16

Seminar of Functional Analysis and
Numerical Methods, Preprint Nr. 1, 1984, pp. 15 - 22.

FONCTIONS COMBINÉES D'INTERPOLATION PAR MORCEAUX ET LEURS PROFRIÉTÉS

par

Doina Brădeanu

1. <u>Définitions</u>. L'intervalle [a,b] de l'axe réel Ox est partagé en N sous-intervalles égaux par les points $a = x_0 < x_1 < \ldots < x_N = b$, avec le pas $x_j - x_{j-1} = h$, h = (b-a)/N et $x_j = x_0 + jh$, $j = 0,1,\ldots,N$. On associe à chaque noeud x_j la fonction combinée $\varphi_j: [a,b] \to \mathbb{R}$ définie par

(1)
$$\varphi_{j}(x) = \begin{cases} 1 - \frac{x_{j} - x}{h} & \exp(r(1 - \frac{x_{j} - x}{h})), & x \in [x_{j-1}, x_{j}] \\ (1 - \frac{x - x_{j}}{h}) & \exp(r \frac{x - x_{j}}{h}), & x \in [x_{j}, x_{j+1}] \\ 0, & x \notin (x_{j-1}, x_{j+1}) \end{cases}$$

$$\varphi_{0}(x) = \begin{cases}
(1 - \frac{x - x_{0}}{h}) \exp(r \frac{x - x_{0}}{h}) & , x \in [x_{0}, x_{1}] \\
0 & , x \notin (x_{0}, x_{1})
\end{cases}$$

$$\varphi_{N}(x) = \begin{cases} 1 - \frac{x_{N} - x}{h} \cdot \exp(r(1 - \frac{x_{N} - x}{h})) &, x \in [x_{N-1}, x_{N}] \\ 0 &, x \notin (x_{N-1}, x_{N}) \end{cases}$$

(combinaison de fonctions linéaires et exponentielles)

Les fonctions Ψ_i sont définies par morceaux et sont continues dans tout l'intervalle [a,b].

Nous considérons l'axe Os à l'origine au noeud x, et orienté dans le sens de l'axe Ox et la transformation de coordonnées

$$s = \frac{x - x_1}{h} = \frac{x - x_0}{h} - 1 .$$

Nous obtenons alors la forme suivante des fonctions φ_j

(3)
$$\varphi_{j}(s) = \begin{cases} 1 + s \exp(r(1+s)) &, s \in [-1, 0] \\ (1-s) \exp(rs) &, s \in [0, 1] \\ 0 &, s \notin (-1, 1) \end{cases}$$

Dans l'intervalle 'e = [-1,0] les fonctions ψ_j sont définies par

 $\varphi_{j}^{(e)}(s) = 1 + s \exp(r(1+s))$

(4)
$$\rho(e) = -s \exp(r(1+s))$$
.

Nous avons de la même manière dans l'intervalle e = [0,1]

$$\varphi_{j+1}^{(\tilde{e})}(s) = 1 - (1-s) \exp(rs)$$
 $\varphi_{j}^{(\tilde{e})}(s) = (1-s) \exp(rs)$

La fonction dérivée φ_j' est définie comme suit

(5)
$$\int_{\mathbf{j}}^{\mathbf{j}} (\mathbf{s}) = \begin{cases} (1 + \mathbf{r}\mathbf{s}) & \exp(\mathbf{r}(1+\mathbf{s})) &, & \mathbf{s} \in (-1,0) \\ -(1 - \mathbf{r} + \mathbf{r}\mathbf{s}) & \exp(\mathbf{r}\mathbf{s}) &, & \mathbf{s} \in (0,1) \\ 0 &, & \mathbf{s} \notin (-1,1) \end{cases}$$

La fonction 4' n'est pas continue dans l'intervalle (-1,1)

$$\varphi_{j}^{i}(-1-) = 0$$
, $\varphi_{j}^{i}(-1+) = 1 - r$

$$\varphi_{j}^{i}(0-) = e^{r}$$
, $\varphi_{j}^{i}(0+) = -1 + r$

$$\varphi_{j}^{i}(1-) = -e^{r}$$
, $\varphi_{j}^{i}(1+) = 0$

2. Propriétés des fonctions ψ_j . On déduit de (1)-(4)

(6)
$$\varphi_{j}(x_{k}) = \int_{jk} = \begin{cases} 1, & k = j \\ 0, & k \neq j \end{cases}$$
, $j = 0, 1, ..., N$

(7)
$$y_{j}^{(e)}(x) + y_{j-1}^{(e)}(x) = 1$$

(8) Ψ_j sont des fonctions à support compact dans $\Omega = [a,b]$. ($\Psi_j(x) \neq 0$ pour $x \in (x_{j-1}, x_{j+1})$, avec $\Psi_j(x_{j-1}) = \Psi_j(x_{j+1}) = 0$).

