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FINDING VARIATIONAL FULNCTIONALS BY THE GALsRKIN PROCEDURE.
APPLICATIONS TO THE EEAT TRANSFER

Doina Br3deann

Several methods are employed in order to determine func-
tionals and veriational principles for some boundary value problems
(in msthemstics, mechanics, physics). These methods apply:
the énergy functional, the Galerkin method, the Lax~-lUilgram
lemnz, the Gateaux derivatives or certain physical principles
(the principle of the local potentisl).

1. Self-Adjoint Problems.

a) The Mixed Boundary Value Problem. Let us consider

in the domein N cR® & second order partisl differential equa-

tion subject to conditions on the boundary S (=.(.l-ﬂ)

n 2 n
(1Y) a= > by4(x) - Mg by (x) 5% 4b_(x)u(x)=f(x)
S &

1,3=1 oxy oxy i
x€e QL cpl
Byu = h, x€5, m=1,s

where Bn are the formal operators of the boundary conditions,

that mey also be reduced to the identity operator I. If we put

n
[l
blj = —Iij, ai = bi - Zl a—xa le s bO =
J=
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the equation (1') turans into the equation (1) (see belew).
Let us consider the mixed boundary value problem on the domain

bonded by S, for the function u (e Cz(ﬂ)ﬂ‘cl(ﬁ))

n
(1) Au = - E . %D'x—l (a i 2; )+ Za ax + au= £(x),
Sl b € cgr®

h (x), x€S5,, m= 1,p, p<s

(2) B u= g = -~
E _5:; \‘O‘rm(u- Pa)s XES,, = = p+l,s

(a = 1,s)

where & is a formal operator of the an order of the equatien, l‘ i

are differential operstors of the boundary conditions on S:
S =81UeruSy, 85N 8y = , 143 .

Bn cannot contezin more thzn 1“ order derivetives or they

can be reduced to the identity opsrator I on certain pieces in
S, while the coefficients aijecz('ﬁ.). a; € C'1 ) » 8, € c(a),
fec(a), h_eC(3); O('n, /Bm, m = ]_.,T: can be considered cemstant.

b) The Finding of the Variationsl Functiemal for the Problem
(1)-(2) by the Galerkin Metlicd. If the equality J(u)=e (whered

B

is the operator of the varistion while J(u) is an integral fune-
tional) can be inferred from the p;oblen (1)-(2'),then J(u) is

called a variational functional for the differezﬁ:ial preblem (1)-
(2).The equality dJ(u)=o expresses a varistienal principle (statios
narity) for the problem (1)-(2).This principle can be an extremal [
principle (minimum, maximum).Hence, if & functional J(u) exists |

\

I

(can be found) so that both the equatien (1) and the conditions
(2)Cwith B, # 1] should result froa the condition JJ-Q [3.e01)
should be Euler-Lsgrange equation for J ], thern J(u) is & varis-
tional functional for the problem (1)-(2). The boundsry cenditiens
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(2), that results from the condition JJ:o if B, # I are called
paturel boundary conditions. The conditions (2) with B=I (which
does not result from J‘Jzo) are called essential boundary con-
‘;tiona (they are verified by the set of the admissible functi-
ons in the problem of the stationarity of the functionsl J).
From the definition of J(u) there resulte that the solution of
the problem (1)-(2) is a stationary point for the variational
_(gactionaliasnociated to the problem.

In order to find the variational functionzl, provided it
exists, u is essumed to verify (1)-(2) and we write the equality

(Galerkin formulation)
8

(3) I(Au-f)é'n ax = D g (Byu-g,) Ju ds
Q ‘mn=1 S

=
where Ju(the variation of u on L ) is an erbitrary function of
the same class with u on {1 with the property Ju=o on Sl’ if u
on 51 is givén (where Bl=1; essential boundary condition) and
Juto on S, if, on Sl.' Byu is e differentiel expression (natural
.houndary condition).
By wsing the Gauss-Ostrogradski formula, we obtain the iden-

tity (Green)

A
o) duax = ata, du -5 B guas
i+ 8 m=1 (]
m
if the bilinear form a(u, du) and the derivative along the conormal

vector Bu/anc on S are introduced with the equalities

a n
a(u, Su) =g [Z___ 833 _02“ gi: + Z_ ay —é‘;—: (Suﬂioudnu}dx
N i,j=1 J 3 i=1
(4) ; ) ?
u u =
T Wi Z 835 Bx, %3 » By = cos (n,0x;)
Canaigel 3

(z? is the unit vector of the exterior normsl at S)
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The formulation (3) turns into the following varistional

eguation “
(5) l(n.(Sn)—cS fu dx - (Byu-g, + 8 fu as =0
e, Do

since, from & varistionsl point of view, f is a fixed functien.
Let us assume, now, that the hilima.r form u(u.gfn) is symmet

cal:
(6) a5 = 0 9 i 83 = o and, besides, that a5 = ofar i# j
In this case the formal operstor A is symmetrical (self-adjoint).

