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PROPERTTES OF THE GALERKIN-CRANK- NICOLSON UPWINDING
SCHEME FOR AN UNSTEADY CONVECTION-DIFFUSION PROBLEX

D. Brideanu

1. The Galerkin-Crank-Nicolson Disecretisation.

a) The one-dimensional convection-diffusion ejuation. The

parabolic equation with constant coefficients is taken with the
initial condition [ 3 ]

2u u 2*u

gt WA, el gk -
1.2 u(x,0) = ug ein, ; (v, €,k are constants, ¢ >0,t>0)

The problem (1.1)-{(1.2) has a solution of the form

(1.3)  ulx,t) = e @It g, with D =€X% , w= vk
where D is the exact damping parameter and ¢ is the (exact) fre-
quency.

Regarding the points (xj,(n-l)At) . (xj, n At) the following

relation appears

’

u(xj,n At) = e~ (DHiw) At u(xj,(n-l) At)

showing that all harmonics damp in time.
In this paper , this solution will be compared with a numeri-

cal one.
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b) The Galerkin equation discreted on finite elements with
combined interpolstion functions. The grid is chosen on the Ox

real axis ‘
A&={xj I xj = jh s J= 0,1,2,-7..-.3; Xj—tj_fh (canst)}

A real function q’j : B—>R given by [ 1] will be associated

to each x5 point

x -z - i
1 - 44— exp(r(1- JI-:— N, xelx; g x5]

2
' &~ x-Z
bl tm 2 S ) eptr 1), xeé[xy, x5]
. '  2E g pixsg)

where r is a real variable parameter.

The functions (-Pj(x) are piecewise defined and continuous on ;
R, having continuous piecewise derivatives and coﬁpac‘t. support
(equal to 2h) on R. :

Let the exact solution ef the equation (1.1) be approximated

by the interpolation (piecewise) function

N
U(x,t) = uglx,t) = ;3 Uit Py

where Uj(t) are the unknown functions and ‘103 are the trial
functions (1.4). In order to determine the Uj(t)' functions, the :
generalized Galerkin method (Petrov-Galerkin method) will be ap-
plied using a test function system noted by _{Lrj(x)} . It consists
of the association to (1.1)-(1.2) of the equation

i ¢ 7 ¢« W N
(1.5) I (U,‘-Yj)(t) + v(U ,F}‘j)(t) + (Uh,YP =0

I -
J
lar product refering to the x coordinate.

where U'=9W/dx , Y d‘l’j / dx and (.,.) represents the sca-
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The L, ac‘aAlarN products are calculated like in the paper [2].
For example : A ok
: - s i A 1 -
where

d5=e1+c2 » ﬂ;f‘(°1’32) 3

P } 1 7 x-
e = (1+rs) 1) Y(g) as ; (5= g,
o : i »
q :
ey =S (-1 +r - rs) 2 Y'(s) as .
o

. P i e .‘Pj (Galerkin procedure), then o/ = Q/’Bt‘- :
‘ ; 1 2r
(1.6). °C,G=3-[['1f2"1' 0+ ¢ ]

In the case of the generalized Galerkin method (Petrov-Galerkin)
we impose the following conditions for the test functions

"
o

1 1
/
‘S Yis) as = 1 ;g Pts) Y'(s) sen(s) as

£q. 0o : -1

-1

[}

& 3873
S LP(‘)"-}/(a) as = 0( ;SGF’(a) Y/ (s) sgn(se) as
L
nﬂuﬁm(ﬁ, aC=a('36)

2
(u"q,/j)g-'z_fk- d‘sag U

i 2 ’
(o, Wj ) = (rL -'%((J )Uj " of erbitrary,

‘ F_'uj £ (U5 - U5 y)

2

Prom (1.5) the finite differences equation (referring to t) is
abt.-in-l -t. the x5 po;nt ;

A.7) h(1+(3‘f4-+—¢8 )U (t) + v(F—-d‘s )U (t)- -{‘f’cs U.(t)=0
. The equality (1.7), reprcaanung a three parameter family 041 y /31

