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0. Introduction,

The metric projections on closed convex sets in Hil-
bert or Banach spaces were deeply investigated (see for
instance the monograph [18] and the papers [4-6], [13-16]).

4 special case is the metric projection on a closed
convex cone in a Hilbert space. ‘

Although this subject, much studied by Zarantonello in

[19], it seems that the relation between the projection

operator and the ordering defined by cone was firstly
considered in our paper [8].

The cited paper as well as [9], [10],[11] and [12]
concern on various characterization of a cone K in a Hil-
bert space having the property that the metric projection
P_ is isotone with respect to the order defined by K (cal-

K
led in this case isotone projection cone).

Besides its theoretical importance this property has
interesting applications to the study and the solvabili-
ty of the Complementarity Problem (important in Optimi-
zation, Mechanics, Game Theory,etc.), [9-15].

The aim of this paper is to place our investigations
on isotone projection cones in Euclidean spaces in the
recent literature which investigates some related prob-
lems.

More precisely, we intend to exploit from this point
of view some recent results of Barker, Laidacker and Poole
[l}jto complete the existent characterzations of isotone
projection cones with new ¢ones, and finally, to simplify
some earlier proofs and to present them in a concise and

independent exposition.
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1. Preliminaries and the main result.

For the following basic facts about cones we refer
the reader to the book [17].
A subset K in the Euclidean space R" is a cone if
(i) K+XKeX, (ii) AXeX whenever AeR, and (iii) KN(-x)={07}.

A cone is a convex set. We say that K is generating

if R"™=K-K. A cone in R" is generating if and only if its
interior is nonempty. The set

K ={ xeR" | <x,y>s0, VyeK }
(where <.,.> is the inner product) is called the polar
of K. If X is generating, then X° is a closed cone. If
K is closed then K=(K0)O.

If we put xsy whenever y-x€¢XK, then we obtain an or-
der relation (that is a reflexive, transitive and anti-
symmetric relation) compatible with the vector structure
of R™. We say in this case that (Rn,K) is an ordered vec-
tor space and K is its positive cone. The order defined
by X is called the order induced by K.

An upper bound of a set AcR"™ is an element beR"™ such
that asb for every acA.

If there exists a least upper bound for A, it will be
called the supremum of A and will be denoted by supA;Lb—
wer bounds and infima can be defined similarly.

If for any two elements x,yeRn it exists sup{x,y}
(which will be demoted by xVy), then the ordered vector
space is called a vector lattice and its positive cone
K is said to be latticial (or minihedral).

We say that a subset F of the cone X is a face if it
is a cone and if it satisfies the condition : from x¢F,
yeK and y=x it follows that yePF.

A closed half-space of rR" having boundary point O is
a subset of R™ of the form {xeRn|<x,p>§0} where peRn,
p#0.




-3

A polyhedral cone in R™ is the intersection of fini-
tely many closed half-spaces of R” having boundary point O.
A closed cone KcR"™ is a polyhedral cone if and only

if X is a finitely generated cone, that is there.exists

a finite subset {al, a .,ak}of Rn, called a set of

pr e
generators for K such that,

K ={klalﬂ-xzaz+...+Kkaklk1kz,-. ee . A, 20} .

A closed generating cone KcR" is polyhedral if it has
a finite number of proper faces having codimension one
in R™ and every proper face of K is contained in some
such face.

We shall use this last characterization for polyhedral
cones.,

If C is a closed conves set in Rn, then for each xeRn
there exists a unique point in C denoted by PC(x) such
that Hx—PC(x)H s lx-yll, ¥yeC. The operator PC is called

the projection (or metric projection) on C.[17].

The cone KcR"™ is called correct if for every its face
F it holds PSPF(K)Cﬁﬂ where spF denotes the linear span
of the set F. Correct cones are called by Borwein and
Wolkowicz projectionally exposed cones [2] and by Barker,
Laidacker and Poole orthogonally projectionally exposed
cones [1].

We have independently introduced this notion and cal-
led it correct by some analogy with the notion of perfect
cones in which occur the additional condition K=K¥*, where
K#=-K° (see [3]1.[7]).

We maintain this term here to be in keeping with our
terminology in [9]1,[10]1,[11].

The closed cone Kcﬂn is called isotone projection comne

if from y-x€¢K it follows that PK(y)—PK(x)GK, for every
x,yeRn.

By using the order relation induced by X, this condition
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can be written in the form: xSy=» PK(X)§ PK(y).

We are now ready to state our main result.
Theorem

Let X be a closed generating cone in R".

Then the following assertions are eqguivalent:

(i): X is an isotone projection cone,

(ii): K is correct and latticial,

(iii): X is polyhedral and correct,

(iv): there exists a set of vectors{uiliél} with the

property that <u,,u.>s O0,¥Yi,jeI, i#j and such
that X=({u,] ieI}®,

(v): X is latticial and PK(x)gx+ for every x in Rn,
where x+=xV0. B

The equivalence (i)&(iv) was proved in [8]. The equi-

valence (ii)&(iv) was independently established in [1]
and [9] while (ii)&(iii) was establishéd in [1].

In [9] was proved (i)=»(ii) for a general Hilbert space.

