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In this paper one determines the unsteady field of temperature
in the incompressible viseous fluid flow through cylindrieal tubes
by using tlLe weighted integral relations method (moments) .The
result. are compared to those provided by the finite differences
method (Crank-Nicolson).
1.Basie eguations. We consider a semi-infinite cireulsr eylin-
drical tube of radius R in which flows in steady state an incompres-
sible viscous fluid subjected to a pressure gradient (p° - pL)/L y
where P, is the pressure in the cross section z=0 and Py, is t?e
fluid pressure in the circular section z=L . O3 is the tube axis
and L is the tube length,’
» The motion of the incompressible viscous fluid in the tube is
governed by the equation ‘ '
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where D is the domain of the lotion.-:(o,b,vl) is the velocity
and p is the pressure in the fluid.
Poisson's equation (1) has the solution
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( r2= x% 52 ) Apapo-pL > 0 )

In what follows we shall deal with the unsteady heat transfer
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an incompressib’e viscous fluid in steady meticm.It is sssumed thati
at the initial moment the temperaturs of the £luid is e constant Eo
and the temperature of the tube wall is a conntint value 'f' oHe
suppose also that the motion of the fluid is dissipative.

The unsteady hest transfer equation under the sbove-mentioned
conditions is !
(3) %-l\%)z-t%——%-%(’%), (y,t)En
(4) 2Uys0) =0, Te,t) = finite ( %—3 (0,t)=0) , 1,t) =1
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In theee formulas r 1is the radial coordinate in a circular sec-
tion of the tube,% is time,T is temperaure, (* = density, /¢ - the
viscosity dynamic coofticiont,cp = the specific heat, A~ the ther-
mal- conductivity coefficient, € = the Prandtl number,and m is &
constant.The unknown function in thie initial=boundary value probles
is the dimensionless temperature T(y,t).

2.The choice of the & roximation solution. We look for an approxi=

mate solution of the form
- mn

In ‘this problem the unknown functions are GZk,kso,...,n.mo func=
tions ¥, (¥),3€ [0,1] are some bounded functions,linearly irdepen=
dent,chosen out of a complete system of functions and verify the
symmetry condition 01/0 y = o for y=o.Using the boundary condition
7(1,t) = 1 one can eliminste in (5) the function G, end denoting
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G. with 0‘,tho approximation solution beccues
=

The coordinate functions ‘-sz have the form
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These funetions fulfil the conditions required by the residual

method,
3¢ The application of the veighted inte 8l relations method., The

method consiste in imposing the orthogonality condition which re =
quires the residusl to be orthogonal to each member of a set of

weighted functions y i-1 91 = l,n sthat is [ 3]

(8) I[A(r (¥,t)) = G's(y)] e d: =0 ,4i= 1
where i
2 i » '
4(1,) ‘[5’@1‘;‘ - “"-' 2T AT ;gg:' 42 Tie

The integral relations (8) lgaed L0 a system cf o differenvisl -
tions of fipst order ':lth constant eo-fric‘onta for determining the
functions “21: 3
- de,, () —
: 2k
(9)' k%‘i’k ] —' Z‘(Bi k" ci.k)GZk(t) = bi » is= I.H
The numbers ﬁ,k’ai,k’ci,k and bi have the ‘eXpressions -

4 -
Ai’k = (’i-l' szk) - 5 Ji‘lcpzk(Y)_ dy
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4, T™he initisl condition.Cne applies the orthegonality eomdition
=2 =-a-.%2al condition
of the weignted integral relations method at t=e.Thus,it is required

that 4

(11) Jr,(y,o):"i &g=0 , i=1,
b ;
By replacing Tn(:,o) sWe find the algebraic system of equations
n - 1 B
(12) Z_‘i,kazk(') S o 1= 1a
it A .