1-205+ 05,



et d
o of differential equations in terms of t (discreted in tafmﬁ
of x), can be written in the form (semi-discrete equations) :
(1.8) (g =fBpuU; 4 - 20 - DU+ (Xy +;$1>nj,1 oy 1
o R
3 (—.¢Td'+ d‘o)u31+2(z—x+ OKBG)UJ'*
£ o

+ (I-Ix -F 30)0:&130

c) Cran-k-l\lieolg’on discrete equation (t varisble discretization)

On the t variable axis, (tZ 0), we corisider the grid
A+= { t, ] t, = nAt, n = o,1,2,... }
In the Oxt plane we have the grid .
£, - A&XAf‘ {xpty | x5= 3, ty = nAt }
characterized by the h and At steps.

Let a scheme with finite differences of the Crank-Nicolson
type be sssociated to the ordinary differential equation (1.8), on
the grid Z&i .On this purpose, the equation (1.8) is applied at
the (xj, tn-yh) point, and a second order approximation in terms

of t is used, according to the formulas

AU U& 0 U& n—q{ 2
S "B U
(H,\)_ X +¢_:(At)

(Uk. i = i (uk,n " uk,n-l) * °m2)

where k = j=1 ; j ; Jj¢l.
A finite differences equation of Galerkin-Crank-Nicolson type

is obtained with these formulas from (1.8), for the given parabolic

equation (1.1) »
(ay -(31-B+—c-)na_ln+ 2(1 - ¢1+n)u

(1.9) +(o[1+p1 -B+—2_ )Ua+ln— (di-P1+B+T)UJ—1 n-1*
fiof
+ 21 - - BTG g+ (el e B 5005
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where (C - Courant number)

(1.10) C=v—A£— 3 H=£-‘%;'— ,-B=—;‘£—(coc+ﬂoc3,3)

In the finite differences equation (1.9) C(1 " ﬂ1 and O are
parameters that do not depend on j and n subscripts, CK}G is a

function of r, defined by (1.6), and C and H are parameters of the
2, gria. :
-Cli &r

. 2. Properties of the Solution of the Discrete Equation (1.9).

Calculation of the Damping and Frequency Coefficient.

a) Solution of the Fourier type. Amplification factor. Let us

consider the linear finite differences equation (1.9) and a solu-

tion with separable indices of the complex Fourier series form
K-

, ikjh
(2.1) I R
; kz-a

and observe the evolution of a single harmonic (with the wave num-

ber k). If the equation (1.9) is verified with this solution, the
following relation will be found

ol (gt B)eag kA2 1 BIL R Clin hE
= n 2(«,—B)ror kb -2 (ot -1 ~BJHL. Loy 1¢)tin %A hetd

!be.aiplification factor (a transfer operator) of this relation,

that performs the transition from n-1 to the n step, has the form

(2.3) " R(h,At) = 2-2 (ot B)(1-res &)+ 4 (2B=C) bin T
-3) " R(h, At) = 2,- 2(X, = B){- o3k )+ 4 (2Pt C) din 24,

b) Approximation. By noting y = kh and using the series expan-

sion for the sin and cos functions (having low h and a given k), we

will find By
% 2- (o, tB)Y 44 (2= C)($-E4Dray)
2-(%-B) i ap - F ¥) oz

_R(h,At) =

Hence the following expansion is obtained



= 8=
2 s
(93 2 A
(2.4) R(h, At) = 1- iCy- (B + 5+ pic)y + T[-zcoc1+
2 2 . 2 3 4
+ 48 + c®)f,+ 40/31+ (5 +4B+C 1c] 3> + oyh
When passing from the n-1 to the n level (for the harmonic of
k order amplitude), in the At time interval, the amplification

factor in the exact solution will expand as follows

o= Exlvivi) At _ a—(ﬂy2+iCy) =1~ icy -
2

-(T+H)y2+i(—;—é3+m)y’+o(y4)