We shall give in the sequel a complete proof of this
theorem which we shall make as selfcontained as possible.
The only facts we shall use regardless the ones in this
section is the theoreﬁ of Youdine on latticial cones and
some properties of the projection: operator including
Moreau's decomposition theorem with respect to mutually
polar cones. The most part of the proof§fare new.

The proof of (i)=»(ii) is a simplified version of the
similar result for Hilbert spaces proved in [9]. The most
difficult steps are those which imply the operator PK.

Hence one of the main reaches of the paper is the
proof of (ii)=»(i) presented in section 4 and which is
much simpler as that of (iv)=(i) in [8].

Condition (v) constitutes a new characterization of the




o

. . . . n
isotone projection cones in R .

2. Preliminary results.

The following result of Youdine [19] will often usmi

in our proofs.

Theorem {Youdine]
The cone KCR™ is latticial if and only if there exist

L . . n
n vectors linearly independent in R, Uy sUp ..., U such

that
(2.1): X={xeR"[<x,u.,>50, i=1,2,...,n}.

That is, K is latticial if and only if it is of form
K=({ui|i=1,2,..,n})o, where ui, u,,..,u are linearly in-
dependent vectors.

Several technical corollaries follow from this result.

Let AcR"™. The affinehull aff(A).of A is the smallest
affine subset of R contanining A. The relatiye interior,
rint(A) of A is defined as the interior of A regarded as
a subset of afoQ) (with the relative topology).

We remark that if AC,ERn is nonempty and convex then

rint(A) is nonempty and dim(rint(A))=dim(A).
Lemma 1
If X is of form (2.1) then for every subset

{il,.;.,ik}c{l,Z,..,n}(according to Youdine's Theorem) the

set Fi1s ..,ik={XGK ]<x,ui'>=0, j=1,...,k }is a face of X.
_i_lhf}l whenéver h#1, thed both Fil!--.,ik and_ _
r_:i___rﬂ:(Fil’“.,ik)={xeFil’”,ik[ <x,u;2<0, jell,..,nN\ti ,..1}
are for k&n nonempty sets in R™-of codimension n—k.

Every face of K is of form_Fil,...,i with some set
{(i,...,1)a(1,2,..,0) k

Proof

The assertion that F. : and rint (F

i ) are

i oo gl .
1l ’k 11,..,1k
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nonempty and of codimension n-k if k<n is a routine exer-
cise of linear algebra.
Suppose that xeFi . , Y€K and ysx.

IR
Then <x~y,ui >=—<Y’ui 2%0, j=1,2,..,k since x-yegK.

J

Hence <y,ui >=0; j=1,2,..,k because yeK and we know that

<y,u.>§0;jgl,2,.,n.Thus veF, ., and this set is a
J 11,..,1k
face of K.

Suppose that F is an arbitrary proper face of K.

If for some x&F there would hold <x,uj><0, ji=1,..,n
then for arbitrary yeK it would exist some positive sca-
lar t such taht <x—ty,uj>§0, j=1,2,..n.

But then x-tye¢K, that is tygx and ty€K whence tyeF by
the definition of F. Now, since F is a cone, it follows
that ye¢F and vy being arbitrary in X we obtain that KCF
contradicting the hypothesis that F is a proper face of
K. Hence there exists some minimal set {il,..,ik}C{l,Z,.,n},

kz1 sé that <x,ui>=0, i=1,2,..,k for every xeF. By the

J

first part of the proof we have F=Fi 5
17t

- W
k

Lemma 2

If K is a latticial cone given by (2.1), then for y,zeRn

the supremum yVz is the solution of the following system

in x:

<x,u.>=min{<y,u.>,<z,u.>}
i i i
(2.2):

i=1,2,...,n

In particular, if veRn and <v,uj> = 0 for some je{1,2,..,n}

+
then <v+,uj>=0 where v =vVo0.

Proof

Since uo,u ,..,u are linearly independent vectors
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the system (2.2) has a unique solution X Let us see that
x0=sz. From the definition of x, we have,

-y =< - =mq i < -< - >=0,
<X Ty, Uy >=<x Lus>=<y,u, >=min{<y,u, >, <z, 0, >} =<y, u > 50,
i=1,2,..,n.

Hence xo—yeK, that is ygxo. Similarly we deduce that
ZSX .

° n

Suppose now that for some x in R™ , y=x and zsx. Then

by the definition of K , <x—y,ui>§0 and <x—z,ui>§0,i=l,2“.,n

which imply <x,ui>§min{<y,ui>,<z,ui>}=<x0,ui>, i=1,2,..,n.
Using again the definition of X we conclude that X—XOGK,

i.e., X SX. Thus we have x0=sz.

If for some veR" and some je{1,2,..,n} one has <v,uj>=0 we

+ . . + . .
get <v ,uj>=m1n{<v,uj>,0}=0, since v =vV0 is the solution of

the system:
{ <x,ui>=min{<v,ui>,<0,ui>}

i=1,2,..,n.