Then, we have

a(u, Ju) = Sn[él.u _'r)ax_: -Ag-;-x&il + |°uJuJ dx =

TN @A TR =

i=1
Let us take the differential expressions

Blu-Iusn.xesl
n
du(x > -
B'n--—%‘ii-_-‘%-ﬁ%; 2, , XES, , m = 2,8
i

|
Under these conditions, the equation (5) is transcribed in the

form
§d(n) = o

where the functiomal J:U —= Rl is defined by mesns of the
equality

n 2

J(a) =%L[ Z Ii(-%x&i + loﬂz - 2fuJéx +

i=1

(7)

5~-p
P
+Z_Ss hr"‘s’%—zg dpf;("'Pﬁr‘s;
r=2 - 4 =1 3p+r

U ={uec?@)nc (@) | Bye = ulx) = by(2) on 5}

The functionel J(u), (7) is the wariationsl functionzl for thl
following mixed boundary velue problem imn the domein i with %he




)y

g

Wary 3( = U1 Sp):

a

t!‘? 5_ a, (s;(x)

) + 8 (x)u(x) = £(x) , xe)

L[]

Byu Li(z)=h1(z), TESy

@ nec- T3

-~

- o {h,(x). €8, n = 2,p, p¢s
of (u“Pn). S S .8 = p+l,s

(m = 1_-;’ aj(_m)(x) = .i(x)o xE sll. H sif\sj =¢l i#j)

Reciprocally. Let us consider the functional J:U —> 31

given in (7). The linear space of the test functions (perturbation)

U° is ascociated to the set U of the admissible functiens in the

stationarity problem of the functional J:
U, ={v€02(.ﬂ.)ncl(ﬁ) | v(x) = o, xESI}

The function f, of resl variable E-—i-b J(u+ Ehj with 2 € RI,
uceU and hEU° is introduced, supposing that u€U is the statio-
n,ar"y point of J and l'xEIJ0 is an arbitrarly fixed element.

Some simple calculationsshows that

| (10) 2(€) = J(us£h) = JCu) +£3%(u,n) + § £207(a,h,h)

that proves J(u) te be & quadratiec functional on U with Gatesux

derivatives

J'(u,h) = S ( Z_ 2 %—“— Tx— + ajuh - fh)dx +
i=l

P
(11) +Zg hoh dS + Z j o pey (a= R, )0 45 ;

r=2 § =1 8

P+
J"(u,h,h) sg [Z_ ) +-h2]dx+
(12) s-p
+ Z g O(,P*'r a2 as
=1 Sy
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J(n)(u,h,...,h) w B B = A4, vee

It results that for 23>0, i = 6,0 and X )‘) °,
% =1,6-p we have, ¥neU or J"(u,h,8)> e; then the sta tionary
point u is & unique sirong global (or local) minimizer of the
quadratie rﬁnctional J (according to (10)). Therefore, under
these conditiens, the functional J{u), ue U is a minhis:ug
functionsal.

The equations (8)-(9) are obtained frem the statienarity
condition J'(u,h) = o, ¥a €U, if we take inte sccount that

9 , : ~
g ‘1'3%'%%"" jn"%ax‘i“i‘g';;""'
’Q .
h 48
d .{s ‘1"8‘51‘ Ay :

Therefore, (8)-(9) are the Euler-Lagrange equatioms for the
quadratic functienal J(u), (7). The functien u€ U that minimizes
the functional J(u), (7), is a selutien for the differential
problem (8)=(9). The selutiem of the problem (8)-;(9) ean be
found by seerching the function u€ U[ i.e. that must verify enly
the essential conditien u=hy en Sy ] that makes the functional
J(u). u€ U stationary en the set U.