The Grem determinant of this systea,

r il p 7B
D, = dot[ti'k]f,k.l =det | (y 7, ‘fu’]i,hl

is non-zero because the funetions ‘-fu, k=1,n are l{uuly indepen-
d ent.Consequently,the system (12) is a Cramer system with the solun-

tion

D, pras
(13) sz(o)- ‘Zk) ’ k= 1,!

n
where D(Zk) is the determinant obtained out of Dn by substituting

the column k with righinidn -columan of the system.
5« The choice of the coordinate functions.If we take the case of
the Y, [0,1]-’{0,1] of the form ‘ﬁ.k (})=ng » we have
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The formulas (lo) leed to the following expressions for coefficients

2 - k

(144)(1¢2k)
___Jt_ s k= 2.
1(1 +4)

_2(i-2)(ke2) , K£2
(24)

» B2

i+2)(1+2k - 2)

s k=2

L
{i#Zk-Z)(i + 2)
€,k
U

- ka2

b, = 4=
1+2 ’

6. First order approximation (n=1; i=l ; k=2),The equation and

the boundary econdition of the problem in first order approximation
is obtained from (9) and (12), in the form

(15) 36G4(t) + 20 G(t) =20 , G, (o) = - 6__5;! .

The solution of this problem is
k0 +

-1 - 5 ¢ -3¢
64(1) 1 (l#om)e
Consequently, the uolution of the thermal preoblem (3)-(4) is
(16) tl(y.t)=1+""[1-(1+-i-) 33't](1-y).

7. Second order approximstion ( n=2 ; k=1,2 ; i=1,2 ), The

approximation solution in this case has the expression

A1) T30 =1+ G0 L) + G (P, (y) =

E
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and the dif’erentnl eguations 2ystea (9), in order to ﬁctcmm
the fanctions 02 and 64 » i2 reduced to

(18) 26'G‘+562104+ao(¢2+6364)8200.‘

GG'+ Gzna‘+n(202+b‘ao4)-12 on
In this approximation, the system (12) has the solution
(19) Slo) ==3  , ge) =2 -
The following transformation is made '
G2(t) = V(t) , G (t)=-w(t)+1

and the system (18) with the conditions (19), after the solving in

terms of the derivatives, is written in the homogeneous form

1?,:— 2 - % V +16m w
{2¢
iF 28 4
T e Y
(21) er=-3, we -1 2o
The solution of thisg problem is
' At It
V(t)=l6m(c10 *Cza )
(22) :
t 1+
T(t) = (R4a) g o + A Bad ) e et
where ' ) .
ﬂ,=%(s-\/?1) ; R-L(er\/ﬁ)

o = ;;f—,z [ted5 «+ o (2 .3 4]
= - ﬁ[1 'f g— —1%— ( L + a )]
« Third order aggroxlmatlon (n=3; k=123 3 i-l 12,3).In this

case the appronmating aoluuon is of the form

(23)

(24)  T.03,1) = 1+ Gy (t) Py(y) + G L) + g0 Py(y) =
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=1+ 2= ghoy0 + G (1o gha 0+ 0F- yhiogn
The unknown functions (ir2 5 _G4 and GG are the solutions of the

system
2
146 aj+216 :04‘- 6 Ga+28( 562+ 56mG,- TGg) = l40Gm
(25) 2663+ 20mGi- (G Gg+24( 26,+ G mG,- 2Gg) = 24Gm
16 G0+156 80{-10G 03+12(490,+21GuG,-510) = 252 Gm

under the initial conditions obtained from (12)

1462(0) + 216‘-04(0) - 606(0) = = 105
(25') 26,(0) + 26'!64(0) - Gg(0) = - 12
18G,(0) + 156‘:04(0) - loGg(o) = - 105

By solving (25°') it follows the values

a0 =&, g 0) = - oz , ege) = .

¥s make the functions change
Gp(t) = Vg(t) , @ (t) = 1- Vp(t) , Gg(t) = Vy(t)

und we obtain from (25) the following linear and homogcneous syster

av

29 91
> o Fvl-lhvz-—b;v’
4av.
2 lo 2 1o

(26) a-t—=-6-z;’lV1-FVz-mV3

av.

