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2 RIH!IOB of the !’INITE BLWT METHOD
'ith SPLINE FUNCTIONS on a SIMPLE BIIOCAL PROBI.EM

by

Brédeanu Doina

£

1.Problen gtat.emant;me linear ordinary differenf.ial equation is
given | :
; dl k
+ Oy X u. =0 ¢
T dzt . (1)
where u is a function of x and a and k are real constants (k>o0).¥e
have to £ind t,he function u(x) which verifies the equation (1) inside
the intervcl I-[o,2]€81 and satisfies the boundary conditions : u(o)=

1 and u('Z)-cz.m means of the transformation -
- 3 2.

' u(x) = z(x) T

4'1 * 1 ) (2)
we arriu at the rollonng
.gglocgl groblen under homogeneous conditions : let us determine the

function s(x) ; x&{0,2],s0 that

i : Ly’ ) o
2 ) . 2 - -
-d—!‘-‘-y- + axkz(x) 2 - axk(l + ——4 x ), z(o0)=z(2)= o (3)
ax : 2
In the following A is con_sidered an operator on z so that Az is the

left side in (3).

Proposition 1. The linear operator A is self-adjoint,positive de-
finite and positive bounded below with the constant 1/2 on the linear A
space -{ zee"’[o,z] l z(0)=0, 2(2)-0} ,1f a7 0.

M A fundamental scalar product space is introduced (the space
L,[0,2] having a commonly defined scalar prodict and norm) . It is known
that 02[0.2] ia dense in the space L.zfo EJ.If Z,v€Z and we calculate

.the L, scalar product 4
z , . 3
{(Ag,v) = S (z'v'«taxkzv) ax =J :(-v” nukv) dx = (z,:v) (%)
() i ©
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. wa deduce from L v”+axkv,1 belng ‘the adjoinf. of A,that A=A .
'fer all z,ve z.conaeqnently,the operator A is selr-edaoint on Z.
If z=v,from (4) we obtain p :
T AR Y p v A
(Az,z)' !J»:'zdx#a‘! x3 dx;o - (5)
. (-3 T 0 i
The equality ia val:ld if and onl,y J.f z(x)= o.Indaed,z (x)*o :unpliea
z(x)=c (const.); but 2(0) = 0 39 that ¢ = o0.The ineguality (5) proves
that the o'peratorAia pt;sitivé definite.
Let us prove now that A'is a posiuve bounded below operator i.e

there ansts a conatant o >o go that.
(u.s) aC (z,z) (5)

In order to demonstrate 'r.his let us notice that we may write
: x 2 A - ! ;
:(_x) =S 2 (l) ds s Wwith z(o) = 0
ke gy
By squering and applying the Cauchy-- Schwartz inequality,we get

x
2(x) ASdsS '2ds=xs 42 ag

:Bence.by extenchng the 1nterva1 (0sx) to (o 2) and by 1ntegrat10n we
obtain o

hence,if a7y 0,we deduce the inequality

4 2 2 .

-—S z%(x) ax éS z'2%(x) dx + o 22(x)x* ax

s

o o ML

which,after (4) can be written in the rorm (Az,z) 2- (2,2)/4.Consequ~
ently,considering o =1/2 the inequality (6) is proved.
" Remarks 1% The above calculations,also show that the bilinear funce
tional a(z,v)=(Az,v) given on (4) is an energy scalar product noted

by (Z.Y)‘ ; we have
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= ' ".Q z I ‘ ‘
(:,v) = (Az,v) =S (z'v’s axksv) dx
o

2%, m. inequality (6) can also be dircctly demonstrated by mesns
of rriodnakz‘ inequality '

I u I( é(#—a) la "

where || . ﬂ is the norm in the space L,[a,b] and uaﬂ is the energy
norm of the operator A.Conceraning the problem under dlascution we
shall have ;

v (z,ﬂ‘ 2V(u,z) and (4z,z) 2%‘ (2,2).

Proposition 1 ad tha well known existence and unicity theorem for
the operatc;rial equation Az = £ lead to

' Proposition 2.1In space Z the bilocal problem (3) has a unique §0-
lution ;. let it be z, GZ.

The following proposition also takes place from the Ritz fundamen-
tal theorem, -

Froposition 3.The guadratic functional (the energy functional)

F : Z-»R. defined by
F(z) = (4z,2) - 2(f,2z) =
3 ¢ 2> 1
25'2'2-0-3:k 2%) ax + ZaS (1 + z) dx (7D
o “b
has en absolute minimal value for z=z_,i.e

)
Flzg) = inf {P(2)]| zez |
and reciprocally : if ,z,o,ez fulfills a minimal value for the energy
functional F(z) then z, is the solution of the d.ifferential problex
(3)s '

As known,inthis case we 8ay that the enmergy functional generates
an equivalent variational minimum formulation (mirimal variatioasl
principle) for the differeatial problem (3),

To solve the veriational problem we apply the Rgyleigh-Ritz finite
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' oluun't approximate mét.hod in a finite dimension space (of dimension

lll,'ith the shape (interpolation,basis) functions provided by splines.