Exemple 1. The Problem of Hest Conduction in Selid Bodies.
The conductive stationary heat transfer in the solid bedy frem
the domain <) bounded by the suffieciently smeoeth surface
s [=8y0 80855 84n sy = @, 1#3] is characterized by diver-
gence type equatien and the mixed beundary conditions
(a)  =V.(k(x)VI(x)) = £(x), x€0CE®(a =1,2,3)
(b) T =T easy
(¢) -k m.vVT = Gy on Sy; -k B.y? =o((T-1;) en 5,
(T(x) >0, k(x)> e, 2€Q;o(x)> e, 1 (x) > e 71,2350 £EC(R))

(rec?(n)m cl(@))
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where T(x) is the body temperature at the peint x; k, £, T, Q™ ,
13‘ with knavln physiecal significance are given functions (seme vuzo
.practically constant). The boundu-; conditions em S, express the
Pourier's law while the boundary cenditiea em S3 express lewten's
‘law (convective heat exchsnge with the exterier ean the S, piece
of 5); the coefficient o is considered cemstsnt in the case
of msny practical problems. 13 is e censtant temperature (the
temperature of a fluid that moves in the exterier ever 33).

In this case a = a{') = k, 8, = 0. The variational functie-
oal of the mixed boundary value problesm (a)-(c), accerding with
(7) is i

@ I =j [% kIVE? - rr)ax + S. a,T ds +%S a((‘f-‘l‘3)2i8
o x. S3
TeU ={ rsczg.o.)ncl(i) | T=2 e 31} :
Obviously, the formula (d) ecam be ebtained if the Galerkin
method is used directly in (a)-(e). _
Bemarks. 1°. The conditions (e) are nstursl conditions for
the problem (a)=(c).
2°, The solution to the problem (»)-(e) minimizes the
functional J(T) on U, and can be. determined by searching the
function T €U that minimizes the funetienal J(T) on the set U;
therefore the minimizer (stationarity peint) T, for J(T), has
te verify only the essential conditiens.
3% If k = K(T), Kirchoff transformstien is perfermed by
which instesd of T, the unknown dbr is intreduced putting
%_?— =), $(1) - [ ®ram s yp-cve
The problem (a)-(c) appesrs in I, the form
-Ad - £(x)
=Py ons, Tvbed, ons, AV =0 (2(¢)-1)
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IT the condition on SJ is eliminated the problem is & linear
0One.
2. Non-Self-Adjoint Problems.

a) The idjoint Problem. The function transformation u=v+ @

is performed, where v is the unknown function that verifies
homogeneous boundary conditions, while P is a given function
that verifies the inhomogeneous boundary conditions. Then, accor-
ding %o the problem (1)-(2), we consider the mixed boundary pro-

blem with homogeneous conditions

n n
1) agvz- S St g ¢ 5 ey B+ ety
i,j=1 i=1
. n N : e
(13a) BV = ;Ei ami(x) 75;; v(x) + nmov(x) = o, m=1,s
i= |
where B
£1(x) = £(x) - A, ¢, Zl 201 (%) T3 P(x) 4 9x) b, (5),
i=

By means of direct calculation (integration by parts),

Green's formula on _(Lc R® for the foraal operator 51 is obtained

(14) S whyv dx = vASw dx 4 (v Ou -w _Q!_)‘S +
o 1 S_Sl 1 gs Dnc 'anc

-3
+ g w E a;ny ds

S i=1
where 3;“ is the formal adjoint operator (or in the sense of

Lazranze)
= ? DU = 2]
(15) a%w =< > — (2 LAy - E —_—(a, W)+ a W
' 570 dehed? PN - 58 ey

vhile &tu’anc is the derivative in the direction of the conormal

vectory at. 8&

Let us return to the boundary conditions. The boundary




43

x - aad = o
gonditien B.w = o, m = 1,5% 15 celled adjoint with B v=0, m=1,s

4
}16) B v=0, m=1,s and B:w=o, =::‘ v %;. -w g;c +
n
+ Z &0y = o
i=1

"

"be boundary wvelue problem

‘(.17) “‘1' = g1(x), xeQ, B:w(x) =0, XES, m =I_,—-_’*
is ealleé an adjoint problem with the problem (1)-(2).

Remarks. If a. = o, i=1,n, then the last integral on S
dissppears in (14) and 4] coincides with Ay ; in this case Ay
,3,. called 2 formal self-adjoint operator (er in the sense of
'Lngrange). 4 boundary problem that coincides with the adjoint

. problem is ecalled & self-adjoint problem (in this case it is

¢ necessary thet 44 = A; and B = B:).

b) Operatorial Formulation. The second order problem (13)-

“-(lja) is reduced to the operatorial equation

(18) Av = ¢

where v is the unknown fnnctrion. f is the given functioen, while

the operai:or A: D(A)CL(N) =—> L,(N) is defined by

D4) = { vec?INCH(@) | avery(n), Bv(x)= o, $€5)
Av = Alv .