126 210 -
!T2= Tvl-nuvz- ?75

where the functions Vy , V, i Vs fulfil the initial conditic::

(27) Vi(o) = %-2 »  Vy(0) _'.='1+ ;Z%'Tn » Vglo) = %l

_'l'ho solution of'the system (26) is sought in the form

V() = e weR ;=23

\
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By verifying im (26), we find *-, linear and homogenedus algebraic

system for the determination of the coefficients ay

2 ' 91 )
(3\2—%).1411-.2-?;5 0
1o 2 1o
(28) e AI+(3,+)\).2 *_"'BG"- 8 =o
%-1-42-.2-(2—61_“:,}).3 =0
If we denote AG’- /4- y the characteristic equation for (28)
is
(29) M7+ 18342 + 5208 M+ 24192 = o

with the roots Jy=-5,783257 M =-28,041603 » M y=-149,175140,
determined by a residual procedure in [2].

For the eigenvalue ’>‘i = —é:— /‘i we choose ibo sigenvector

(1) (i)’.éi)) y where

vilag™ ey
(i) _ _a6(72 + 91);6
1 IogIZo- 2,0

(30) o) = 1 1=1,2,3

o) . mOUE .2 %o 9l el
3 °‘6‘3

The ganoral integrals of the equations (26) have the form

(G V(= Zc oM v - z_c oMt m=zc oy lghit

The constant values ciER are determined by nrifying the initial

conditions (27) and we get

1 (2)__(3) (2)__(3) 9 1¢al2) (3)_ _(3).(2)
le Q—Eﬁ(al -ag )-15(4:3 -8y )-2(1m)(a1 a;" - aj”'ag )]

! (3)__(1) 3 1 9 1 1
Cz- 13[52(81 -8y )-15(!% )-a§ ))_2(1m)(a§3)a( I ‘i )3(3))]

(D_af®)_15(ai1)-a$2), 21520 (afDaf2)- aDaf))] '

z =

'CB A[42(a

whei'e




(34) T.o=o0 , . §sl-l , 1, =1, a=ln

= 9 =
(2)_ (1) g of) o030 (al) _(3)y (ol2) _o(3)
L =ag? a3t r(ag™ a7 ) - (a] ~a17 ") (852 -a3? ")

The solution r,(;,t) represents an approximation for the temperas-
ture field io the fluid flow.
In what follows we shall also give a numerical solving by finite

differences of the above problem. .

3. The finite ‘differences scheme of Ciank-Nicolson type. In the

plane Oyt we consider the point grid (yj,tn) = (j,n) with mesh
size Ay and At , where ¥y Ay ana t, = ndt ,,j=o—,.-l ;
n=0,8 , JAy = 1.

We apply the heat tranasfer equation (3) in the point Uj"‘n— 1)
and we obtain :
T
2t
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(32) 1=
The dcriutivoi at the node (j,n- % ) are replaced by means of (!
formulas of numerical derivation at the integer nodes, [ 4 3.

The finite differénces scheme , associated to the equation (12)
is represented in the form (Crank-Nicolson) :

i G 1 ~
- (1= —2-5)1‘5_1,!1 + 2(1+ = ) T,j,n - (1+ i ) E 10l

s 80

1 oy L,
(33) = (=33 Tyg.p1 - 2= F) Tyaq (530 Thep 0o
R 2€r4t e

T T At

(n=1,F ; j=1J-1 ; r=-==u

-~

under the boundery conditions

s

J,0 J,n

In these equations , T, j=0,1,2,+¢v,d=-1  aze unknown

Jyn ’
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values. But a. y = o the tera (1/y){( 2%/ Jdy) introduces a
singularity anc the calculation in (33) cannot begin with j= o.
Therefore, we shall take into account that in the vicinity of the

point (o,t) the heat transfer equation (3) is reduced to

- T  , T
(35) 27 " W = gly)
with
°T
(36) ETET = 0 for y=o0 .

