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§4 The Approximate Solution of the Galerkin
Variational Eguation 7

2) Introduction.The linearized motion equations.The Galerkin

variaticnal equation.let us consider a tank,partially filled with

heuvy,incompreseible,ideal fluid.Both the tank and the fluid are in
a state of motion.We note ;. - the finite volume of fluid yinside
the tank,s - the tank surface that is in contact with the fluid,So
the undisturbed free surface (for the fluid at rest,t=0) and 3 - the
diSturbed free surface (at the moment t).Let us take lelylzl a fixe-
ed reference system in Space and Oxyz a invariable mobile reference
system connected with the tank.jye shall consider S, @s a horizontal
fluid surface,C is in the centre of S and the axis Oz is directed
on the vertical of the Earth. The fluld moves due to some initial con-
ditions (pressure) under the action of the active force (weight) F =
== grad U(X,y,z) with U = gz.ge assume that the fluid motion is slow
and the it represents small deviations from the state at rest.If
F(x,y,z,t) = 0 or F=z-f(x,y,t) =
is the eguation of the surface s?'Sn is the relative velocity of the
fluid particle in projection oa the exterior normal 7 at S (Imi=1)
v

and Cb(x,y,z t) is the velocity petentlal (% 'V¢% - absolute

a
velocity),then
°¢ Bl

!VF’::;I,VSHQ:F an m—’z—z on S
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2
(for fixed Oxgzvy x Sz °85); [Vdl= e, an-vf:o

We admit that the bouxidary conditions omn S are applied on S, i for

example
o (x,‘y,z,t)‘ ser® 5 (I:J”"")ng B Al —

The linearized eguations of the motion of the potential incompre-

ssible liquid and the boundary ‘conditions are £413:

Aq)(x.y.z t) =0, (x,5,2,t)€0N x (to,tlj, 0% %ty<o (1)

’BCP * -

— = V.5 om s (2)

T\

i v, .-x?-r 37(— on S, | 3)

’a

%+5{-vt.v¢=o en S (4)

(o (X:7,2,t)=9 (x,3,2), T(x,y,t )=f (x,5), @ and £, -given)

where v, = v + a).x r is the transport veloecity ( v = translation

t o
velocity and ¢») - the rotation velocity of the tank), ¢ is the velo-

city potential ,while the (4) is given by the Cauchy-Lagrange integral
(g = gravitational acceleration).The unknown functions in (1)-(4)
are 4)(1,:,:,?.) and f(x,yt).

The variational equation of Galerkin type,for the problem (1)-(4),
May be writtem in the form [ 43,06 3:

sq{ gn(-Acp;Jdaa.ruL (‘3% T3 e .

%
P 4 (;_3-7.?- b,
%,
°
*S\ [-( % --:t' Vc”zao -@.7 )lw]af as"}dt “H
50

b) The tank has only a translation movement (&J‘(t)=o,-v:=?°(t)).

The function & is transformed into the function % by writing
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¢ =Ys ‘Po(x,],z,t.) +0((t)

where 29 t
; *
A‘?. =0 ; e & =_v’°.? oen § ; oC(t) = S. vg(s)ds
n t
Since P ”
- = =i - —
en S" Ve-R =n. V(',-l‘ )= - vy (vo.z- )

we choose s et
. . - =
(‘Po = Vger ;(ntt‘. A(vo.r ) =0)

#e use therefore the transformation

£
& (x,5,2,t) =¥(x,5,2,1) +_:°.?+5 v2(s)ds (5"

(-]
The boundary value problem of small movements of the fluid in a

N -
tank that is in translation at the speed/ v (t) with respect to
functions P and £ is

AP (x,3,2,t) = 0, (x,5,z,t) € L) x (‘o"'ﬂ"o)°"1<°°
> | :
ke 2—'{- on §, eand v + (';'o-‘ ).r-;;.V“Pao on S;(S—)So)

Solutions of the form (5')' with

Y (x,5,2,t) =K?(x,y,z) coswt (5)

f(x,y,t) = -w-f.(x,y‘) sinwt (6)-

are searched for (4') and after the functions ¢
troduced,with the help of the relations

» f have been in-

(5)=(6),the equation (4')
is integrated om the interval [tezo,tiﬂE/w]-

The variational eguation of the problem ,(4/),nov gets the form
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- SeLh " o
. ((-A@)Jq: d_(l+( ij '“dsnj' ( ol +(U2f)<YQPl =045+
|_ﬂ.‘ ‘S’é (&0 (X 5 25