Thus, the functions v and f are considered as elements of the

Hilbert space H = I.Z(D.); f is considered continuous and féLz(-Q)

= & condition, in fact non-obligatory in (13), however the latter

provides the eguivalence between the ﬁroblems (13)-(13a) and (18).

With (L~ beunded, D(A)CLy(f). It is known that the
linear space CO:(.Q) is dense in Lz(.ﬂ_) and because CO:(Q.)CD(A)
it resulis that D(4) is & dense sub:pece of Lz(ﬂ.). Tne operator

4 1s not closed (however it admits closeness). But, since D(4) =

= Ly(), the operstor 4 has an adjoint that we note with the
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symbol A*. In order to define A the scalar product (4v, ')L ()
vE D(4), WELQ(ﬂ) is used and Green's formuls (integrat.;on by
parts) is applied. We obtsin
(Av,w) = (v, A*v), vED(A), weD(A*)
1f 4 = &, Bv,weD(4), 4 is symmetrical and ir, beu.dea, D(4) =
D(A ) the operaztor & is self-adjoint. If & #:A » the operator

4 is non-self-sdjoint.

4nalogously, the problem (17) can be reduced to the opera-
torial eguetion

Vo s 8y . gy €L(Q)

where the operntcr . D(A:p)cl.z(n.) — I?(Q) is given by

op
the formulas

) dwectayncla@) | 4 mEL), B w(x)=0, x€s),

‘i’

op

By using the Green Formuls (14) snd the notation (.,.) for -

W‘AI

the scalar product, we obtain
-
véED(a), VwGD(A“)

»* *
Sn (IAIV-NII)GI = (",l )IAZ(Q)-("‘OP‘)L?(Q) =
(19) :
= Ss(v %;—c -w -é)%e + nZ a;n,)ds = ¢ = (Av,w)=(v,A:pw)

With D(43)CD(A) and A:P =4" on D(a* ok [ resulta that
the operator l:’ is the restriction of the operator A on D(Aop)
(synmetrical operstor). Therefore, the operetor of the adjoint
problem, A:p, coincides on D(A:’) with the adjoint operator A’
of the direct boundary value probles.

¢) The Veristional FPunctionsl. Let us consider the problem
(13)-(13a) and its adjoint (17). The problem (13)-(13a) ie not
self-adjoint (Al#:).'ln this case 2 variationsl fuﬁctioml can
be determined and e variational principle (the ldjoint variationel
principle) can be formulsted for the given problem and its ad;joint;
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~ We have
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By using the Galerkin procedure, wkere v and w verify (13)-

(17) we write the eguality
f !
(20) (hv-1, 5))]‘2(&) + (A w-g, J(.L)LZ(Q) = o,

where only the functions v and w are subject to variations.

[(...) = (.,.)Lz( y 8 scalar product in Lz(n)J

(Bvy §A)=(2, FAI+(m 4 Sf0)~(8,8p) = o

" If we take JA=d4u and J,L- v, we obtain

k)

(v, Sw)+(w, Jav) - (£, dw) = (g, Iv) =0
or
diav,w) - S(£,m) =Jd(g,v) = o
The veriationasl functional J(v,w) for the problem (13) and
its adjoint (17) is
(21) J(v,w) = (Av-f,w)=(g,v)
Remerk. From (20) it can slso be inferred that

(r X + (', p) = (£,d0) - (& Sp) = o

We take c“\= o"-, Jf«l: Jv and, as sbove, we get
SU¥ w,v) - d(g,v) = J(g,m) =0
Thus, the varistionsl functional in the form
£21I™ ) J(v,w) = (A’t w-g,v) - (£,w)
is obtained.
Exemple 2. The Adjoint Variationsl Functioncl in the Pro-

blem of Hest Trensfer in & Fluié Flow. Let us consider the ener-

&y equation for an incompressible fluid, in non-stationary motion
and in the ebsence of interior sources, with mixed boundary con-
ditions:

(8) au =22 +V.v0 -T.(kV0) = o, (x,8)€ Qx(0,1)

(®) u(x,t) =0 onsy, te& (0,1]
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(¢) Ko¥u+da=o0 on 55, t e (0,7 ]

(¢) ufx,e) ="a, x€ £ (= SLus)

(€ B®, m.= 1,2,3; § = {i-SL= 81055 5;NS, =&, T.¥=0)
where u(x,t) is the fluid temperature, K and of are functions
of x and t (not necessarily continuous) that can alsc be reduced
to constants; 'E' is the unit vector of the exterior normel at S,
and v =-;(x,t) is also a giveh function: the velocity of an in-
compressible fluid in which the heat transfer with the coeffici-
ent K tskes place. Hence, u is not a component of the velocity
¥ and therefore A& is & linear operator.