Weduu.me solution approximation means
of cubic splines.One conaiders the problen (3) in t.he case g=l ; kao
for 'hich we have '

2 ‘21_‘ .
(x) = = (1 + === x) ; X I=(0,2)
.d.z,""x)~ ¢ T X): s E”,' : i

s

z(o)=0 , 3(2)=0

A(z)= =

In order to dot;mine the dpproximte solution instead of the space Z
we choose an E-dimensional subspace zn,charactorized by a amooﬂu_ieu

degree equal with that of the a.paée Z.For a given N a basis of funce

tions {¢} ,iti,n in Zg is chosen. These functione fulfil the followinjf
conditions : % represent a complete aet ot‘ linear independent fune ¢
tions (finite elmnta,subintervala),belong to the space 02[0,23 ,have
compact support and nnfy the hon;oganeons boundary conditions (CE .=0

when x=0 end x=2).Such a subspacé of Z is provided by the set
| 2y = {2y €85(T) | zlo)=zy(2)=0}
waere g,(n) is the linear space of the cubic spiines on partition
T OTE € XP L Xy LBy L Xy = 2

having the spacing h= 1/2,0f N=5 dimension.The basis of this space con4
sists in the cubic splines t = 3; ,i=m which fulfil the above coa-
ditionl.'nurofo_ro,the subspace Zy of z has, the form
Ny O o Ar L ’
Zg = spen {B,,By,B,,55,5,
Ia order to construct the basis {?a'i} »i=0,4 ,we use the well known
buil{ﬂi} oi= -1.5 of the cubic splines space 93(71') = Spm{ »BysBys

z l53034 v55} ;CS].“ follows
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B, = By~4B_y , B =B_ ~48y B,=B, , a,=a4-453 » By=B,~4B,

The following formulae are obtained :

x(=9x+3+7x°), x€(o0,1/2]
Eo(x)-:s (1-x), xe(1/2,1]
B O : _ X249

-31(1*3:-5{"); ' " x €[o,1/2]
50 - - 3 = 3(1-x)-6(1-x)%+13(1-2), - x€[1/2.1)
- 4(% -x2, xe(1,3/2)

3 ' - . x 23/2
IQ - 7 : xe(0,1/2)

3 3 '

By(x)= 81 A mant 2 e l—)z--ﬂx— -;-)’ o xel12,]
S e A 0?0 2 w0, xel1,32)
| (2-x)?, . ' _ f - xe[3/2,2)

o | 1 x ¢£1/2

i s .
-4(:— - ), .. zxefl/2,1
By (x)= 8{ 2 2 3 [' 1]
A - -2- =3(x=~1)=6(x~1)% + 15(2-1) xe[1,3/2]
[3(1-x)(5x°-17x +13) , - xe[3/2,2]
o > g B : x é 1

;4(1.)8 8 (2-1)5 : 26[1.3/2]
‘ —L * -- (x- -3- )+ 3 (x- i)2-‘I(x-- 3— )3 5 -,xe[5/2,2]

4 2
' Figure 1 shows the diagrsms of the functions’ Bi(x).

In order to effectively solve the dlfferential problem(B) we seek
a Raaleigh-Ritz approximation for the equivalent variational problem :

for the functional F(z).An approximate eolution in the cubic splines

form is attempted 4 - y . -
zN(x) = Z_‘ ckBk(x) i ;efo,ZJ. ot o '(9)

=0
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where ¢, are unknown constant cocefficients.These coefficients can b

deterzined by solving the Baylexgh-aitz system

Z(w.bk)ck-(fB).iso4 . bye L otagg
k=0
«rere (/= &/dx )
by = (£,8;) = 5 £8; ax , i= 0,4 ; - 1)
Yo :
k = (ABi'Bk) -S (-Bi *Bi)Bk dx =
2 o
-Su?iﬁ;f PR ax, dmo,4 ; k=04 (“2)
, , ,
- . 3 : 3
T i 14k = 0,4
° , if i-k =4