DL zZ=Q
2]
) P Ll g - >
— - w w -
$0 | (frye §Fas,- L (S 1 o
S [18 S
o \ )
- A - - \ _
+yJ - wt sinwt.k)(sr dSJsinwt at + (%)
[+
ot p V%
— v, sin 2wt at (vep),_ ffas=o
+ a7 v, sin . < St re
0 $

[
#e assume the tank to be in a2 translation moe

vement on the vertical 0z at the speed

¢) Approximation.
ARy matlion
— . ) .
vo(t) = voz(t, k s voz\t) = a,8inGt
and we admit the approximation

Voz(t) = 8,0t =0, 2=a G ( with small G )

Then,the variational equation (7) has the form

sl ae = °¢ b~ «
L,_\- 29 dban +gs% 5 Jy¢ as

+ (b_” 5‘:’)2:0 ds, +a)2{ { £35¢ +L F +carm)? ] J?)(Fods -
5 & S, )
o : ]
a 26 -
T SR e )
o

By using a direct approximation method,the solutions of this equa -

tion are chosen in the following form [ 6 ]

N )2
P (x,5,2) =-47'—Z‘f Bkwk(an:z) +1§( CnQPn(X,.Y,Z) (lo)
?(x,y,t) =Z b, (x,y) (11)
<=1

where ®n»8 and b, are real,unknown coefficients,while (Pn’ 1‘);
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are trial functions which are characterized by special properties,
imposed' by the procedures employed in solving the problem.The func-
tions w, are the common trial functions.

The choice of trial functions. The trial functions and the sur-

faces S* and S will chosen in such a wayfthat the following conditi=-
ons should be fulfilled :

N .
{ L= s* S, » e =72 » k¥ = unitary vector on 0z, {kl=1)
-
a) ek = o on L

¢, —

b) AY;(x,5,2) = 0 in O Fa =© onl,i=lyg (12)
c) AW (x,y,2) =0 in 2 ,k:i-:v

o2

. . =
d) The systems {'k }1,.0."{%3 1,07 x 5 } 1,S° are complete

(in Ly(02),L,(S,))

e) . Lpi(xs}'pz) = eufi(x,y) ’ i=1—.—i sk eRl

Here : k is en unknown parameter (it should be determined in the |

iype [6](in the neighbourhood of the free surface S, z-f(x'.y,t)=o,
( . o . : : N 9
\'Pi is similar to f; in behaviour) while {'i‘g}i and {L{’L.L are
functions chosen from complete systems of harmonic functions.There-

fore,the derivative B‘P}/a‘n is written :

29 =
on S*’ —% .o, VY .= k2 :.(Vfwki’. k’) (13)
2m Jd 1 1

context of the problem),(e) reflects a property of boundary layer

From (b) and (e) we infer the Helmholtz egustion for fi

Ari(x,y)+k‘ri(x,y)= o, izl,q on 3, (14) 1
and the condition h y‘
in th Bk L (15) |
: o in the case n.k = o on 5 ‘
D‘f,; _ ? @
> =3

dm = k(n.k )f, in the case —;.k;to on L (254)

i |
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The algebraic equanons system for the coefficients al,b

194 and
the circular freguency (L .Ry 1ntroduc1ng the solutions (lo)~(11) in

( 9) we obtain the identity (with respect to ng, oc

< 1 o’ cj!’)-'
r k4 2%, N our
LSt T o x][zq&*i".é-s]ds*
SCUG\‘ m=4 .(: /S'
4 N
2 r ) " /
- 10 S £, P e+ 2. w da )+ (1€’)
gg-u ﬁ4 m'=1 L - A1 's a‘
")
+[ ZLFc + Z_ w8, +(a+g) 24 f b, J f Jb )J‘da -
P “ 1-—
9 9 Yoo
-ﬁ( n %
’-»S(qzﬂ?lc°+4=1 ()(Zfa‘b)ds-o
[}

Now,the real (finite) numbers are introduced (in (16'))

a(‘Z)
Jo ( J “x ds i H
s, e
‘3) {4)
S‘ £t dsozdji ( =) ;
Sc
(4) oW, (s)
" +
SS z; 7% 4% ofj,n ; '(S z; = asy= o o
. 2% , ¢ e ) (16)
1) ; 4
f Lfm %:L ds = an ! SS‘LF- —'a’fl:&-ds Fun
S,US e
S\()mfl dso (:1) ’
Se
¢ ) I W (2)
QI"a q:ds:akan 'a as = sk
.ous' s'usf

