"RABRS - BOLYAI" University
Faculty of Mathematics and Physics
Research Seminars
Seminar on Functional Analysis and Numerical Methods
Preprint Nr. 1, 1987, pp.

ON THE EXACTITY OF THE ERROR EVALUATION IN THE APPROXIMATION BY CUBIC SPLINE OF INTERPOLATION

Costică Mustăța

In the present paper we complete and extend the results obtained in [1] concerning the evaluation of error in the approximation by cubic spline of interpolation.

Let $f: [a,b] \rightarrow \mathbb{R}$ be a Lipschitz function on [a,b], i.e.

(1)
$$|f(x) - f(y)| \le ||f||_{L^1} |x - y|$$
, $x, y \in [a, b]$

where $\|f\|_L$ is the Lipschitz constant given by

(2)
$$\|f\|_{L} = \sup \{ |f(x) - f(y)| / |x - y| : x,y \in [a,b], x \neq y \}.$$

The number $\|f\|_L$ is the smallest Lipschitz constant for f and is called the Lipschitz norm of f

Let $\Delta: a = x_0 \angle x_1 \angle \cdots \angle x_n = b$ be a fixed division of the interval [a,b] and let $f_i = f(x_i)$, $i = 0,1,\ldots,n$ the values of the function f on the knots of the division Δ .

The following cubic spline of interpolation

(3)
$$s(x) = \frac{M_i - M_{i-1}}{6 h_i} (x - x_{i-1})^{\frac{1}{2}} + \frac{M_{i-1}}{2} (x - x_{i-1})^{2} + m_{i-1} (x - x_{i-1}) + f_{i-1}$$

 $x \in [x_{i-1}, x_i]$, $i = 1, 2, ..., n$, where $h_i = x_i - x_{i-1}$, $f_i = f(x_i)$

i=1,2,...,n , $m_i=s^i(x_i)$, $M_1=s^m(x_i)$, i=0,1,...,n , was considered in [1] where it was proved that this spline s is uniquely determined by the conditions :

- (i) $s(x_i) = f_i$, i = 1, 2, ..., n,
- (ii) $s'(x_i) = x_i$, i = 1, 2, ..., n,
- (iii) $m_0 = p$, $M_0 = q$, p,q given real numbers .

The problem we consider is the following :

If $f:[a,b]\to \mathbb{R}$ is a given Lipschitz function with norm $\|f\|_L$ then knowing the values $f_i=f(x_i)$, $x_i\in \Delta$, $i=c,1,\ldots,n$, find evaluations from below and from above for the uniform norm

(4) $||s-f|| = \sup \{|s(x)-f(x)| : x \in [a,b]\}$,

and, if $f \in C^1[a,b]$ find also evaluations from below and from above for

(5)
$$\| s' - f' \| = \sup \{ |s'(x) - f'(x)| : x \in [a, b] \}.$$

In [1] it was proved also that the evaluations given for the norms (4) are exact in the class of Lipschitz functions having Lipschitz norm $\leq \|f\|_L$ and passing through the points $(x_i, f(x_i))$, $i=0,1,\ldots,n$.

This problem is considered in many papers, but under more restrictive conditions of f and for cubic splines of interpolation different from (3). For instance in [2], [3], one suppose $f \in \Psi^+_\infty[a,b]$, i.e. f^{n_1} is absolutely continuous on [a,b] and $f^{(n)} \in L_\infty[a,b]$, or more generally $f \in C^2\Psi^+_\Delta[a,b]$, i.e. $f \in C^2[a,b] \cap \Psi^+_\infty[x_i,x_{i+1}]$, $i = 0,1,\ldots,n-1$.

The evaluations of error are given in terms of the norm of $f^{(v)}$ and of the norm of the division Δ (the greatest of the distances between two consecutive points in Δ).

In [1], the delimitations obtained for (4) and (5) are

 $\min \left\{ \|\mathbf{s} - \mathbf{F}_1\|; \|\mathbf{s} - \mathbf{F}_2\| \right\} \leq \|\mathbf{s} - \mathbf{f}\| \leq \max \left\{ \|\mathbf{s} - \mathbf{F}_1\| : \|\mathbf{s} - \mathbf{F}_2\| \right\}$ respectively