The algebraic qysiem (lo) is written 15 the matrix form

ESHobs fofeerc (43)
TTISTELD fed = opeered™ 4. (0] = (b, oot By 31
In order to find the vaiues of the coefficients aikAwe shall previous

compute the derivatives B (x) of the splines Bl(x) accordlng to the

common derlvatlon rules.If we set
(£ /..., ~ A
“ ik = By Bi* BjBy

and if symmetry is taken into account,we only bave to calculate the

coefficients '
: ) - 3_m a“*f‘. 3 . . ”
o . =2\ o . @drim-53:i=G4m
L(i+m) ; 4 £(4t+m) .
R=¢ =, ,
<-htq 5 (RN

In ‘these formulae,we ndnit that the torna for 'hich the integrntion
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limit index is smaller than zero or higher t.han four should not be

considered.Moreover,the calculation amount csn be reduced both due

to the symmetry of operator A and that of the ﬁmcuona Bi and Bi ¥e.

i= 0,4 +This induces & symmetry of the stiffness matrix [A ] to both

diagonals.Therefore,in the formulae (14) we have

814" 8(4mi) (4=1)22702 § 85(541) = B(3.4)64f) »4 =01
81(i+2) = 8(2-0) (4-1)7 17031 5 85 (545)= (1 4)(4-q) oi%0 .

Consequently,it is only necessary to compute by means of the formulse
(14) but 2ight elements of the matrix [: ]; the other elements are
obtained by symmetry to the diagonals; - :

o K 7
%00 801 802 . %03 » ’
~ A
Big Mo, Mg .
[ IJ = ° - o 322/ o 7 3 -
. » * [ 2 / L ] \ L] L ]
Q / ° . . ~ oJ
b

The right-side terms b; are calculated by meens of the formulae (11)

whiech can be written as .
2 ' ' 2

2 .
b;= -5 B (x) ax - aoj x?i(x) dx ; a, = . L4 f3.194528 . (15)
o ° , " _ iy

s

The numericel values bi'conputed by means of (15) are written in the

system (16).
The Rayleigh-Ritz algebraic system becomes (Dq. (13))

3484 4513 -1l 167 o] (e, -1,958358
. 66562.\ J51 -§15314 . e | 28,208810
5 e 4 3964 7~ . ofde, Lo { -12,583504 ()
A PR i e Bla LS AT B ey 55,68175L . - ,
o T 5l \J ey | | =6,430698 NS
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shis systes has been solved with the Oaﬁss elimination method.The fol

lowing selutions have been found:: :
¢ 290,049061 | €(=0,042327 ;6,7=0,264463 ;c%0,062205 je4==0,112217

. These values-togemer with the relation (9) give the approximate so-

lution of ‘problem (8) & the approximate values ﬁf the solution of pro-

slez (8) in each point x of the inteﬁalto,Z] can thus be obtained.d
1.Zrror evaluation. The foi].owing evaluation (3]

> Kb’ : an
Iz 'uluoé

referring to the orx;or introduced by ln(!) is given.In (17) z(x) is
the exact solution,zﬂ(x) is BRitz approximation of cubic splines ty-pe,
n is the spacing of uniform partition on [0,2] (the lenght of the
rectilinear finite element) and K is n‘positive nunbex; independent of
%.The mathematical theory of the Ritz method,[1] fz},wh.ich is also
valid in the case of discretisation by one-dimensional finite elements
as well as the evaluation (17) provide the convergence of the method
in the problem under eona:.derauon. A i

An approximate solution by piecewise Lagrange linear poly'nomials
(an approximation of class C°) was applied to problem (1) in paper [2]
The resulting numerical data appear in Table 1 where we give the noda)
values for the éxac; solution u(x),the Lagrenge type solution uL(x)
and the cubic splines solution ug (x) = of elass 02.A high degree of
accuracy 'is obtained when cubie aplines are used (Table 1)

2 8 0,9 L 1 : j PR
u(x) -] 1,648721 | 2,718281 | 44481689
Table 1(u (x) | 1,648835 | 2,718546 | 4,482029

. fugt=) | 1,634821 | 2,696116 | 4,460750

V&
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Sunmary

In this paper,a vamatlonal method on one-dlmens:.onal finite elezents
was outlined,within the general context of Ritz mathemetical agproxi-
mation,for a s:.mple bilocal differential problem (1).This probhrr fs
also considered and studied by piecewise linear polynomiels in T 2 7 ‘
‘Another approximate solution is suggested here,(9) given by meams of
the spline runctlons This trial solution, (9),is then determine& by
computing the Bi(x) splines and by calculating the coefficients ©,
(16) ,by using the Ritz procedure.The trial solution u (x),froxa c;z) yis
compared to the exact solution u(x),which can be found analyticsilly,
and to the linear solution u (x) (Lagrange) .The spline solution w (x)
is better than the linear solution up (Table 1 ) ;
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