We notice that we have (Green's formula is used)



(1)
Ilam =¥
) ke (2)
Yo f we AY dﬂ*{ Ve, .V9% dn g T ds:ﬁns
2 Seus* 7)

The algebraic system of linear and homogeneous equations is deduced

from identity (167)

N
O, o )
@ a0 ZE (2) @& (5]
L i e O i )
Z_ (QrJn 2(4)Z Jk )cn +fz‘1 ({xJn LR xJk) By t
o((l) 3
+(a+g) Z = a, J=1,q
A=A (17)

Z(ﬁm Z p“) v Z ﬁ(D N

o () (5)
Z‘ch Z rsk‘k + we ‘Z4 .ﬁ y 8=1,X
in whieh the unknown are the coefficients 8 1Cpsb; .

The matrix form of the system (17).We introduce the matrices

5 e | !
a= b= c = E
ar bq : c?
(1,48 = 1,9 ; kys = 1,5 )
) (%) (2) 8
‘1 = [d'}n] » [“ ] x J (1€)

Azs)g‘:d‘.f] %‘[O((S)J"
(21:‘)
[‘\ 3)

a=[pm] > s, = L4, By
¢ [Yea ] L7221
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By using (17') we obtain the equalities ( T - indicates the trange

posed matrix) - . - ;
A3=A4 1By = 49, C1= B, , Cy= &5 (18 )

The system (17) is written in the homogeneous matrix form

a
(w2 = ZafP)e + (w2 3 157 )2+ (argdPad = o

Bic + B, a *weﬂz k=0 (19)
Ci1e+Ca +a,2c, LS

or
KX = o
where K is a block matrix and X is a column block matrix (they are
read in (19)).
The first equation from (19) is solved,with respect to b ,and

the result is introduced in the last two equations in (19).%e obtain

the relation

1 wING A
27T Targror B LW - k) o

@ . (20)
+ (Q)2A1 - T A{” ).5 ]
and the linear and homogeneous system
(w) =4 {W)
(Bz-BjAr}Az).+(Bi 33 = @
(21)

-4 (W)
-C A3 ) a+ (01 - 03A3 4 )’5 =0

where the matrix have been introduced

2
A(a)}- i— A1 = Lo i (4)
a+3 1 w*g 1
W) 2 a (5
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It m‘“” is the matrix of the system (21) then the circular frejuen-
¢y (pulsation parameter) CD /(a+g) will be given by the equation

(w) _

det M (22)

which represents the nhecessary condition for the system to admit
non-trivial solutions & and ¢ too. Subsequently,the vector b is de=~
termined by means of (20) The acceleration ratio a/g also appears in

the system (21). o
Remark. The parameter a/(ea+g) is arbitrary one.If a = Dyises

the tank is fixed in space,all the above formulas,including the va-
riational equation (4’) and the system (21),stand good in a simpli-
fied form.

' §2 An Application.The Fluid Motion in a Spherical

Tank which is in a Vertical Uniformly Accelerated MKotion

The fluid fills the semi-sphere of radius Ro = 1. Let us assume
(we maintain the notations used in ¢1) thet the domain that the

fluid fills is the ‘semi-sphere :
.Q {(X.I.ZH X +y +2 4R2 » -Ro:’:zéo with R°=1}

in the system Oxyz with the origin in the center of the equatorial

-

cyrcle and with the plene Oxy over the undisturbed free surface 3o

The fluid depth is . = l.Take into account the symmetry,the cylin-

drical coordonates (r,"'],z) - with reflo,1], ’)76 Lo,21] z:[ 1,0]

and r2+z8 = 1 on the sphere - are used.

1. Determination of functions fi(r,'y).ln agreement with the

relation (b) and (e) from (l?),f verifies the Helmholtz equation

? ' f Y
r-;;_—( ?fhﬁ f—oonbo (23)

g . ‘
with . Vf = oonlL =358 ﬂSo,?= (1,0,0) (232)
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By using the separation f(r,ﬂ)) = l(r)u(7) and considering
u /u = -
where m is an arbitrary real constant,we obtain (4,B = arbitrary con-

stants)

2R ? +rR‘+(¥%r% - 2%)R = o

u("l/) = A cos ny + Blain mn7

We find the solution R(r) = Jg(kr) where J_ is the Bessel function
of m order,while the admissible constant k depends on m ( ks_k-- ).