(2.5

From (2.4) and (2.5) we find the difference (error)

R(h, At) - ¢ ~B * 30 - (g _p-cpiy®+

=
"

4 : 2
+§[-co s ampracpcrp) e Fo

4C(B -‘B) - —;— c’] ,y’ + o(y4)

+

The {3‘ parameter will be chosen so that

(2.6) a-a-cp‘=o
o H
SR e e S )

The E difference is reduced to

E=%’- 5{(-2414—::+—3102)c+4p1[3f

s cc +f )} 4ce - M} + olrh)
The (¢ , parameter will be chosen so that

(227 .-2<¥+-32—+1—02=o c{=%—(2+c2)

By these det.ermnauons of the af and ﬁ parameters, the E dlf-

ference is reduced to

Y PPSSTRT R P e

Hence, having B = H - cﬁ s in terms of C and H we get




in ey o g :
2.8 e [-ma s ga- dplom? + ot
If the grid Reynolds (Péelet) mumber is introduced P = g-ﬁ- e
c = v% and K = 55;--'., the following relation will be found

l = -‘-.-—g—
P

For the B error, the fnnnung estimation is obtained in terms of
CamaP

(2.9) - B= - ——(-f F_( dﬂﬁ - Z)]’(Hl)5 + o(k4h4)

~ This result indicates that in the numerical study of the convec-
tion-diffusion modeled by eguation (1.1), the E error decreases
with the inc‘;uae of the P reynolds number in the case of dominant
convection, if o, end p‘ parameters are chosen according to (2.7)
and (2.6).

Since the equation tfw(r) = 2, sccording to (1.6) or to the
~ proposition below, is miﬁ.’ed only by r = o, if OCBG =2 is
chosen we are in the cue of piecewise linear approximation. For

Q.. = 2 the formula (2.8) is reduced to the one given in Ead.

36
A (-2
PROPOSITION. The expression F(r) = % + —%“%%— defines

a positive functlgg on R = {o}
Proof. Lnt. us consider the expression (1.6) of d’iG' We take

the function
£(r) = dm(r) e 2LEY =_z—1£[-,1 + 2r(1- 2r) + Fl-2 5

re& B ~Jjo}
We have lul of G(r) =2 and lim f(r) =0 .
The & 3G function may be extended by continuity in r = O, by

llot:mg - ;
y — d.3c(r) 4 r# 0 - £l>r)
dsatr)'-' ; flr) =
2 : (4]

i
W
o

L2 |
(1]
o

» réo
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The sign of the f_ function on r is to be determined. We write
f(r) =i—4ﬁ[ezr - (2r + 2r + 1)]
and we introduce the function g: R—s R , g(r) = 5 (2r2+ 2r+ 1),
We have g'(r) = 2( 2T (2r + 1)) » 8"(r) = 4(e2r o i) and g(O)= y
= g'(0) = g"(0) =0, g(r) <0 forr < 0, g"(r) >0 for r> 0.
Therefore g'(r) 2-0 for r € R (the equaliiy gccurs only for
r = 0). Hence it results that g(r) £ 0 for r <0 and g(r)>0
for r > 0. Since f(r) =.£E g(r) and f(r) is the extension of the
f function in r = 0, it is implied that f(r) 2-0 for any r € R
and therefore 0{367/2" for any r &€ R. Consequently, the equa=-
tion éZ-SG(r) = 2 has only a single root r = 0.