Lemma 3

Suppose that K is a latiicial cone given by (2.1). Then

there exist the linearly independent vectors el,e -
=2

. n . . . ..

in R with <eilpj>=o if i#j and <eiLPi><O’ i,j=1,2,..,n,

such that 0
(2.3): K=cone{el,...,en}(={i§1kiei[AzO, i=1,2,..,n}).

. o ..
In particular, K =cone{u;,u ,..,un}and every latticial
i—2

cone has a representation of form (2.3) with some linearly

n

Since e ,e ,..eﬁ are linearly independent then every
228F2 G T,

n . .
vyER” can be uniquely represented in the form,y=cle +..+tc_e
-1

independent vectors e ,e ,..,e .
1 22—

€8 heeac R,

n
If for another vector z€éR we have z=d.e +--+dﬁ§
1 1

172

Proof
Since ui,uz,..,un are linearly independent, then

U_,..,u,
1770 J—l’uj+1,--.,un span a hyperplan in RD. If e is a

n
d ,d ,..,dneR then zgy is equivalent with di§fi’ i=1,2,..,n.
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normal vector to this hyperplane then,: since
uj¢sp{ul,..,uj_l,uj+1,..,un}1t follows that <e,uj>#0.
Choose 2 normal e to this hyperplane so that <ej,uj><0.
Obviously <ej,ui>=0 if i#j and hence ejeK. A
Take j=1,2,..,n in order to obtain e ,e sees€ By the
2

1
biorthogonality of the systems e , e ,..,e and u ,u ,..,u_,

1 2 n 1 2 n
it can be easily deduced that e;, e, cese are linearly
independent. We have obviously conefe ,e ,..ﬂ%&CK To show

102 .
the converse inclusion take x=c e +..+cnen with cj<0. By
11
scalar multiplication with u. it follows that
<x,u.>=c_.<e,,u.>>0 and hence X¢K.
J J J J
The last representation of the lemma follows directly

from the representation (2.3) of X. WK

The next result is true for a well based closed con-
vex cone in a reflexive Banach space but because in this
paper X is in R" we give this result with an elementary

proof.

Lemma 4

If X is a closed cone in R™ then every K-increasing,

. n .
K-order bounded sequence in R~ converges toits K-supremum.

‘Proof
. . 0.0
Since K is a closed cone, we have K=(K )",

Hence K° must be generating, since if kK° would be con-
tained in some subspace of codimension one, then the or-
thogonal complement of this last space would be in (KO)O=K,
contradicting the definition of K.

Let u ,u pees U be linearly independent vectors in KO.

1 2
Then cone {u ,...nl}CXO and hence XcK , where K =({u ,..,u })0.
1 n o] (o] 1 n

By Lemma 3, KO can be represented in the form,
K0=cone{el, e2,...,en}, € 9€ 5. s€ being linearly inde-
Pendent vectors in Rn.

. . n
Consider now the sequence { X} in R” such that,
1 "mimeN




xléKx2§K... S G ¢
for some ueRn.

Since KCKOwe have also
(2.4): x = xz

IA

s e .= X = ...éK
1 KO Ko KoanO -

Let us take the representations

m m
x =c e +..+c e
m 1 1 nn

u

m=1,2,... :# u=u e +...+u_e
' 1 1 n n

-

where c?,ujeR , j=1,2,...,n

- . .
Then according (2.4) and Lemma 3, every sequence of

A o
real numbers {cT} (j=1,2,..,n) is monotonically in-

j meéN _
creasing and bounded by uj, hence convergent. Denote

(2.5): c2=1limc™; (j=l,:(.;n)

m-o

. o} o
Then Lxm} is convergent to x =c e +...+c_ e

meN o 1 1 n n’

From the relations xp—xqéK for gsp and u~xpeK for
each p, passing to the limit with p->® and taking into ac-—
count that X is closed,:we deduce that XfiKXo for each

q and xogKu, which completes the proof of the lemma. =

Before passing to some facts concerning correct cones,

. let us remember some results on projections maps. First

of all we have that Pc(x) is the nearest element in the
closed convex set CcR™ to xeRn, if and only if we have:
(2.6): <x—PC(x), PC(X)—y>z 0,V yeC (see Lemma 1.1 in [18]).

We shall also use the fact that any x and y in R" and
every closed convex set CCR™ it holds
(2.7): IPL()-P(DI s hx-v]
that is, PC is nonexpansive and hence also continuous (see
[18], formula (1.8)).

The characterization of projections on a cone and its

polar is the object of the following result.

Theorem [Moreau]

Jf K is a closed convex cone in R" then the following
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assertions are eguivalent:

(i): zx=u+v, ueK; vek® and <u,v>=0

(ii): EfPK(X)’ v=PKo (x).

Lemma 5.

If KCRn is a correct cone and if F is its face, then

for every x¢spF one has PK(X)=PF(X).

Proof

Assume the contrary, that is, there exists some x in
spF such that PK(X)¢F.

Since PS F is nonexpansive (see (2.7)) we have
(2.8): ”x—PSpF(PK(X)n=nPSpF(x)~PSpF(PK(x))ﬂé”x—PK(X)".