 $\min \left\{ \left\| \mathbf{s}^{\prime} + \mathbf{lfl}_{\mathbf{L}} \right\| ; \left\| \mathbf{s}^{\prime} - \mathbf{lfl}_{\mathbf{L}} \right\| \right\} \leq \left\| \mathbf{s}^{\prime} - \mathbf{f}^{\prime} \right\| \leq \left\| \mathbf{s}^{\prime$ < max {|s' + |f||_| ; |s' -|f||_|}</pre>

if fe cl[a,b]. The function F_1 , F_2 in (6) are given by

 $F_1(x) = \sup \{ f(x_k) - \|f\|_{L^1} |x-x_k| : k = 0,1,...,n \}$ (8)

 $F_2(x) = \inf \{ f(x_k) + \|f\|_{L'} | x-x_k| : k = 0,1,...,n \}$

In the case for $c^1[a,b]$ the Lipschitz norm $\|f\|_L$ of f is given by

 $\|f\|_{L} = \max \{ |f'(x)| \mid x \in [a, b] \}$. (9)

In the following we shall show that the delimitations (7) are not attained and we shall motivate why the delimitations (6)

Let $f:[a,b] \rightarrow \mathbb{R}$ be a Lipschitz function on [a,b] with Lipschitz norm $\|f\|_{L}$ and let $f_{i} = f(x_{i})$ be the values of f the knots of the division Δ : $a = x_0 < x_1 < \dots < x_n = b$. By a result of Mc SHANK [5] there exists at least one function F, F Lipschitz on [a,b], verifying the conditions:

 $F_{\Delta} = f_{\Delta}$ and $\|F\|_{L} = \|f\|_{L}$ Let

(10) $\mathcal{E}(f|_{\Delta}; [a,b]) = \{F : F \text{ is Lipschitz on } [a,b], F|_{\Delta} = f|_{\Delta},$ $\|\mathbf{F}\|_{\mathbf{L}} \leq \|\mathbf{f}\|_{\mathbf{L}}$

the set of all Lipschitz extensions of f to [a,b] with Lipschitz norm \ | f|_L

Denote by Lip [a,b] the set of all real valued Lipschitz functions defined on [a,b]. Then Lip [a,b] is a linear subspace of the Banach space C [a,b] of all real-valued continuous functions on [a,b] with the uniform norm:

PROPOSITION 1. Let $f \in \text{Lip}[a,b]$ having the Lipschitz norm

If I_L and let $\Delta : a = I_0 < X_1 < \dots < X_n = b$ be a division of [a,b].

Then the set

 $\mathcal{E}(f|_{\Delta};[a,b]) = \{F : F \in \text{Lip}[a,b], F|_{\Delta} = f|_{\Delta}, \|F\|_{L} \leq \|f\|_{L} \}$ has the following properties:

- (a) F_1 , $F_2 \in \mathcal{E}(f|_{\Delta};[a,b])$, where F_1 , F_2 are given by (8);
- (b) $\xi(f|_{\Lambda};[a,b])$ is a convex set in Lip[a,b];
- (c) The inequalities

 $\mathbb{F}_1(x) \leq \mathbb{F}(x) \leq \mathbb{F}_2(x) \quad , \quad x \in [a,b]$ hold for all $\text{Fe } \mathcal{E}(f|_{\Lambda};[a,b])$;

- (d) $\mathcal{E}(f|_{\Delta};[a,b])$ is bounded with respect to the uniform norm (11);
 - (a) $\mathcal{E}(f|_{\Lambda};[a,b])$ is equicontinuous;
 - (f) $\xi(f|_{\Delta};[a,b])$ is closed with respect to the uniform norm;
- (g) $\mathcal{E}(f|_{\Delta};[a,b])$ is compact with respect to the uniform norm .

Proof.

3 6 3

- (a) . Is obvious since $\mathbb{F}_1|_{\Delta} = \mathbb{F}_2|_{\Delta} = \mathbb{F}_1|_{\Delta}$ and $\|\mathbb{F}_1\|_{L} = \|\mathbb{F}_2\|_{L} = \|\mathbb{F}\|_{L}$.
- (b) . If F, G \in $\mathcal{E}(f|_{\Delta}; [a,b])$ and $\lambda \in [0,1]$ then

$$\lambda F + (1 - \lambda)G \Big|_{\Delta} = \lambda F \Big|_{\Delta} + (1 - \lambda)G \Big|_{\Delta} = \lambda f \Big|_{\Delta} + (1 - \lambda)f \Big|_{\Delta} = f \Big|_{\Delta}$$

$$\|\lambda F + (1-\lambda)G\|_{L} \leq \lambda \|F\|_{L} + (1-\lambda)\|G\|_{L} \leq 0 \text{ fm}_{L}$$

(c) . Suppose there exists $u \in [a,b] \setminus \Delta$ such that $F_2(u) < F(u)$. Then there exists $x_i \in \Delta$ such that

$$f(x_i) + \|f\|_L \|x_i - u\| < F(u)$$
.