The parameters O and P have the same sign, namely &/ ‘Pz o,
Thus, with "E}c‘r) 22 forany r € R, we find that F, the
(kh)3 coefficient from (2.3), is non-negative. This is zero only
in the case of simultaneous presence of ©f = 0 and <oC 36 = 2y
which implies a discrete Galerkin method with piecewise linear ap-

proximation.

c) Calculation of the discrete damping _parameter and of discrete

o ~
frequency ( D and W ). The solving of the Galerkin-Crank-Nicolson
equation will be continued with the study of the equation (2.2),

for which a solution of the form

s
7 = e AnAt

~ ~ ~
= . A=D+iw

(2.10)
; £ . . b G .

is chosen, where ¢ is the discrete frequency and D, the discrete

damping coefficient. By verifying the equation (2.2) with this so-

lution, the following identity is obtained

R(h, Aty oD + 1D) At e

(2 o1

which, after replacing the R(h, At) amplification factor by its

expression (2.3), leads to the identity



¢ A
(2.12) ¢ DAY 2 3(e+8) (1-cos )+ i(2B,+0)sin & ] =
= [2- 2(¢1+B')(1-cna kh) coa.EAt-(Zp_i-C)sin kh sin@dt +
+ 1{[2- 2, -B) (1-cos 1) siaBAt+(2f-C)sin kh cosdipt},

From this identity the D and W parameters are obtained by using

the formulas
' IS E P, Ea, Ex
(2.13) tg WAL = — Jax W +5
| A E

-

B =4lc - (o0 + 28801 - cos 1)) sin

+

= (4 P:'- c®)sin%kh + 4[1-2«, (1 - cos kh)
(2.14)
+ (=B - cos )2 ]

B = (2p, - ©)? sin’en + 4[1 - (@+ 8)(1-cos kh)]

where the C and B coefficients are given in (1.10), eand o, and
ﬂ1 are chosen according to (2.7) and (2.6). The problem contains
only one parameter , & (from ﬂ1 and B).

3. Galerkin Procedure with Combined Interpolation Functions

This procedure is characterized by

o &
(3.l)d'-o%-_ ﬁ“ot dBG#O' B-*Z-G‘H

The equation (1.9) takes the form
2 1 a
¢! T —c( 3H- —‘”UJ-1 pnt A F+r 3% muy
4. 4 o {
S H+ - C) U, =
(3.2) 3 2 3G j+*i,n
i e e |
3 5(3H+§,'3)U,1lnl+ 2(5'}:“36 HUs ng *
4 4 4
+ (Si-zdscﬁ-z(:) Uj*l Hey
At wat eat Dat

T TRE Rt gm g
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The numerical solution of the equétion (3.2) is

3 3 Ao 5 b ~ :
U = V. (k) .ik‘]h — "<D 'f W}nAt + iij
J n
with E:‘ - g; -
ta(WAL) = = !
2

where, accordmg to formulas (2.14). By, Ey and x, have the expree-

sions

By = g— (2+ cos kh) %wAt.
4~ mi{
(3.3) By = g (2+ cos kh)? [ ) - ("Cm —_i_r.w) @A:’Z
4 Go Atk | o2 csikd )‘
By = 9—(2+coskh-'52' = D AL)S+ ( WAL
Let us study, ﬁrst, the ¢ discrete frethency, with formula -
E
CO At = arc tg —
53 =
The (U discrete frequency can be expressed by the formula
(3.4) e : t . @ At
. =T arc —
e at "t I T e &O]* (Zat )t
2
if we choose o e —"Di and we note
(3.5) w = KA
§ &&(um k4)
f-enkd RE
(3.6) a(kh) = N :
£*LE au kb4

Remarks. Interpretation of €0 . Let us appéal again to the

Galerkin equation (1.8) - with respect ta discretization only in

the x variable - for the case here considered, o = 0, Q4'1 = -3- ’

/51=°:

- - 5 = SR a
SR O R T CRRRICES S (RS- PRI PIO

} &
-2 —0( o U5(0) = (v - = &yg) U510 ]
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When using a solution of the form Uj = V‘j T(t), where V'j = V(xj).-

the Galerkin semi-discrete equation (3.7) becomes

3 e | €
(3.a)A 3 («.r+—4-,:0636)\{‘,4 ’“Tolaeva'(vT Idae)\éu :
X AL TR :

-—

where A is a constant (independent of x and t).
Taking into account the initial condition, it may be written
Rt ikx ikjh
VJ-T(O)=u°e K.
Therefore, if we note A = D+ico , the following formule will

be obtained from (3.8)
£ o, (toskh—1) -4V 4i

2 pioeang: < o, (cakh-1)-aV sin ki,

-9\=-(D+ico)=% C A

2+ ecs fh

So, C—E introduced by (3.5) represents the semi-discrete harmonic
frequency of the Galerkin equation (a discrete equation only in
the x variable).