Sinceq>SpF(K)cF by the correctendess of K, we have
PspF(PK(X))GFCK. |

By the unicity of the nearest element, we have by
(2.8) that Pﬂﬁ(PK<X))=PK(X)’ whence PK(X)G(SPF)OK#F

wich is impossible and the lemma is proved.
' S m

Let v be in K° and consider the set
Fv={x€K ]<x,v>=0}.
Then a straightforward verification shows that FV is
a face of K.
Faces of the above kind are called exposed faces [18].

The vector v is said a normal to the face Fv‘

Lemma 6

. . n . .
If K is a correct cone in R and if F is an exposed

. . . . n . .
face of K having the codimensione one in R, if v is a

normal of F, then for any other normal v' to any other

.exposed face F' of X which is not contained in F one has

<v,v'>=0.

Proof
Suppose the contrary. So, we suppose that for some
~such normal v' we have <v,v'>>0.Let x¢F'\F.
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Hence <v,x><0 (since VGKO) and we can determine;aijE
sitive scalar t such that <x+tv',v>=0. . p
But from Moreau's theorem we have PK(x+tv')=x. Since
F is of codimension one, its normal is v and <x+tvﬂv’>=0,
necessarily we have x+tv'cspF and we have got a contra-—

diction with Lemma 5...

Proof of principal Theorem.

3. Proof of the implication (4i)=>(ii)-

In proving that the isotone projection cone KCiIRn is
latticial we shall use the following assertion:

a) Let K be a closed and generating cone in Rn and

. n
u,v-two wlements of R".

If there exist a€u+K, bgv+XK with the properties
a=Pu+K(b) and b=Pv+K(a), then a=b & (u+K)(v+K).

Indeed, since X is generating the set (u+K)N(v+K) is
nonempty, that ié, there exists some element w such that
usw amd vEw. This follows by writing u=u; —uz2, v=vi-v2,
where uj;,u2, vi,va2, &K and observing thaf we can éonsi~
der w=u +vi .

We have from the characterization (2.6) of the metric
projections that,

(3.1): <a-P (a),P

—_—w>2Z
V4K (a)-w>2z0 and

v+K

- —_—w> 2
<b Pu+K(b),Pu+K(b) w>z20.

Using the conditions in the assertion (a) the second
relation becomes,
: . _ s>
(3.2): <PV+K(a) a,a-w>z0.

On the other hand we have,

<PV+K(a)—a,a—w%%Pv+K(a)—a,(a—PV+K(a))+(PV+K(a)—w)>=

=P g(@)-alFecap y(2), P p(a)=w).

whence, taking into account (3.1) and (3.2) it follows
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that, [P, (a)-all =|b-al= 0,
and the assertion (a) is proved.

(b) Let us pass to the proof of the latticiality of K.

Consider the arbitrary elements u and v in R". We shall
show,using the isotone projection property of K, that they
admit a least upper bound qu by constructing effective-
ly this element.

We can assume that u and v are not comparable.

Let w be an arbitrary upper bound of the set {u,v},i.e.
an abitrary element of the set (u+K))(v+K) which is not
empty since K is generating by hypothesis.

Let us note next that if P, is isotone, then for an

K

. . n . .
arbitrary element y in R the operator Py+K is isotone too.

This follows from the relatiom Py+K(X)=PK(X—Y)+Y which
holds for an arbitrary x in Rn and which can be directly

verified by using (2.6). Hence Pu and Pv are both i~

+X +X

sotone.
Since no one of the convex sets u+K and v+K is contai-
ned in the other, using assertion (a) we see that there

cannot hold simultaneously the relations u=Pu+K(v) and

V=PV+K(u).

Suppose that u#Pu+K(v)6u+K.

Then ugPu+K(v)§Pu+K(w)=w, since Pu+K is isotone and
weut+k.

Let us consider the operatores Q=Pv+K°Pu+K and
R=Pu+KOPv+K' They are isotone since Pu+K,and Pv+K are.

n n-1

P = = =R .
ut v Q (v), u Pu+K(v) and u (u1). Then we have
the following relations:

vévlé...évné...éw‘aniw

USUu;S...5U0_ S...5W.

n:

since ugu;, v£vy;, since Pu+K’Q and R are isontone, and

since Pu+K(w)=Q(w)=R(w)=w.

(There hold obviously Pv oPu+K(V)ev+K, hence

+K
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v Pv+KOPu+K(V) Q(v) v, and u Pu+K(v’§Pu+ﬁ)Pv+KoPu+K<v)"

that is, u;®R(u;)=u, etc) v

We have further

(3.3): v _=Q (v)=(P_ poP o) (v)=P_ L o(P , 0P o) oP x(V)
_ n-1 - 7
~PV+K0R (uy) PV+K(un)Jand

(3.4): u_,,=R(u )=P 0P  p(u )=P (v ).

Since the sequences{un}and {vn} are increasing and up-
per bounded by w, we have (using Lemma 4) the following
relations:

(3.5): u = %2& u_ and VO=%im v
as well as
(3.6): usu_ sv and vsv_sw.

From the continuity of the metric projections (see re-
lation (2.7)) the formulas (3.3), (3.4) and (3.5) yield

vO=PV+K(uO) and uo=Pu+K(Vo).

