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BOME MEAN V2

[oan Muntean

troduction. The classical mean value the s for 1

functions, usually at

-ibuted to M. Rolle (1691), J. L.

(1797) and A.-L. Cauchy (1823), together with the famous rule of
G. F. 1'Hépital (1696), constitute today the central part of real
analysis and its applications. In the last century and more,

numerous res

and extensions of these theorems have been
appearing. They concern functions: 1) taking complex values or

values in a normed space (even

a topological vector space),

2) possessing a derivat

in an extended sense (infinite,
lateral, Dini, approximate), 3) deprived of any derivative (even
in extended senses) at some points. Other investigations refer
to mean value theorems for divided differences or to various
converses of the classical mean value theorems.

In this paper we limit oneself to real functions of a real

variable, and we propose to attenuate the continuity hypothesis

=

which is present in almost all mean value theorems, urtil the
primitivability or even the Darboux conditien for involved

functions. So attenuated, these requirements are combined in
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ON VECTOR TOPOLOGIES ON FINITE-DIMENSIONAL VECTOR SPACES
Zoltan Balogh and Marius Moisescu

1. Introduction.

This arﬁicle grew out from some basic ideas presented by
I.Muntean in his book [1]. We wrote it thinking thet the gquestion
of the indepeﬁdence of the defining axioms of a vector topology
is still an interesting one.

Let X be a vector space on K (K being R or C, endowed with
the Euclidian topology). Let O be the origin of X.

A topology 7 in X is named vector topology if it satisfies:
TV1) The{adition +® : X x X = X, +(x,¥) = ¥ + y is continuous.
TV2) The multiplication "e" : K x X = X, s(a,x) = ex is
continuous.

Generally, the axioms TV1) and TV2) are independent.

2. Independence of the axioms.

If X is a vector space, X # {0} with the.discrete topology,
TV1) is verified without TV2) being verified.

In 1988, V.Anisiu gave an exemple of a vector topolugy wich
verifies TV2) without TV1) being satisfied. The vector space he

considered was infinite dimensional. We give now an exemple of
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tor topology which satisfies TV2) without TV1) being satisfied
nd +he vector space is finite Cimensional.

2.1. Example.

Let X = B a vector space over R. We define the map {: X —
P(F(¥)) by:

{VeX:3e >0 such that ]x-e,x+e[cV } for x*0,
Ty =
{R} for x=0.

The axioms of neighbourhood map are easly checked. We can
also check that TV2) holds but not TV1).

The exemple above has the trouble that the topology is not
Hausdorff. We give now another example of topology which
satisfies TV2) without TV1) being satisfied and the topology is
Hausdorff.

2.2. Example.

Let X = R? the vector space on R and the topology Tt

generated by the following neighbourhood function: AF: x—

P(P(X))
[{V < X: 3 ¢ > 0 such that x+]-e, e[-xcV} for x=0,
v |
Vixy={
|
[{V c X: 3 e > 0 such that B(0,e) < V} for ==D,
where 0 = (0,0) and B(0,e) is the Euclidean ball from B2 of
radius e.

The neighbourhood function axioms are immediately verified
for and the topology generated by ﬂ? is stronger then the
Euclidean one.It foxlous.that the space is separated Hausdorfrf.

We show that TV2) holds. Tﬁeré'are three cases:

a) x = 0.
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The axiom is verified for a0 = 0, since the neighbourhoods
of 0 are coinciding with those from the Euclidean topology.

b) x » 0, a = 0.

We define an orthogonal éoordinate system on R? as to 0x,; be
the line which passes through 0 and x. In this coordinate system
we have x = (x;,0), ax = (ax;,0); V € ’U}a-x) implies that there
exists a line segment on 0x; centered in ax, contained in V if
and only if there exists an €¢; > 0 such that lax;=e,,ax;+e [ x
{0} e V.

The usuél tofology on R satisfies TV2) so there exists § >
0 and e, > 0 such that:

]a-s,a+6[-]x1-e2;xi+c2 [ € Jaxy-e,, ox +e4]

It is easy to see that U =]Xy=€,, X te5[ % {0} € Tjkx) and
Je=6,a+6[-U < V.

c) x 0, a =0,

We reason in the same way as we did a* ), taking a line
segment with the center in 0 on 0x which is contained in the

neighbourhood of 0 we have alreadv -onsidered.

3. Main result.

In this section we give sufficient conditions to be
satisfied TV1) in the presence of TV2), in the case of finite
dimensional spaces. We note by Tg the Euclidean topology in X

Definition. We name open line segment that pass throuch 0
€ X any set of the # m D(0,e):x, where x € X \ {0} and D((,¢e)
={aeK: |a|<e}. )

3.1. THEOREM. Let X be a vector space over K of finite

dimension m > 1, and Tt be a topology in X satisfying TV2)
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and the following properties:
1° r has a countable basis of the origin.
2° The addition "+" : X x X -— X is continuous ip every
point of the form (0,Xx).

Then TV1) hclds.

Proof: A) Let x € X \ {0}. We show that any V in TﬁO)
contains an open line segment that passes through the origin,
with direction x.

From 0-x = 0 and TV2) it results that there exists an £>0
such that D(0,e)'x < V.