(9)
$$\int_{-4}^{4} \varphi_{j}(s) ds = 1$$

(10)
$$(\varphi_j, \varphi_k) = \int_a^b \varphi_j(x) \varphi_k(x) dx$$

$$\begin{cases} \neq 0 & \text{pour } |k-j| \leq 1 \\ = 0 & \text{pour } |k-j| > 1 \end{cases} .$$

On fera remarquer que l'intégrale est non nulle au seul cas où k= j-l, k= j, k= j+l.

Nous considérons les constantes réelles c_0, c_1, \ldots, c_N et la produit scalaire (.,.). En posant $\forall x \in \Omega$,

$$\sum_{j=0}^{N} c_j \, \mathcal{Y}_j(x) = 0$$

il résulte que pour tout k , k = 0,1,..., N nous avons

$$\sum_{j=0}^{N} (c_{j} \varphi_{j}, \varphi_{k}) = 0 = \sum_{j=0}^{N} c_{j} (\varphi_{j}, \varphi_{k}) = c_{k-1} (\varphi_{k}, \varphi_{k-1}) + c_{k} (\varphi_{k}, \varphi_{k}) + c_{k+1} (\varphi_{k}, \varphi_{k+1}) , (c_{-1} = 0, c_{N+1} = 0).$$

En se reportant à la propriété (10) on dit que le système de fonctions of plus, la matrice Gram de ce système de fonctions est une matrice tridiagonale.

Le système de fonctions $\{f_i\}_{i=0,N}$ est linéairement indépendent. Les fonctions f_i définies par morceaux sont continues dans $\Omega = [a,b]$, à dérivées du premier ordre discontinues dans Ω , mais de carré intégrable (ou de degré d'integrabilité fini). Par conséquent, f_i appartient aux classes de fonctions $C(\Omega)$, $W^1_2(\Omega)$, que nous désignerons par S.

L'ensemble

$$H_{N} = \operatorname{span} \{ \mathcal{G}_{0}, \mathcal{G}_{1}, \dots, \mathcal{G}_{N} \} =$$

$$= \{ \mathbf{v}_{N} \mid \mathbf{v}_{N} = \sum_{j=0}^{N} c_{j} \mathcal{G}_{j}, \mathcal{G}_{j} \in \mathbb{R}, c_{j} \in \mathbb{R} \}$$

constitue un sous-espace dans S, c'est-à-dire $H_N \subset C(\Omega)$, $H_N \subset W_2^1(\Omega)$.

Le sous-espace H_N est désigné par $C_h(\Omega)$ ou par $\Psi_2^{l,h}(\Omega)$ (selon le type de l'espace dans lequel on étudie le problème de l'approximation à l'aide du système $\{\Psi_j\}$).

On remarquera que tout $v_N \in H_N$ s'écrit sous la forme

(11)
$$v_{N}(x) = \sum_{j=0}^{N} v_{N}(x_{j}) \varphi_{j}(x)$$
, $(c_{j} = v_{N}(x_{j}))$.

3. Approximation. Nous désignerons par u une fonction continue dans $\Omega = [a,b]$ ou une fonction qui appartient à $\mathbb{W}^1_2(\Omega)$ ou à $\mathbb{W}^2_2(\Omega)$ (en ces cas u est également une fonction continue). Les valeurs $u(x_j)$, $j=0,1,\ldots,N$, sont par conséquent finies.

On peut construire, pour la fonction $u:\Omega\to\mathbb{R}$, la fonction d'interpolation (définie par morceaux) aux noeuds x_j , $j=0,1,\ldots,N$:

(12)
$$u_{N}(x) = \sum_{i=1}^{N} u(x_{i}) \varphi_{i}(x)$$
, $u_{N} \in H_{N} = W_{2}(\Omega)$

où $\mathcal{G}_j:\Omega\to\mathbb{R}$ sont les fonctions (1)-(2). En effet, les conditions d'interpolation

$$u_{N}(x_{j}) = u(x_{j})$$
 , $j = 0,1,...,N$

sont remplies.

Nous présentons le

THÉORÈME 1. Si la fonction u appartient à $W_2^2(\Omega)$ alors en employant la fonction d'interpolation u_N définie par (12), nous avons la délimitation

(13)
$$\|\mathbf{u} - \mathbf{u}_{\mathbf{N}}\|_{L_{2}(\Omega)} \leq c h^{2} \|\mathbf{u}\|_{W_{2}^{2}(\Omega)}$$

où c est une constante indépendente de h et de u.

Démonstration. On calculera la différence $u(x) - u_N(x)$ pour $x \in [x_{j-1}, x_j]$. Afin de simplifier le calcul on utilisera la coordonnée s et les fonctions ψ_j sous leur forme (3).

