mathbb{Z})$ is replaced by the approximate solutions $\Theta_1^{(y)} = \Theta_1^{(y, \mathbb{Z})}$, i=1,2, given by the residual method, we find from (13) for Mu the expressions

$$Nu^{(1)}(7) = G m \left[7 + \frac{36}{20} C e^{-\frac{20}{36}} 7 + \frac{10}{3(10-96)} e^{-67} - \frac{5}{12(5-96)} e^{-127} \right] + 26 \sum_{n=1}^{\infty} C_n^{-2} e^{-\alpha_n^2 6/6}; \quad (16)$$

$$N_{u}^{(2)}(\zeta) = G_{m} \left[\zeta + \frac{3 + \sqrt{21}}{12} c_{1}^{\lambda_{1}} \zeta + \frac{3 - \sqrt{21}}{12} c_{2}^{\lambda_{2}} \zeta + \frac{3 - \sqrt{21}}{12} c_{2}^{\lambda_{2}} \zeta \right] + \frac{-146 + 20}{3(36^{2} - 246 + 20)} e^{-6} \zeta + \frac{76 - 5}{12(36^{2} - 126 + 5)} e^{-12} \zeta \right] + 26 \sum_{m=1}^{\infty} c_{m}^{2} \zeta = 0$$
(17)

In the particular case m=1, G=1 respectively G=0,7, the values of Nusselt number calculated with the formulas (16)-(17) are given in the Table 1 and are graphically represented in Fig.1.

Remarks 1°. There are values of Prandtl number 6°, for which the coefficients from (5) and (10) are senseless, although those values have hydro and thermodynamic signification. This situation is caused by the approximation method we used. Except for these singular values, the approximation method can be applied to all the other values of 6° hydrodynamically admittable.

2°. In the formulas (16) and (17) the first positive roots $d_{i,j} = 1$, $d_{i,$

$$-\frac{1}{\sigma}\alpha_k^2\delta \tag{15}$$

equation, in the nondissipa-

approximate solutions $\frac{(i)}{4}$ = d, we find from (13) for Mu

$$\frac{10}{3(10-90)} = -6\%$$

$$\approx c_n^2 e^{-\alpha} = \frac{\alpha_n^2 5/6}{3} \qquad (16)$$

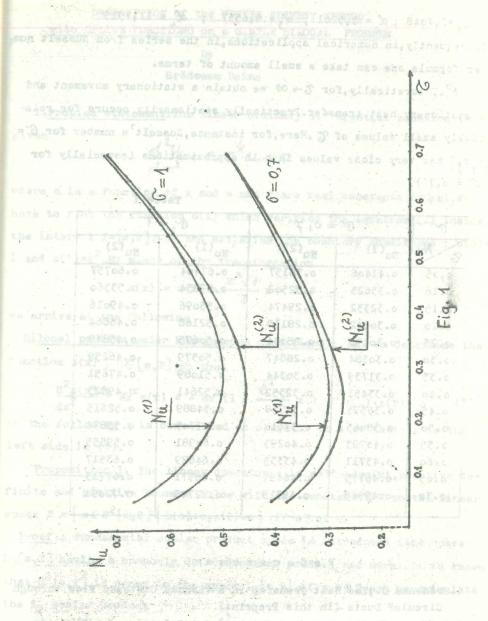
$$3-\sqrt{21} \qquad \lambda_2 = 0$$

$$2^{8}] + 2^{6}\sum_{m=1}^{\infty} o_{m}^{2} e^{\frac{2^{2}}{6^{6}}} G$$
 (17)

ly 6 =0,7, the values of (16)-(17) are given in the Fig.1.

number 6 ,for which the s,although those values
This situation is caused by these singular values,the the other values of 6 hydro

irst positive roots of i=



. Bradeanu P., The Method or Veighted Int. Relations for Whatead

 $\alpha_{1}^{\prime} = 2,4048$; $\alpha_{2}^{\prime} = 5,5201$; $\alpha_{3}^{\prime} = 8,6537$; $\alpha_{4}^{\prime} = 11,7915$

Consequently, in numerical applications, in the series from Nusselt num, ber formula one can take a small amount of terms.

3°. Theoretically, for $\mathcal{C} \to \infty$ we obtain a stationary movement and a stationary heat transfer. Practically stationarity occurs for relatively small values of \mathcal{C} . Here, for instance, Busselt's number for $\mathcal{C} = 0.7$ has very close values in both approximations (especially for $\mathcal{C} = 0.7$).

Table 1

o		=0,7	6 = 1		
8. Nu	Nu (1)	Nu(2)	Nu ⁽¹⁾	Nu(2)	
0,05	0.41406	0.38157	0.67404	0.60757	
0.10	0.35623	0.32502	0.59834	0.53360	
0.15	0.32332	0.29474	0.55096	0.49016	
0.20	0.30642	0.28138	0.52168	0.46664	
0.25	0.30150	0.28034	0.50675	0.45849	
0.30	0.30584	0.28847	0.50379	0.46259	
0.35	0.31739	0.30344	0.51089	0.47651	
0.40	0.33451	0.32352	0.52641	0.49823	
0.45	0.35593	0.34738	0.54889	0.52615	
0.50	0.38065	0.37410	0.57705	0.55894	
0.55	0.40793	0.40293	0.60981	0.59555	
0.60	0.43711	0.43333	0.64629	0.65517	
0.65	0.46773	0.46491	0.68571	0.67713	
0.70	0.49948	0.49715	0.72749	0.72090	

References

- 1. Bradeanu D., The Heat Transfer in a Viscous Unsteady Flow through Circular Ducts (in this Preprint)
- 2.Bradeanu P., The Method of Weighted Int.Relations for Unsteady Poiseuille Flow (in this Preprint)
- Finlayson B.A., The Method of Weighted Residuals and Variational Principles, Acad. Press, 1972.

i.Pr

where where to have to the int

1 and u

We arri Biloc functio

In the :

Pro

finite space Z

Proof:
L2[0,2]
that C2

(Ar,v)

the Ly s