Using assertion (a) again we deduce that

uo=voe(u+K)f\(v+K).

Since the upper bound w was arbitrary, from the rela-
tion (3.6) we obtain that indeed uo=vo=qu and the lat-
ticiality of X is proved.

To prove the correctness of K we begin by proving the
following assertion.

c) For every face F of the generating isontone projec-—

tion cone K in Rn the subspace spF projects by PK onto F

and F is an isotone projection cone in the space spF.

Consider z espF. Then z=x-y with x,y¢FCKX whence zxsx.

Since PK is isotone,one follows OgPK(z)§PK(x)=x€F.
Hence PK(z)éF.

This relation shows that PF(z)=PK(z) and implicitely
that PFIspF is isotone projection in spF and (c¢) is proved.

d) We pass to the proof of correctness of the isotone

projection cone K by assuming the contrary, that is, we

suppose that there exists a face F of K and an element k
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of X such that z=PspF(k)¢EK.

Put zO=PK(z). Since zespF, it follows from the asser-—
tion (c¢) that zoeF.

We shall show first that there can be determined a re-
al number t¢(0,1) such that the element w given by
(3.7): w=tk+(1~-t)zO

satisfies the relation

(3.8): <z—w,k—zo>=0

Indeed, we have,

<z-tk=-(1-t)z ,k-z >=<z-k+(1-t)(k-z ),k-z >=<z-k,k—-z >+
o o) o o 0
+(1-—t)ﬂzo“k”2=<z—k,k—z+z—zo>+(1—t)“zo—k”2=—-”z—k”2+(1—t)”zo—k“2

sincex<z—k,z—zo>=0 (z—zoespF and z-k is orthogonal to spF).
Since Hz-k"<“zo—kh by the definition of z and zZ then
putting
l-t= ”z—k“2<1

lzo-k|?
wve have (3.8) for w determined by (3.7).

Using the characterization (2.6) of the metric projec-—
tions, we have
(3.9): <z~zO,zo—k>=<z—PK(z),PK(z)—k>; 0.
From the definition of w it follows on the other hand
that v
<z-z ,z -k>=<z-wtw-z ,z -kd>=<w-z ,z —-k>=<tk+(l-t)z -
o’ 0 0’7o o’%o 0
-z ,z ~k>=t<k-z ,z —-k> < 0.
0’%o 0’“o

This relation contradicts (3.9) and shows that our hy-

pothesis that K is not correct,is false.

4, Proof of the implications (ii)=(iii)=(i).

Obviously, the implicaiton (ii)=(iii) is a consequence
of Youdine's Theorem.

We shall prove (iii)=(i) by induction with respect to
the dimension of the space. |

For dimension one we have nothing to prove. We shall
do the induction step for the sake of simplicity as fol-

lows.

-
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Suppose that the implication

(4.1): zéFy=}PF(z)§PF(y), y,zespF

holds for every face F of codimension one of K in R"

and prove it for F replaced by K.
(Observe that the hypothesis in (ii) hold for faces too
since correctness and polyhedrality are both hereditary
for faces)

Since K is polyvhedral, there exists a finite set of u-
nit vectors { u§n§=1, the normals to the maximal proper
faces of K, such that K=({ui}i;q )O and Fi=Kﬂker u, is a
face of codimension one for edch 1i.

(a) Consider the elements y,z in R" such that z<y. Let
u be the normal to the face F of codimension one of -
K.

Then kerui=spF and let us denote p=PspF' Since uy is

a unit vector we have,
p(y)=y—<yﬂﬁ?ui and p(z)=z—<z,ui>ui.
Let us see that

(4.2): p(z)sp(y)

We have obviously <p(y)—p(z),ui>=0.

Using the above expressions for p(y) and p(z) we have
for j#i: |
<p(y)-p(z) ,uj >=<y—z—<y—z,ui>uj"f uj }=<y—z,uj>—<y—z,ui><ui,uj >.

The first term:in the last sum and the factor <y—z,ui>
in the second term are both non-positive since y-z €X.

The correctness of K implies via Lemma 6 that <ui,uj>;O,
whence the second term in the last sum of the above formu-
la is also nonpositive.

According to the definition of K as ({uj} m )O the a-
j=1
bove conclusions prove (4.2), which can be writtem also

in the form,

(4.3): p(z)5pp(y)
since p(z),p(y)e spF and F=spFNK.
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(b) Let us show next that, if conditions (iii) are satis-
fied then for every xeRn such that <x,ui>30 for some i,

one has

(4.4): Pe(x)=Pp(p(x))
with F=(ker ui)r)K and p=PspF
Indeed, since K is correct, Lemma 5 implies,

Po(p(x))=Pp (p(x)).

Hence, for an arbitrary weRn we have,
<x=Pp(p(x)),Pr(p(x))-w>=<x=p(x),Pp(p(x))-w>+<p(x)-Pp (p(x)),
yPr(p(x))-w>.

Let now w be an arbitrary element of K.

Then the second term in the last sum is non-negative
,acandingtotﬁﬂcharacterization (2.6) of the projection maps.

If {k,ui>=0, then x=p(x) and the first term in the above
sum is zero.