Therefore

$$\frac{f(x_i) - F(u)}{|x_i - u|} < - \|f\|_L$$

or

$$\frac{F(x_{\underline{i}}) - F(u)}{|x_{\underline{i}} - u|} < -|\hat{I}|_{\underline{L}},$$

as $F(x_i) = f(x_i)$

On the other hand

$$\|F\|_{L} = \sup \left\{ |F(x) - F(y)| / |x-y| : x,y \in [a,b], x \neq y \right\} \ge$$

$$\geq \frac{F(u) - F(x_i)}{|x_i - u|}.$$

It follows that

in contradiction to the hypothesis $F \in \mathcal{E}(\mathcal{F}|_{\Delta}; [a,b])$. Consequently $F_2(u) \ge F(u)$, for all $u \in [a,b]$.

Similarly, $F_1(u) \leq F(u)$ for all $u \in [a,b]$

Since on the points in Δ all the functions F_1 , F_2 , F agree with f, it follows that the inequalities (c) hold for all $x \in [a,b]$.

(d) . By the inequalities (c)

for all $F \in \mathcal{E}(f|_{\Delta}; [a,b])$, so that $\mathcal{E}(f|_{\Delta}; [a,b])$ is bounded in C[a,b].

(e). For $\epsilon>0$ take $\delta=\epsilon/(\|f\|_L+1)$. Then $|F(x)-F(y)|\leq \|f\|_L\cdot|x-y|$

for all $x,y \in [a,b]$ with $|x-y| < \delta$ and all $F \in \mathcal{E}(f_{[a,b]})$ which shows that $\mathcal{E}(f_{[a,b]})$ is an equicontinuous subset of C[a,b].

(f) . Let $(\mathbb{F}_n)_{n \geq 1}$ be a sequence in $\mathcal{E}(f|_{\mathbb{F}}[a,b])$ converging uniformly to \mathbb{F} . Then for all $n \in \mathbb{N}$ and all $x,y \in [a,b]$ one has $|\mathbb{F}(x) - \mathbb{F}(y)| \leq |\mathbb{F}(x) - \mathbb{F}_n(x)| + |\mathbb{F}_n(x) - \mathbb{F}_n(y)| + |\mathbb{F}_n(y) - \mathbb{F}(y)| \leq 2\|\mathbb{F} - \mathbb{F}_n\| + \|f\|_{\mathbb{L}} \cdot |x - y|$.

Taking n -> cone obtains

 $|F(x) - F(y)| \le ||f||_L \cdot |x - y|$

so that $\| F \|_{L} \le \| f \|_{L}$. Since $F_n(x_i) = f(x_i)$ it follows $F(x_i) = f(x_i)$, for all $x_i \in \Delta$, so that $F \in \mathcal{E}(f_i]$ [a,b]). Therefore $\mathcal{E}(f_i]$ [a,b] is closed in $\mathcal{C}[a,b]$.

(g). Follows by (d), (e), (f) and Arzelà - Ascoli theorem . Proposition 1 is proved.

THEOREM 1. Let fc Lip[a,b] with Lipschitz norm ||f||_. Then there exist two function f and f in E(f, [a,b]) such that

(12) ||f-s||≤|f-s||≤|f-s||,

for all fe E(f ; [a,b]).

<u>Proof.</u> Follows by the compactness of the set $\{f|_{A};[a,b]\}$.

Remarks. a) Using the functions F_1 , F_2 given by (8), in [1] it was constructed efectively two functions \bar{f} , \bar{f} in $\{(f_{\Delta}^{\dagger}[a,b]) \text{ verifying (12)}.$

b) For all $F \in \mathcal{E}(f_{\Delta};[a,b])$ $\|f|_{\Delta}\|_{L} \leq \|f\|_{L} \leq \|f\|_{L}$. If $\|f\|_{\Delta}\|_{L} = \|f\|_{L}$, then there exists $\mathbf{x}_{i,0} \in \Delta$ such that all the functions in $\mathcal{E}(f)_{\Delta};[a,b]$) agree on $[\mathbf{x}_{i,0},\mathbf{x}_{i,0}]$ with the

line passing through $(x_{i_0}, f(x_{i_0}))$ and $(x_{i_0+1}, f(x_{i_0+1}))$. 3. For $f \in C^1[a,b]$.