Nous calculerons d'abord la dérivée de la fonction $u_N(s)$, $s \in (-1,0)$. Pour ce faire, nous remarquerons que (12) donne, à l'aide de (3)-(4)

$$u_{\mathbb{N}}(s) = -u_{j-1} s \exp(r(1+s)) + u_{j} (1 + s \exp(r(1+s))$$

$$(u_{j} = u(x_{j})).$$

On obtient la dérivée

$$\frac{du_{N}(s)}{ds} = (u_{j} - u_{j-1})(1 + rs) \exp(r(1+s)) , s \in (-1,0)$$

Nous avons

$$u(s) - u_{N}(s) = \int_{-4}^{s} \frac{d}{ds!} (u - u_{N}) ds! =$$

$$= \int_{-4}^{5} \frac{du(s')}{ds'} - (u_{j} - u_{j-1}) ds' + (u_{j} - u_{j-4}) \int_{-4}^{5} \left[1 - (1 - rs') \exp(k(4 + s'))\right] ds' = -\frac{1}{2}$$

$$= \int_{-4}^{5} \left[\frac{du(s^{i})}{ds^{i}} - \int_{-4}^{0} \frac{du(s^{ii})}{ds^{ii}} ds^{ii} \right] ds^{i} +$$

$$+ (u_{j} - u_{j-1}) \int_{-4}^{5} \left[1 - \frac{d}{ds^{i}} (s^{i} \exp(r(1+s^{i}))) \right] ds^{i} =$$

$$= \int_{-4}^{5} \left\{ \int_{-4}^{0} \left[\int_{s^{ii}}^{5} \frac{d^{2}u(x)}{dx^{2}} dx \right] ds^{ii} \right\} ds^{i} +$$

$$+ (u_{j} - u_{j-1}) \int_{-4}^{5} \left[1 - \frac{d}{ds^{i}} (s^{i} \exp(r(1+s^{i}))) \right] ds^{i}$$

En prenant d'autres limites d'intégration il résulte

$$|u(s) - u_N(s)| \le \int_{-4}^{0} \left\{ \int_{-4}^{0} \left[\int_{-4}^{0} \left| \frac{d^2 u(x)}{dx^2} \right| dx \right] ds^n \right\} ds^n, s \in (-1,0),$$

ceci du fait que

$$\int_{-1}^{0} \left[1 - \frac{d}{ds^{\dagger}} \left(s^{\dagger} \exp(r(1+s^{\dagger}))\right)\right] ds^{\dagger} = 0$$

En utilisant l'inégalité de Cauchy-Schwarz on déduit

$$\left| u(s) - u_{N}(s) \right| \leqslant \left(\int_{-1}^{0} dx \right)^{\frac{1}{2}} \left(\int_{-1}^{0} \left| \frac{d^{2}u(x)}{dx^{2}} \right|^{2} dx \right)^{\frac{1}{2}}.$$

Nous revenons à la variable x en posant $s = \frac{x-x_j}{h}$, $(x_j - x_{j-1} = h)$ et nous obtenons la délimitation

$$|u(x) - u_N(x)| \le h^{3/2} \left(\int_{x_{j-1}}^{x_j} \left| \frac{d^2 u(x)}{dx^2} \right|^2 dx \right)^{\frac{1}{2}}, \quad x \in (x_{j-1}, x_j).$$

En intégrant de nouveau entre les limites xj-l et xj, nous

obtenons

$$\int_{x_{j-1}}^{x_{j}} |u(x) - u_{N}(x)|^{2} dx \leq h^{4} \int_{x_{j-1}}^{x_{j}} \left| \frac{d^{2}n}{dx^{2}} \right|^{2} dx .$$

Nous utilisons cette inégalité dans tous les sous-intervalles, c'est-à-dire nous faisons j = 1,2,...,N et par addition terme à terme des inégalités résultées, nous obtenons la délimitation présentée dans l'énoncé du théorème.

Au cas d'autres systèmes de fonctions (linéaires par morceaux) un théorème analogue se trouve en [1].

Remarque. Le système de fonctions d'j j =1,n prises dans l'espace de Hilbert H est dit complet dans H si pour tout u et pour tout E> 0 donné il existe un élément

(c'est-à-dire il existe les constantes c_1, c_2, \ldots, c_n) et un nombre naturel N tels que

$$\|u-u_n\|_{\mathcal{H}} \angle \xi$$
 pour tous les $n > N$.

En vertu du théorème précédent, c'est-à-dire de la délimitation (13), on a démontré par conséquent que le système de fonctions $\{ \varphi_j \}_{j=0,N} \text{ est complet dans l'espace } L_2(\Omega).$

Cette propriété du système $\{ \psi_j \}$ constitue l'une des exigences essentielles des méthodes d'approximation à l'aide de formules du type (12) et en particulier de la méthode des éléments finis.

BIBLIOGRAPHIE

- 1. МАРЧУК, Г.И., АГОШКОВ, В.И., ВВЕДЕНИЕ В проекционно-сеточные методы,
 "Наука", Москва, 1981
- 2. MITCHELL, A.R., WAIT, R., The finite element method in partial differential equations. (russian)

 Izd. "Mir", Moskva, 1981
- 3. AHUÈS, M., TÉLIAS, M., Méthodes d'éléments finis pour l'équation de diffusion-convection , Séminaire IMAG n°. 370 - 1981