The particular solutions for (23) are
N cos m7

r =Jd

.(1‘, 7) .( .r ) .in .7 (24)
The values k are determined with (23a) ywhich,with o’ = (1,0,0) on L
gets reduced to the eguation

’
Jp k)=o0 (25)

This equation has an infinite number of solutiens 8 = ’k:lz""'km‘
ee«s which represents the eigemvalues of the eguation (23).The func-
tions f, are chosen in the form

cocn-v

- : 7 SR
£, =1 (r,7) = ‘Im(k'i) oin with m€ R~ given

Ve take
m=1,i=1,2

The solutions of the equation (25),[§ J3,[6] and the functions £,

will be
ks = 1,84118 ; ki, = 5,33144

fi‘(r,v) = Jy(ky4r) c037 or £, ( r,7)=J1(k1i)ain7

(i=1.2)
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2. The finding of the functions Wy #e choose harmonie polyno-

mials for the functions 'k(r"’] 1Z).The polynomials are represented

in spherical eoordinates thus tel L4]1:

U. ln?l(col-e-) _—. = v:(r,z)
gin mf) sin a7y

cos l?’

where P: = Pn and E: represent Legendre polynomials.¥e consider the

harmonic polynomial in eylindrical coordinates (in the meridian pla-
ne (r,z) with R*= r*+ 2* and cos#4= z/R )

. a5
':'(rpz) -'bmllr:(eoo &) , bu = 2 _m:(n-m)!

(a+ m) !

(n=09,1,2,... ; mgn)

By using known recurrence relations ( P° =P (fc) = 1 Pl(fa.) /‘ rese,
r‘- = cosé= z/R ) the following expressions are inferred :

The case @ = o >

2
'g =P (fL) =1, '1=b1 RP°=z - -2=32- — p? 131 .. (2:+%—),....

The case m = 1
'{' =p, v;]_; =rz , '§ = rz°- 71_ r’, '1'= rzo+ % r?z,...,-ﬁ....

Harmonic polynomials of the form v: with m = 1 and n) m may be

used for the problem under study.

3« The trial functions —fi and Wy » If we consider an approximation

with m = 1, §= 1, 9 =2 and we use the Bessel function Ji(x),the
trial functions are chosen as follows :
fj(r’ ’7) =J1(k1Jr) 30’7 - _—
;5 J= 1,2

ky.z
QPJ-(r,vf,z) = e 1 Jl(kljr) cos’7
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4 The calculatlon of coefflclnnts x ﬁ f Ve use the formulas
(73 T2 -

1= L )Jl(kln) ya=n ,Jl(kln)%
4n

}ul -~

A
(B) ( Jl(klmr)Jl(klnr)rdr=
- °©, m#n ,J{(kh)w{(kln)%

(b) J. Ji(kl 7-')1' dr = k—i [E%‘JI(RIJ)_JO(EIJ)J »d= i:;

(e) le_(z)=Jo(z) - —i Ji(z) ; (Ji(z) dJi/dz )

(n —_ S—

The coefficients OCA'.J' (with i,j= 1,2 , n= 1,5 ) have the expressions

S 4
ofjj % =k < =) Jl(li)
3
)
& s
ij ’with i#j
(‘i)_ (1)
Lys = kg 43
(4)
O(ij =0 , i¥j

:\J.i = 27?[7”’ Jl(kl.]) - Jo(kl,j)} ’d = 1,2
(5) 3 ¢ Q) 3 ) -
o1 = 0 3=1,2 37 sy 5 L=y =% 0y i

The coefficients (3‘ o We use the formulas (16) .If we assume the

surface integrals to be finite,we obt_’.a:m the equalities

e j o,
= = LP_._Lds+ K{~—-—-dg,1,‘)12
AJ U~ L an S &b S{ k CWL
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Hence we deduce the calculation formulas (r = cos@)