$$|f|_{L} = \max \{|f'(x)| : xe[a,b]\}.$$

Let Δ : $a = x_0 < x_1 < ... < x_n = b$ be a fixed division of the interval [a,b] and let

$$\mathcal{E}^{1}(\mathbf{f}|_{\Delta};[\mathbf{a},\mathbf{b}]) = \left\{ \mathbf{F} : \mathbf{FeC}^{1}[\mathbf{a},\mathbf{b}], \mathbf{F}|_{\Delta} = \mathbf{f}|_{\Delta} ; \|\mathbf{F}\|_{L} \leq \|\mathbf{f}\|_{L} \right\}.$$

The set $\mathcal{E}^1(f|_{\Delta};[a,b])$ is contained in $\mathcal{E}^1(f|_{\Delta};[a,b])$ and is convex, bounded and equicontinuous (therefore relatively compact in C[a,b]) and its closure in C[a,b] is contained in $\mathcal{E}(f|_{\Delta};[a,b])$, that is

(13)
$$\frac{\xi^{1}(f|_{\Delta};[a,b])}{\xi^{1}(f|_{\Delta};[a,b])} \leq \xi(f|_{\Delta};[a,b])$$

As $\xi'(f|_{\Delta};[a,b])$ is not closed it is not sure that there exist f and f in $\xi'(f|_{\Delta};[a,b])$ for which the evaluations (7) are attained. The following theorem holds:

THEOREM 2. For every ϵ > 0 there exist the functions G_1 , $G_2 \in \mathcal{E}^1(f_{\Delta};[a,b])$ such that $\|F_1\|_{L} = \|G_1\|_{L} = \|F_2\|_{L} = \|G_2\|_{L}$ and

(14)
$$\|\mathbf{F}_1 - \mathbf{G}_1\| < \epsilon$$
, $\|\mathbf{F}_2 - \mathbf{G}_2\| < \epsilon$

where F_1 , F_2 are given by (8).

<u>Proof.</u> Let $i \in \{c,1,...,n-1\}$. Consider the functions F_1 , F_2 given by (8) on the interval $[x_i,x_{i+1}]$ and construct the functions G_1 , G_2 verifying the conditions (14) on this interval (see Fig. 1)

The function G_1 is constructed in the following way: The graph of F_2 on $\left[x_i, x_{i+1}\right]$ is formed of the segments A_iB_i , B_iA_{i+1} and the graph of F_1 is formed of the segments A_iC_i , C_iA_{i+1} .

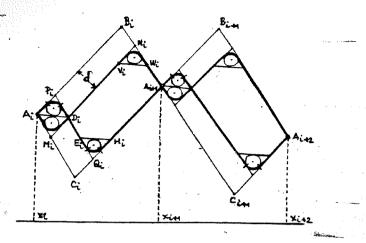


Figure 1.

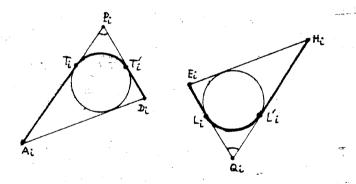


Figure 2.

Construct M_1N_1 A_1B_1 and P_1Q_1 A_1C_1 such that the distance d between A_1B_1 and M_1N_1 and between P_1Q_1 and A_1C_1 verifies the inequality

$$d < \frac{\varepsilon}{2\sqrt{1+ii\pi l_L^2}}$$

The circle inscribed in the triangle $A_i P_i D_i$ is tangent to $A_i P_i$ and $P_i D_i$ in the points T_i and T_i' , respectively (Fig. 2).

Let the triangle $\mathbf{E_i}\mathbf{H_i}\mathbf{Q_i}$ be congruent to the triangle $\mathbf{A_i}\mathbf{P_i}\mathbf{D_i}$. The circle inscribed in the triangle $\mathbf{E_i}\mathbf{H_i}\mathbf{Q_i}$ is tangent to $\mathbf{E_i}\mathbf{Q_i}$ and to $\mathbf{Q_i}\mathbf{H_i}$ in the points $\mathbf{L_i}$ and $\mathbf{L_i}$, respectively.

On the interval $[x_i, x_{i+1}]$, the graph of G_1 is formed of the line segment $A_i T_i$, the circle arc $T_i T_i$, the line segment $T_i L_i$, the circle arc $L_i L_i$ and the line segment $L_i A_{i+1}$.