If <x,ui> > 0, then x-p(x) is orthogonal to spF=kerui.

Hence it is parallel with us and has its direction since
<x—p(x),ui>=<x,ui> >‘O by hypothesis. \

Whence x—p(x)eK? and since PK(p(x))GFT:kerui, it follows
that, <x—p(x),PK(p(x»—w>=—<x—p(x),w>§0, for every wek.

In conclusion we have,

<x—PF(p(x)),PF(p(x))—w>§0, Ywek,

whence using again the characterization (2.6) of the pro-
jection, we conclude that the relation (4.4) holds.
(c) Let us consider again that z£Y and suppose thatyéIntK.
This condition is equivalent with the existence of some
subscript i such that <y,ui>20;

Since y-z €KX we have <y—z,ui>§0 whence we have also
<z,ui520.

If F=(kerui)ﬂK and szspF’
proved in (a) (see relation (4.3)), that
(4.5): p(z)=pp(y).

Use now the fact that both'<y,ui> and <z,ui> are non—ne-—

then we have by the result

gative and the result proved im (b), formula (4.4) to con-
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clude that
(4.6): Pp(y)=Pp(p(y)) and Pp(z)=Pp(p(2)).

Since p(y) and p(z) are in spF we have according to the
induction hypothesis (4.1) via (4.5) that

Po(p(2)) =P (p(y)).

Using now (4.6) we conclude that PK(z)éFPK(y),whence
P (2) 5P (y).

(Particularly in this . case it follows that both y and
z project on the same proper face F)
(d) Suppose now that yeIntK. If zeK, then we have no-
thing to prove.

If z%K, then the line segment {yJ t €(0,1)} with
yt=tz+(1~t)y pierces the boundary of K at some point Ve o

‘ )

that is, we have <yt ,ui>=0 for some subscript i and

<y. ,u.,>=0 for j#i.
t J
o
But zéyt Sy. From the result established by induction

in the poin% (c) we have,
< =
P (2)SP (v, )=y, .
o o
Since Ve §y=PK(y) the last two relations show that
. te

PK(z)éPi(y)'also in this case.
Thus the proof of (iii)=(i) is complete.
Remark.
"Putting together the results of the sections 3 and 4
we conclude that the assertions (i), (ii) and (iii) of our
theorem are equivalent.
Hence we got in turn a new proof of the equivalence of

(ii) and (iii) which was given in [1].

5. Proof of the implications (iii)=(iv)=(ii)

Suppose that (iii) holds. If we consider the normals
U, i=1,....,m to the maximal faces of the polyhedral cone
K, then K=({ui}izl)o and using the correctness of K, we
have by Lemma 6 that <ui,uj>$0, for i#j. Thus the implica-

tion (iii)=(iv) was established.
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Suppose now that we have (iv) fulfilled.

We shall show first that the vectors u, ie]l satis-—
fying this condition are linearly independent.

Since XK is a generating closed cone, in this set exist
at least n linearly independent vectors (see the first
part of the proof of Lemma 4)

Suppose that u,, Uys..,u are linearly independent vec-—
tors in this set and let us verify the assertion:

(a) Let u

pal,s et be linearly independent elements in

n
R satisfying the conditions <uing>§O, i#j, i,j=1,2,..,n.

If for some veRn one has <v,ui>§0, i=1,2,..,n. then

(5.1): v=c u +...+c u with
1 nn

1
Ci$0, i=1,2,..,n.

-

We shall use in the proof a process, which yields an
orthogonal basis W1’ wz, sees W, eVery w. being a linear-
combination of elements uj with non-negative coefficients.

Put w1=u1 and suppose that wl,...,wk_1 were determined,
<Wi’wj>=0’ i,iﬁk—l,i#j and each of them is a linear com-
bination with non-negative coefficients of the vectors uj
with jgk-1.

k
cients tl""’tk—l will be determined.

Let be w =t1w1+"+tk-1wk—1+uk’ where the real coeffi-

According to the conditions on w seesWp g, WE have
. 1
<wyuk>éO , jsk-1.
Hence we can determine tl""tk—l such that tjgo,
j2£k-1, from the ‘relation
‘ = E 4
] (wk,wj> tj<wj,wj> <uk,wj>

This shows that w, is a linear combination with non-

k
negative coefficients of u ,u see s Uy and is orthogonal to
1 2
wj,j§k~1.
We have obviously that W os...,Wy oare linearly indepen—

dent.

Let us consider the representation,
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(5.2): v=d w +.....+d_ w_, d.eR, j=1,2,...,n.
1 1 nn J
Since <v,ui>§0, i=1,2,....,n, by hypothesis and since
are combinations with non-negative coefficients of
k>§O, k=1,...,n.
Assume that we have in (5.2) dk>0 for some k. Multi-

w
k
U yeeeesly, k=1,2,..,n, we have <v,w
we obtain,

> > 0

plying this relation with w

k
02<v,w, >=d, <w

k7T4% K, YK
The obtained contradiction shows that dkéO, k=1,2,..,n.
Let we put in (5.2) the representations of Wi k=1,2,..,n

as linear combinations of uj, j=1,2,..,n. Since the coef-

ficients in these representations are non?negative and

dk’

of v as a linear combination of LIRS with non-posi-

k=1,2,...,n are non—-positive, we get a representation

tive coefficients. But the resulting coefficients must
be quite the coefficients CoseenCy in (5.1) and the as-

sertion (a) is proved.