' - Now, the gxpresaions (2.7)- (2.6) for the 04'4 and (5, para-
meters and respectively (1.10) for C, H and B are used. Let us in-

troduce the D and ¢ exact parameters. We have the formulas

e At At e D .
C=Hw ,H-W.D 'B_m(OC+£&uT)w
1 1 A* 2 = q (36.2’ D
N W NTTTRRTa
By using these relations, the following expressions will be ob-
teined from (2.14) :
2
ey - 2 ¢ AT 2 d3c=2 D
iz D '
(ol + s ):l(i-cos kh)}sinkh 3

45w
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W . t
32=[(q+—3‘—ZTa—D)—)2 1‘42;21_@]31!12“’4{1‘—‘(1*

At At
—A—EEFUO )(1 - cos kh) +[9 (1 +ﬂ7’27‘-a) y2- yeies (dw +

F i

{l‘g- D)z-] (1 = cos xh)? }

+

At - e S {
3,5:(0(,-*&&604- v -a-J—) sln]d’l+4{.1-[-j-+

L R G R ; %y 2
‘1L (T R wtra s 22 (L - cos )}

If the o(At’) terms are removed, the expressions of Ey, E, end

E3 are reduced to the form

By = g‘ %#wa{ 2+ cos xhe 0[30( o 56 2 i:ﬁ“a%*
+0(kn[q;kh+(d6+o(e }4'“’“;
L B ;,j‘:“ (ot +
o S i ‘““)] (@WaH?
£ =‘ - ‘; of 5502+ cos kn) j‘-ﬁ—‘ 2 X 55-2) z:éf—nﬁh

+d.[ ‘ﬂ'—%i ‘;f- (2¢ -cos kh) t—k%‘éJmAu(a)At)'z{

2+ke3kh) 4- o3kl ' D 4 m“
_ul . k)-{."lf v(gcu]n:(r”-a—)- )]
wiere
32-%(2+coakh)2 [(0[ '2)‘3‘—*11"":;]
+otxh [k + 2l 50 - ]“”“’

The discrete frequency and the dlscrete'dqnping paramcters will
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be calculated with the formulas (2.13).

4. The Method of Separation of Variables

Let us use, for the numericel study of the convection-diffu-
sion equation, the method of separation of variables. This method
will be applied to the equation (1.7). Thus, a solution of the

form

»Uj(t) = Ulx;,t) = V("j)_ T(t) 3 V; (1)

By replacing this solution into (1.7) the equations we obtain

2 = U
(4.1) —Z—( qi-':u-zrogsc)tg VJ-+ (AP1+I)IJ.VJ+
i
ar

where ?i is a constant value, independent of x and t, that is
to be detezwined. The equation (4.1) is a finite difference equa-
tion ( M um! 52 are operators of the finite differences),
while (4.2) is an ordinary differential equation in terms of the

T function. Thus, the solution of the problem is of the form

e
U.:i(t) ol VJ-

Using the initial conditions (1.2), we have

ikx

ORI
\ il IS
(4.3) { Tt?i f 5 (Vj+1 - vj—l) =i Vj sin kh
: % 0 _
]“ Vj= Vg -27; ¢V =2V;cos kh --1)

4 I

From the '_evquati.m: (4.1) we obtain the parameter



=16 -

(4.4)  ;\=-(5+>1£—;~)
where l&{
(wiﬂ&.-fbcc ) iz&z{[’f (4—#’5‘&&. ]ﬂOP‘
Pl [ 1-o,(t-eas kA) T+ Aim 2k
» : m Rl
o lonkrD,) FEE Ao~ o))
4.