Thus, the singularity in y = o is execluded.
For this case, the 1mpliéit finito)diffcroncea equation of

Crank-Nicolson is
Tj,n - 1',i,n-l - 1%’ ( rj-l,n -2 rj,n +.rj+1,n 4
* %101 7 2 Tja1 ¢ Tjan,ne1 ) = Dt
fn-Ty,, =0 ’

which is applied for j = o ,
. Consequently, the finite differences scheme for the determina-
tion of the dimensionless temperature T(y,t) hal'tho form

‘ G
1+ =) Toon =Ty ,n = Po,n-1

1 ¢ | 1
(371) - (1- o ¢ ol Tj-l,n +2 1+ 2) T 4+ 37 ) Tit,n
= bj'n-l 5 j ' 1.J-2
G

1
- (- 555 Tjez,n * 2 e ) rJ-l,n ® %3-1,n-1

where

__6
bo,n-1 o e ) to,n-i * r1,n-1
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4n adventage

r=g
le.

numerical solutiong.In order to [

censider thq case

- 1) -

. | E
b1 = (- g3 a1 -2depor .

®3-1,n-1 f,‘1°

+ (1" r%-) 2j§1'n_1 + 2 TG‘ At-‘j

1

¢
2T ) Yogneg - 21- )
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s Tor which some coefficients are mull,

Bum¢rical results.A compari g 1y

For the seme values of t

the aon-dimensional temperature T(y,

res= C?-
non-dimensicnal temperature
with the mesh sise

ison between the ana ticel and

13(1.&)

rJ-I,n-I *

» J=1,0-2

ompere the results obtained we

for 0,05 £t < 0.1

A’ = 0.1 and At = 0,
» in Table 2 are presented :he values of
t) which we obtained by the

01 is given in Table

1 and m=1, The distribution of the

finite differences method.In order to 80lve the algebraic systems
!
(37)=(38) , Geuss's elimination method was used.
» Table 1

¢ | %7,0-05) 7(7,0.06) 2(3,0.07) 1(7,0:08) 1(3,0.09) 7(3,0.1) |
0 0.0215 0.0478  0.08%  0.1241 0.1689 0.2157
0.1 0.0274 0.0562 0.0931 0.1353 0.1806  0,2277
0.2 | 0.0466 0.0822 0.1236  0.1686  0.2156  0.2632
0.3 | 0.0826 0.1278 0.1755 - 0.2243 0.2731  0.321%
0.4 0.1407 0.1960  0.2498 0.3019  0.3520 0.3999
0.5 0.2265 0.2891 0,346 0.4003  0.4498  0.4959
0.6 | 0.3437  0.4084 0.4657 ° 0.5185 0.5630  0.6049
0.7| 0.4924 0.5513 0.6021 0.6463 0.6854 0.7202
0.8 0.6653 0.7100 0.7478 0.7802 0.8083 0.8331
0.9| o0.8451 0.8686 0.8881  0.9047 0.9190  ©.9316
1.0 1 1 1 1 1 1

in calculations is obtained ir we consider the case

«

-
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Teble 2

Yy | 2(3,0.05) 7(y,0.06) T(y,0.07) T(y,0.08) 7(y,0.09) T(y,0.1)

[*] 0.0365 0.0613 0.0933 0.1313 C.1734 0.2181
0.1 0.0417 C.0684 0.1022 0.1414 0.1845 0.2295
0.2 0.0584 0.0910 0.129% 0.1721 0.2173 0.26%6
0.5 0.0904 0.1320 0.1774 0.2247 0.2726 0.3202
0.4 0.1438 0.1960 0.2486 0.3002 0.3501 0.3981
0.5 0.2255 0.2871 0.3448 0.3985 0.4483 0.4946
0.6 0.3408 0.4069 0.4650 05167 0.5631 0.6050
0.7 0.4901 0.5518 0.6039% 0.6486 0.6875 0.7220
0.8 0.6637 0.7117 0.7506 0.7832 0.8111 0.8354
0.9 0.8432 0.8687 0.8893 0.9061 0.9204 0.9327
1.0 i 1 1 e 1 1

el
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