(b) Let L be linearly independent vectors in the

set { uﬂ i €I} considered in assertion (iv) of the theorem.

We shall show that they are the only nonzero :vector:

of this set.

Indeed, if v would be another nonzero vector in {ui|ieI},
then by the condition in (iv) and by assertion (a) it would
follow the representation (5.1) with,cflJ.

But then —vecone{ul,uz,..ugccone{ui!iel:L that is, v
and -v would be both in cone{ui¥iel}and hence K would be
contained in the hyperplane perpendicular to v, contradic-—
ting the hypothesis on K to be generating. Thus we must
have in fact that,

(5.3): K={xeRn|<x,ui>§0, i=1l,...,n; U peeesUy linearly
independent},

relation which together with the theorem of Youdine shows
that K is latticial.

(c¢) To see that K is correct we shall prove first that if
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F=(kerun)ﬂK then PSPF(K)CT.
From representation (5.3) deduced above and from Lemma

3, there exist the linearly independent vectors e , € ,..,e€
1 2

such that,
(5.4): K=conele , e ,..,e_},<e.,u.>=0 if i#j and
1 2 n i’
<e.,u,><0,i,j=1,2,..,n,.
i’7i
Hence, we have that keru_=spF=sple ,..,e }.
n 1 n-1
The condition PSPF(K)C:F is then equivalent with
P (e )E€F, since for an arbitrary x¢ X we have,
spF* "n
x=c e +...+c e +c_e
11 n-1 n-1 1nnn
with chO j=1,...,n and hence,

spF(X) < e1+" Cn—len—l+CnPspF(en)

bj,the linearity of PspF'

We can suppose without loss the generality, that u_

is a unit vector and then,

-< > .
SpF(e )= =e -<e ,u >u_

One has further,
>=- > >=
<P pF(e Y, uJ <e 0 U <un,uj o,
for j=1,2,..,n-1 (since <en,un><0 and <un,uj>SO by hypo-
thesis).

Since obviously <P (e ),u_>=0, it follows that
spF ' n n

S

PSpF(en)é KNspF=F.
d) Let us see next 'that F has in spF the property simi-

“

lar to those of X in Rn, that is,
(5.5): F={szpFl<k,vj>§O, i=1,2,..,n-1; v ,..,v

linearly independent in spF and <vi, >0, i#j; i,j=

=1,2,...,n-1}.

Indeed, let us take
(5.6): vj=uj~<uj,un>un; j=1,2,...,n-1,.
Then the vector vj are obviously linearly independent
and
<v,,v.>=<u.—-<u_,u >u_,u.—-<u.,u_>u_>=<u, ,u.><u,;,u_><u,,u.
i’ i iyn” nlTj j’> n"n i’7j i’ n i’“n
since ﬂunu=1.

Because <u,,u.>f{u.,u_» and <u,,u_> are all nonpositive
i’ 3 i’ n i’ n

n

>

’
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if i#j, we conclude that in this cése <vi,vj>§0.
We have the representation,
F={x6Rn|<x,un>=O and <x,uj>§0, j=1,2,..,n—1}.
and hence taking into account the representations (5.6)
of vj and the relations proved above, we arrive to (5.5)
e) Denote by G the face
G=Kn(kerun)ﬂ(kerun_1).

Then G is a face of F of codimension one in spF and

since (d) we can apply the assertion proved in (c) for

K replaced by F and R" replaced by spF.

Denote p=PSpFand q=PspG'

With these notations we have,
(PsprpF)(F)=(q|spF)(F)CZG.
Let we show now that q=(q|spF)op.

Toverify it, consider am arbitrary element x ¢R™ and
put it in the form x=u+v with u&spF and vé(spF)o.

Let be further u=w+z with wespl and zG(spG)onspF.
Then x=w+z+v,

Since spGCspF, it follows that (spF)%:(spG)o and
thus z+v6(spG)0, whence q(x)=w, p(x)=w+z and
(q|spF) (w+z)=w, that is q(x)=(q|spF)p(x)).

If we apply twice (c) and use the above conclusions,
it follows,

q(K)=((q|spF)op)(K)c(q|spF)(F)c<G, that iS'PspG(K)CG°
f) If H is an arbitrary face of X then we can include it
in a chain HC:H1C:...C:Hk
such that Hl,..,Hk have the property in their spQns si-
milar to those of K in Rn stated at (iv) of our theorem
and so that H is a face of codimension one of H,, with
respect to spH,, Hi is a face of codimensionone of Hi+1
with respgﬁt tospHi+1 if ic<k-1 and Hk is a face of co-

dimensionone of K.
Repetiﬂg'step by step the process just described in

(c), (d) and (e) we conclude that PSpH(K)CH, that is X




is correct.

The proof of implication (iv)=(ii) is hence completed.

6. Proof of the implications ((i) and (ii))=2(v)=2(iv)

If (ii) holds, thenm K is latticial.