The graph of G_2 is obtained similarly on $[x_i, x_{i+1}]$ using the circles inscribed in the congruent triangles $A_i^M_i^D_i$ and $V_i^N_i^W_i$.

Repeating the construction on the interval $[x_{i+1}, x_{i+2}]$ as long as i+2 < n, one obtains the function G_1 and G_2 on [a,b]. Theorem 2 is proved.

From this Theorem one obtains the following corollary:

COROLLARY. For $f \in \xi^{(f)}(f|_{\Delta};[a,b])$ and $\epsilon > 0$ there exist G_1 , $G_2 \in \xi^{(f)}(f|_{\Delta};[a,b])$ such that

 $\min \left\{ \|s - G_1\| , \|s - G_2\| \right\} - \varepsilon \le \|s - f\| \le \max \left\{ \|s - G_1\| , \|s - G_2\| \right\} + \varepsilon$ where s is given by (3).

<u>Proof.</u> Since $f \in \xi^1(f|_{\Delta};[a,b])$ implies $f \in \xi(f|_{\Delta};[a,b])$, the inequalities (6) give

 $\min \left\{ \left\| s - F_1 \right\|, \, \left\| s - F_2 \right\| \right\} \leq \left\| s - f \right\| \leq \max \left\{ \, \left\| s - F_1 \right\|, \, \left\| s - F_2 \right\| \right\} \, .$

By Theorem 2 , for every $\xi>0$, there exist G_1 , G_2 such that $\|F_1-G_1\|<\xi$ and $\|F_2-G_2\|<\xi$. Therefore

 $\mathcal{E} > \| \, \mathbb{F}_1 \, - \, \mathbb{G}_1 \| = \| \, \mathbb{F}_1 \, - \, \mathbb{S} \, + \, \mathbb{S} \, - \, \mathbb{G}_1 \| \geq \, \left| \, \| \, \mathbb{F}_1 \, - \, \mathbb{S} \, \| \, - \, \| \, \mathbb{S} \, - \, \mathbb{G}_1 \| \, \right| \ ,$ which implies

 $\label{eq:continuous_section} \ensuremath{\mathbb{N}} s - \ensuremath{\mathbb{G}}_1 \ensuremath{\mathbb{N}} \ - \ensuremath{\mathbb{E}} \le \ensuremath{\mathbb{N}} \ensuremath{\mathbb{F}}_1 \ - \ensuremath{s} \ensuremath{\mathbb{N}} \le \ensuremath{\mathbb{N}} s - \ensuremath{\mathbb{G}}_1 \ensuremath{\mathbb{N}} + \ensuremath{\mathbb{E}} \ .$

Similarly

 $||s - G_2|| - \xi \le ||F_2 - s|| \le ||s - G_2|| + \xi$ These inequalities give

 $\max \left\{ \left\| \mathbb{F}_{1} - \mathbf{s} \right\|, \left\| \mathbb{F}_{2} - \mathbf{s} \right\| \right\} \leq \max \left\{ \left\| \mathbf{s} - \mathbf{G}_{1} \right\|, \left\| \mathbf{s} - \mathbf{G}_{2} \right\| \right\} + \mathcal{E}$ and

 $\min_{s} \left\{ \|s - G_1\|, \|s - G_2\| \right\} - \mathcal{E} \leq \min_{s} \left\{ \|F_1 - s\|, \|F_2 - s\| \right\} \ ,$ and the Corollary is proved .

BIBLIOGRAPHY

- 1. IANCU, C., MUSTATA, C., Error estimation in the approximation of function by interpolation cubic spline, Mathematica (Clad) to appear -
- 2. MIROSHNICHENKO, V.L., On the error of approximation by cube:

 interpolation splines (Russian), Metody spline-funckat

 93 (1962), 3 29.
- 3. MIROSHNICHEMMO, V.L., On the error of approximation by cuoic interpolation spline, II (Russian), Metody spline-funcaji v chisl. analize 98 (1983), 51 66.
- 4. MUSTATA, C., Best approximation and unique extension of Lipschitz functions, Journal of Approx. Theory 19, 3 (1977).

 222 230 .
- 5. Mc SHANE, E.J., Extension of range of functions, Bull.Amer.
 Math. Soc. 40 (1934), 837 842.

Institutul de Matematică Oficiul Poștal 1, C.P. 68 3400 Cluj-Napoca, Romania

This paper is in a final form and no version of it will be submitted for publication elsewhere $\boldsymbol{\cdot}$