E) We show that for any V ¢ QWD) there exists a ball (in
the sense of Tg) centered at 0, with a sufficiently small
radius, which is included in V.

It is sufficient to show that Vv contains a hyperparallele-
piped centered in 0. Using the equality 0 + 0 = 0 and condition
2°, it follows that there exists Vi,V, € q%(o) such that V4V, c
V. Dencting by {€1400 014} the carnonical base of X and using A)
it follows that there is an €; > 0 such that
(1) " D(0, e3):e; + Vo, € ¥V

Following the same reasoning, after a finite number of steps
we have: D(0, €1)°e; + ... + D(O, €yl e, o+ Vpme1 © V. This implies
that H = D(o, £il By * ... * B(6, €n)"@, © ¥V, H being a
hyperparallelepiped centred in 0 ¢ X.

C) For any x € X and any V ¢ ’vkx) there is a ball centred
at x and included in V.

The proof use B) and 2°

D) There is a bounded neighbcﬁfhood of 0 (in the sense of

r

Tia)s
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X has a countable basis of neighbourhoods of the origin,
S0 X has a descendent countable basis of neighbourhoods of the
origin {Ug};.n; we have Uy, < ﬁn, for m > n. From 00 = 0 it
results that there exists €y > 0 and Vy_ ¢ Qﬁo) such that D(0,e,)-
Ve © Uy - i
We suppose that 0 has no bounded neighbourhood; it results

that V) is unbounded in Tg- It follows that there is a sequence

k ! J -

(% }iens xige V. such that Hxﬂj -+ @ when i — @ (| + | is the
+ 2 1

Euclidean norm on X). There is iy such that ﬂxhl > — for any

£y
x ) X
1 > 1, whence we conclude that € D(0,ey) and T Xy
Hxikli I xikfl

1
€ Uy. Denoting y = —— -

I%; 1

xik we obtain a sequence (¥y) xuy such

iy i
that ) e U, and Iyl = 1 for any k ¢ N. From {¥y}ren bounded in
Tg it follows we can find a subsequence with Y - ¥ when k — o
and |yl=1. So y » 0 and from the fact that r is a Hausdorff
topology it follows that y and 0 are separated Hausdorff.

We will show that y and 0 are not separated Hausdorff and
this will be a contradiction.

Let Ve'l(y), w EI”O). From C) it results that there exists
& > 0 such that B(y, e) c V; but it results that there exists
pl-e N sucﬁ,as yple B(y,e) for every p 2 Py So, we have Yp €
V for all p > pl; On the other hand, there is P; such that Ub c
W for all p > p,, ({Uptpen descendent basis of neighbourhoods)
and y, Ae Uy- We obtain Yp € W for p > p,. If we take P3=
max{pl,p;} it results ybse Vv and yp3e Wso VNW# 0. Because V
and W were taken arbitrarily it results that Yy and 0 can't be

separated Hausdorff, contradiction.



92

E) Let x € X. There exists a bounded neighbourhood of x (in
the sense of rEﬁ. Supposing contrary, every neighbourhood of
X 1is unbounded. Let U be a bounded neighbourhood of 0 (the
existence of U is ensured by D)). Then from 0-x = 0 and TVZ2)
it results the existence of €>0 and V ¢ Qﬁxﬁ such D(0,e) -V < U.
But V is unbounded so it results that U is unbounded, too;
contradiction.

We pass now at the proper demonstration. We shall suppose
that TV1) does not hold. For X,Y € X we suppose that there exists
u eq%x+y) such that for any VvV ¢ Q’}x), We 1j?y), V+W ¢ U holds.
Let {Vy}y.n and {Wileny be d;scendent bases of bounded
neighbourhoods of x and Y, respectively (their existence is
ensured by E)). There exists B(x+y,2¢) < U . From Vit ¢ U it
follows Vi+tW, &« B(x+y,2e) and at least oene of Vi, ¢ B(x,e), Wy «
B(y.e) holds.

Let's admit that the first relation is verified by an
infinite number of indices (on the contrary, the second relation
is verified by an infinite number of indices).

So, there exists an infinite number of indices k such that
X, € V.. \ B(x,e) exists; after an eventually renumbering it
results that there is a Sequence {xy},.N such that X, € V. \
B(x,e)- x5, € V), < vV, so {¥%) } N is bounded. Ther; is 5 subsequence
=ncih that nx, — %" when k -+ ©, We show that x and x' are not

separeted Hausdorff. This will be a contradiction because x'¢
B(x,e).

et v e W), v' e Vix'). There is B(x',e') < v' (from €))
and for any k2k; we have x, ¢ B(x',e') (from ¥, = x in the

Euclidean topology). So x, ¢ V' for k2k;; for k2k;, x, € V, and
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Vie © V ({Vy}y.n basis of neighbourhoods). It follows cthat x ¢
for kzk,. Taking kj = max{k,,k,} we obtain that X, € VN v
Because V and V' were taken arbi;rarily it follows that x and
x' are not separated Hausdorff.

3.2. COROLLARY. Let X be a vector space over K with
dimension 1 and T a topology on X so that 1 1s Hausdorfr
and with countable basis of the origin. If TV2) is satisfied,
then TV1) is verified.

Proof. We do not need A) and B). We prove C) using 1-xX = %

and TV2). The rest of the proof is analogous.