Since xgx+ with x+=xV0, from (i) it follows that
PK(X)gPK(x+)=x+ and we have (v).

We shall verify the implication (v)=(iv) by contradic-
tion. That is, we assume that K is latticial, that is,
it can be represented in the form

K={x|<x,ui>§0, i=l,2,..,n;uzﬂ.unlinearly independent } .
and that for each x in R™ it holds the relation PK(X)§X+,
but theremgame vectors, say ujand u, in the above repre-
sentation such that <u,,u,> > 0.

We shall suppose in what follows that u,, U se sty are

unit vectors.
a) If n=2, then we consider an element x£K with <x,u13=0
<x,u,> < 0. }

Since -xs0 we must have by (v) that PK(—X)g(—x)+=O,
that is PK(—x)=O.

Consider now the vector z=-x+<x,u; >us .

Then <z,u2>=0 and

(6.1): <z,u >=<-x+<x,u >u ,u >=<x,u ><u ,u > < 0.
1 2 2 1 4 2 _1

Thus z&K. We have further,

<=x -z ,z-w>=<—-x—(=x+<x,u >uy ), (=x+<x,u,>uy )-wd =

=<—<x,uz>uz,<x,u2>u2—(x+w)>=—<x,u2>2 +<x,u, ><u, ,x+w>=

=<x,uz2 ><uz ,w>z 0,V wekK, since <x,u; ><0 and <u, ,w>:0,

VvV wek.

By the characterization (2.6) of the projection we
have then that PK(—x)=z. But by (6.1) it must be 240.
The obtained contradiction shows that in this case we

cannot have <y , ‘4, > > 0.
b) Suppose that n»3. Let us show first that under the

above hypotheses there exists an element w in R™ such that
(6.2): <w,% >=O,<w,uj> < 0, jz3 and PK(w)erint F where




—_2 3=

F=K0 (ker u, ).

Consider the cone,

Kl={xekﬁl<x,ul>30, <x,uj>§0, j=2,...,n}

By Lemma 1 there exist some elements y and z in K; such
that

<y,u > >0, <y,u >=0, <y,uj><0, j=3,...,n,
and

<z,u1>=<z,u2>=0,<z,uj><0, j=3,...,n.

Take wt=ty+(1—t)z with te&(0,1].

Then thKl and since “uw=1, we have

= -<
PspF(wt) v wt,u1>ul,

with spF=kerul. Let us see that for a sufficiently small
t we have PSPF(wt)erlntF.

We have for j23 that.
<wt,uj>=t<y,uj>+(1—t)<z,uj>$max{<y,uj>,<z,uj>y

Put ~6=max{<y,uj>,<z,uj>; jz31}.

Then 6>0 and we can take t so small in (0,1] to have
O<<wt’u1><6' ,

Then for jz3 one has,

< u.>=<

P (wt),uJ W

spF
<ui,uj>l§—5+<w

,uj>—<wt,ul><ul,uj>§<w ,uj>+ <wt,u >

t t 1

t,u><—6'+6=0

and

1u1><u1 ,U2><O,

< >=< >—< >< S>= -
PSPF(wt),uz W, U2 Wos U ><ur, up Wy

since <w_,u,;>=0, <u;,u,>>0 and <wt,u1>>0.

Sincetobviously, <PspF(wt),u1>=O, the obtained rela-
tion show that for a such t we have,
PSPF(wt)erintF,
whence it follows implicitely taht PspF(wt)zPK(wt)'
Take WEW and observe that it satisfies the require-
ments in (6.2).

+ . . .
c¢) We shall see next that w 1is contained in the face F

ls 2
of K given by
‘fl 2={xéK}<x,u1>=<x,u2>=0}.
+
Since <w,u; >=0 we have by Lemma 2 that <w ,u2>=0.
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Assuming that,
(6.3): <w+,gf < 0
consider the element vt=tw++(1—t)w.
For any t in (0,1) one has
(6.4): w<vt<w+
(where x<y means x£y and x#y).
This follows from conditions (6.2) which imply that
w<w+. . A
Since w+—weK, we have <wiw,uj>§0, that-is,
<w+,uj>§<w,uj> whence <w+,uj>§0; for j22 by the con-
ditions in (6.2). Hence, _
(6.5): <vt,uj>=t<w+,uj>+(1—t)<w,uj}§0; jz2 for any te(0,1).
From the hypothesis (6.3), taking into ‘account that
<vt,u1>=t<w+,uf>+(l-t)<ﬁ,u1> it follows that for t suf-
ficiently close to 1 in-(0,1) we have also <vt,u1>§0.
But this relation together with (6.5) show taht vtéK,
taht is YéiO.
Hence w =wy©;vt and we have got a contradiciton with
(6.4).
Thus the assertion (c) was proved.

(d)Since F. ,is a face of X, the relation PK(w)gw+ would

imply that PK(w)eFl 2, in contradiction with (6.2).

The obtained contradiction shows that the inequality
<u3,uy>>0 cannot hold, that is, <uiguj>§0 for i#j,
i,j=1,2,...,n. That is, we have the condition (iv) ful-

filled. mg
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