[4- a(4-m&4)1‘+{; s A

Here D is the semi-discrete damping coefficient and €O is the
semi- discrete frequency. These values correspond to the discreti-

zation of the x variable only.
The discretization of the t variable. We take the differential -

equation (4.2), where the independent variable is the time t, and
the unknown function is T(t), te [0, w) . The intervalfo.m)

- that is the time axis - will be discreted at t.he_ points "n = n At,
n=0,1,2,... . A finite differences equation of Crank-Nicolson
type will be associated to the equation (4.2), so that ]

aT -

Syt s T Yo 2 &
/A A e s

Where

4T g ¥

ol . T = | 2

(o& & =t + olatd)

T ¥—"-(1‘+r' )} + ol At
m-%L 2 n-1

The following finite differences equation is obtained

(4.7) (1 - ?%'E-At) WP b—n.w At) T,

having a.second order approximation ( trunc-t.ian error of the At
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arder). Por this eqnaﬁnn' o solotion will be considersd (i= v -1)

e . r.=t A‘t‘ e;*‘& ’

where ‘
Rym - (R 1l

. B verify (4.7) with the solution (4.8) and we obtain the iden-

tity

(.I-rb1 -ﬂ.

At) e (cosiB At - i sindAt) =

L
-2

Hence, thammina'mrmltsforSM 5.

2 mm,m. + DAt eoaa:,At. +@ At sinm,m.
: - (2-Tan Mt
2 aintl At + iAt sin@, At -& At cosl, At =
= WAt DAt
From this system the formulas
beow at
h-(5* +iz %) at*

(4.9) &, At) =

B, 0 2 =2 =1 272
(4.10) _z-blAt _=\Kl“-0At)_+[Ll—(D+¢o )At ]
(2+3at)T 4 (G At)

are obtained by means of which, depending on oo and D the
discrete frequency w, and the discrete damping coefficient D
will be calculated. In their turn, €O and D are expressed
by the formulas (4.6) and (4.5).



R 1 e

Pure convection. Let us suppose that D = @ , (D = 0), which

corresponds to the pure convection case, and take & =0 , 4
! ) pha
X, = 3 /31 =@ 4 O(BG #0 ). Then, the expression of

from (4.6) is reduced to

) 3 n kA
(4.11) = % m————
W Lh(2+ s k4A)

which is identical with (3.5). The formula (4.9) becomes (&, 4t>0)

ta(@, AL) = hooat | & a
iy h-(@at)r © (- (Zaiyp

For rsasons of simplification, we will note %) At = 2x  and

from the previous formula we obtain (s At >

4 £ A 0 <1
" [ 73 oTC g RS . <x
@y
—nlE) =
w 4 2Z
\ 2z (arec tg yi 0w s x>

N s
The function @, /¢0 defined on I = (0, @@ ) ~ {1} has the

following properties

@ @, iT
"

19 im =x) =1 ; 22 - 2im :i(x) = —_— H
x20 @ 21 @ o

& :
W, y/
32  The (5—') derivative is defined on T = (0, oq ) -‘I 1}

and ] o T y
(/) ) =
a) lim(:‘(x)) =0 = b) lim(rl(xﬁ = - lt_l x
Erg v x>1 W

o, /
c) (%(x))(O for any x €1,
- W

i~ -
Thus, the W, /o function is strictly decreasing on I.

— Y
Similarly, the (Cd /w)(fd\,’ function is strisctly decreasing, and

N
the | o f 'ew) and o, /O functions are positive.
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Taking into account the relnlta'above, we can conclude, from

the equality @, /W = (ay /& )(& /@), that the Galerkin-

Crank-Nicolson scheme defines a convenient procedure for the nume-

rical solving of the evolution problems considered.

The upwind type procédure, described in this paper, can slso

be applied to the dominant convection problem - in which case, as

it is well-known, the Galerkin classical scheme becomes unstable

 even if combined trial functions or linesr function are used.

3 Bﬂd'm}l, D.,

2, Br#deanu, D.,
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