Let D(4A) be the definition domain for the linear operator
A, We sssume that D(A)C LE(.Q) for each i+ and that D(4) contains
functions QECZ’l(ﬂX(O,T)) thst verify (b)-{ c).

The scalar pz;oduct (Au,w) in Lz(.ﬂ) is czlculated and we
zet

(ueD(A); ¥t, w &Lz(ﬂ) and dx = dxlixzde)

2 o
“u")L‘?(.Q) = - S S_g_ %% +-:.Vw +7.(KVI)] u éx dt +
o

s
- = r T
+ 5 S [nK 2 .Vw - wK 0. Vu + uw-v’.?_jds at +\ (uw) ax
o S i v
2
Hence, it results thet & is not a symmetrical (self-adjoint)
operstor. Consequently, we associate the adjoint problem to the

(8)=(d).

(l*) A*'=—%%+7.Vu +Ve(KVW) =0
» -
(v) Bw=w=o0 ons , tefor)
(%) A B:,v cEn.w+c{w4+w im = boon 55 » telo:r)

(@) By® = w(x,T) = 0, X € a
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We notice that A" does not coincide with 4 and the

| condition (cf) differs from (c). The conditions (c¢) and (c*)
goincide only :I.f Y. = o0 on S, i.e. the fluid does not
cross the surface 5, (it does not go off it).

By using (21) the adjoint variational functional has

the form

g
J(u,w) = gf [Egu.pw dx dt + )

o L

(e)

1 ([ TeR2.a28  Ttey vu)]
" “ s w -u + v, (wVu - uVw)|dx dt +
et 3 SOSP: 5T -4t (

: 3
+g S(O{+%:.Z)uwdb‘dt
o 35
w€V ={ueq, u=0 on3y, t€(0,7], u(x,0)=0, x¢};
-GV* ={w€Q, w = o on 34, tE[O‘,T), w(x,T)=0, xGﬁk;
(@ = i x(o,2nnct ol -s;) )

The condition JJ(u,') = 0 expresses an adjoint varia-
tional principle: the functional J(u,w) is stationary on the
solution to the direct and adjoint problem.

Verification. The function £ of two real variables is
calculated

5‘1’ 32 1% 49K J(u+€1‘P, W+ 529’)
u and w are ccnsidered the stationary functiom (points) for
J(u,w) while Y €V and 4 € v* are arbitrary test fune-
tion (arbitrarily fixed). ,
Consequently, P(x,t) = o, on 54 and for t=o, YW(x,t)=0

on Si and for t=T.
The Gatezux derivetive J!(u, ) of the functional J(u,w)
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in terms of the function w is given by the cqua;ity
(£) J‘:(u.‘}‘) = J(u, ¥)
if we use. the above function.

By means of identity
KVu.7 y=V. (kY 7u) - yg,(Ku)

we deduce

T
Ji(u, ) = S J_Q [-v.xpu) + %g + Vovulyar at-
]

& %ITS [%(q/u) + ;.:V('yu)J dx dt +
A VE

iy
+g‘( [xZ’.Vu#(oﬁ%;’.?)qusat
o VAL

If we also use the formulas

L T
g j‘ .:.V(\Vu) dx dt = S g $u V.o ds dt;
o YL ° "s,

T 3 " P,
S f =7 (Yuwidx dét = S (Wa) ax  (=o0)
oV Q u
the condition Ju,¥) =0, vy e V*, u € V provides:
1)- the Euler:hgrange equation for J(u,w), supposing
that only w is subject to variation (this equation is exactly
(a)); ]
2) the natur‘l bondary condition (¢).
These two results together with the fact thet u€V represent
the direct boundary problem (l')-(i) itself, :
Analogously the condition Ju'-(" $) =0, ¥peVand w e gl
can bs shown to lead to the adjoint problem (& )-(d*).