(1) (1)
klad +

TC/J. -(k1.+k1.)sin<f’
k .Tt_f ol Jq(k x
+ 1.] " e 1( 14 cos Y)

x [J{(kh-t':os ¥)coe P~ Jl(kijc“ v) sinq] cos ¢ de

If we use Simpson's rule (1/3) for the approximate calculation of

an integral,we obtain the approximation formula

1 _ 4 (k..ek )
\11; = k {d”) % e 2 1i 1.) Jl(

S
bt

4 —_—
x[%(-ﬁ)-q(ﬁ)]} i 1,d =1,2

vz 7
(Jl( V—_)ﬂJ('r-)-Tqu(\/—I

(R) j\ ’(’ML:‘ ﬂ’k; »
Pir=g il as=] q 5t s
®

& ~kq;8in ¢ ‘ 5 o
=7('_'j. e Jy(ky; c08 ) cosyp ay i=1,

If Simpson s rule (1/3) is used,we obtain the approximate calcula-
tion formula
(2),, %
/511 ~ 41 [Jl(kn)+2e

Ml—‘

Ky, 4. —_—
1i ‘e .
Il —=)] sl

For /5”) we also have the formulas

3 (3) T
0= a2

i =95 1,5=1,2; iz
|
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—

1,2 ; n = 1—,3_) are estimated by

"

The coefficients fi‘g? (i,j

means of the formulas

) _ pld (2)
T11 = 12'11 ’ le 3 [/321

4
(0 - . T 3 @ )
11 =¥ ) Gee?is = Ty Y= % 0 pp= A3

5. The equations for the coefficients 81:¢14¢, &nd for the frequ-

ency (0 . By using the Bessel functions values Je(x) and Jl(x) given
in tables [3] and the above mentioned formulas for o, Be ¥ the
following numerical expressions are inferred for the matrices in

the system (21)

7 e
[a] %2 | [ousram o
M g0 g | T ;
i 21 22 ° 0.181565
LA 0. 538060
4r= 4 ) . > Ay = Ag
21 -0.037961
0.69327 o 0
) ) (5) { } -
_ o 0. 9680003 : ‘2 ) ’
o <) Lo
22 12 2,667132 °
‘;1=‘11=“L ) ¥ ' ;
£, . /- o 2
Wi ] o £ o 5.507705
4) )
pll /512 0.653849 - 0.01245%
Bﬂ - (1) m | = |
fizn Y22 ~0.000145 0. 967969
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= ) 0.712139 .
2 a) [ =
ﬂ21 -0,283727
T :
B4y
T T
CI = % » C2 = ( 2.094395 ) » C}"“z
The algebraiec system (21) is written in the matrix form
: 2
w
atg
where the matrix l“ﬁ) and the column vector are

x'®) L=e, W=

P11%911@  Pyp*ag, P13*dy; @ 8
w2 | Pyt pyytay, Py3 SX= { &
P31 *d5p@ P35 P33*a53@W <

in which the coefficients P and q have the expressions
(8 =a+g)

2.094395 ; qq; = - 0,780095

4

(T) { P12 = 0712139 + 0.495336 51 i 93, = = 0.538060

P13 = ~(0.283727+0.10119¢ %1) i 933= ©.037961

a
B Pp1 = 0.712139 ; 3p1=-0.538060; P22=0,653849+o.345164—‘;
T |app == 0.374937 ; Py = =0.012453
() Py = =0.283727 ; 351= 0.037961 ; P35= -0.000145
- = 2 = T -
P33 = 0.967168+0.484002 Ei i Gsg 0.181565
The equation of the eircular frequency parameter

det ..(ﬁ)) = Q
is reduced,after calculations are performed,to the equation
-2 ==
; bzw + blw + bo = 9 ;
('me w” coefficient is 4, 9, %" % Ty q,;lﬁ Cl“q“=—’4.40 (& O))
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where ( a = a /(a+g)): ‘ D= WY/a __Table 1
b2=o.090166+10'6§ A 0,090166; ]
by==(0.626€42+0.3054215+4. 107 % |

B! 0,5]
1

<=(0,626642+0,305421 3 );

702715 | 5,560439
b,=0,784626+0,7308943+0,169249a% 155‘

2730642 = 5,668477
2756215 | 5,767286

In the Table 1 the values of the frequency parameter ¢ are given
form=1, g =2 (and N = 1 )«The values calculated in Table 1 are in
accordance with [ 6 ] where is considered the case a = o.
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SUMMARY

The variational Galerkin equation is applied to the éludy of
small motions of an ideal fluid in mobile tanks.In the case of tank
translation,solutions in the modified Ritz form are chosen for both
the velocity potential and for the free surface,The equations for the
coefficients ang frequency are determined.The results are applied to
the study of fluid oscillations in a spherical tank (the fluid £ills
the semi-sphere of radius R°=1 in a uniforaly accelerated motion).
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