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Abstract

Induced hierarchical preconditioner are investigated for linear 1D convection-
diffusion problems. In the context of high-order compact schemes we give
a priori estimates and a uniform estimate of the condition number.

1 Introduction

The utilization of incremental unknowns (IU in short) with multilevel finite
differences was proposed by R.Temam in [13] for the integration of elliptic partial
differential equations, instead of the usual nodal unknowns. The idea, which
stems from dynamical systems approach, consists in writing the approximate
solution u; in the form w; = y; + z;, where z is a small increment. Passing
from the nodal unknowns u; to the IUs (y;,2;) amounts to a linear change of
variables, that is to say, in the language of linear algebra to the construction of
a preconditioner. Many numerical simulations have shown the efficiency of such
induced preconditioners.

The incremental unknowns play the role of the small structures. Unfor-
tunately they are not always ”small”, in certain practical cases. Indeed this
situation arises typically when the number of points is not large enough and
the discretized function has strong gradients (this is the case of convection dif-
fusion problems). A small step size (or a large number of grid points) can be
a limitation for practical applications since the dimension of the system will be
increased artificially. The use of high-order schemes can be a solution to the
above problem. Exist two main classes of high-order schemes: explicit schemes
and compact schemes. Explicit schemes directly compute the numerical deriva-
tive by employing large computational stencils for accuracy. High-order schemes
achieved in this manner always require non-compact stencils that utilize grid
points located beyond those directly adjacent to the node about which the dif-
ferences are taken. Compact scheme, proposed by Kreiss and Oliger[6] and
which was later improved upon by Lele[7], use smaller stencils but requires a
scalar tridiagonal or pentadiagonal matrix inversion. Another idea (proposed,
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for convection diffusion problems, by MacKinnon, Carey, Johnson and Langer-
man [8],[9],[10],[11]) to obtain high-order compact schemes is to operate on the
differential equation as an auxiliary relation to obtain expressions for higher-
order derivatives in the truncation error. We will use this idea (also presented
in [12]) to approximate the solution of the following (1D) convection-diffusion
equation:

—u"(z) + c(z)u (z) = f(z), z € (0,1),
{ w(0) = u(1) = 0, (1)

where f € L%(0,1) and c(x) € L>(0,1).

This equation often appears in the description of transport phenomena. The
magnitude of ¢(x) determines the ratio of the convection to diffusion. Of course
the 1D problems are not difficult from a computational point of view; we consider
them because the algebra is more transparent than for higher dimensions.

Numerical solution of a problem such as (1) using Incremental Unknowns
has been considered in [3] and [4] but the IUs that have been used in these
articles were connected to the second derivative only.

In [1], the authors propose a construction of IUs that are more adapted to
the problem in the sense that they take into account and the convection term
in the construction of the IUs.

We consider approximations to (1) on a uniform mesh z; = ih (h = 1/2N,
N a positive integer, i = 0,1, ...,2N) having the form

Bi(u; —ui—1) + aj(u; —ugp1) = hfy; i =1,...,2N. (2)

Here u; ~ u(z;), fi = f(x;) and o; and f; are real numbers whose definition
depends on the discretization scheme; we have indeed, for example the two
following possibilities: the firs one consists in approaching the first derivative
by a (centered type) three points scheme and the second one consists in using
an uncentered type scheme for the approximation of ' at the grid points. For
the moment we do not explicite the discretization scheme.

As usual when an IU method is implemented, two different kinds of un-
knowns must be distinguished: those associated with the coarse grid compo-
nents and which are on G, (coarse grid), and whose indices are even and those
associated with complementary points (odd indices) which are on G;\G. (Gy
is the fine grid),

.0 X 0 X 0...0 X 0.

Figl: Q=(0,1), z: pointsin G., o: points in Gf\G.,

If we write the system (2) at the complementary points, we obtain
(Oé2z‘+1 + 52i+1)u2z’+1 - ,321'-4-1’1121 — 024 41U2442 = hf2i+1-

Hence, assuming that ag;y1 + B2,41 # 0, we have

1 1

Ugip1 = ————————(Pait1U2i + Q2iqp1U2iq2) + hf2it1-
Q241 + P2it1

Q2i41 + B2it1



We note that usg;41 is expressed as the sum of a convex combination of us; and
u2,4+2 which is nothing but a bilinear interpolation scheme, and a correction
term whose order is connected to the order of the interpolation scheme. If we

set
1

———————(Baig1u2i + Q2i41U2i42 3
Q2411 +ﬂ2i+1( v +1Uzi+2) ®)

22i+1 = U2i4+1 —
then the system (1), at the complementary points, is reduced to

1

——— hfoit1-
Qgig1 + Baipr T

2241 =

The numbers z5;41 are the incremental unknowns attached to the (discrete)
problem (2). They depend closely on the scheme used for the discretization.

We can obviously repeat recursively the process described above and if the
coarsest grid is reduced to one point only, the preconditioned matrix becomes
diagonal.

From the point of view of the matriceal framework, this construction can be
summarized by the determination of two matrices S and !T under and upper tri-
angular respectively such that T AS is bloc diagonal, A being the discretization
matrix.

We first consider two grid levels. The discretization matrix A is written with
the hierarchical ordering (considering first the coarse grid unknowns and then
the complementary ones) in the form

~_ ([ M B
(5 %)
where A;, 1 = 1,2 are invertible diagonal matrices.

Construction of S
We want to construct a matrix S of the form:

I o0
=(a 1)

and such that AS is upper triangular. We have

ZS _ AN By I 0 _ A +B1Gy B;
- BQ A2 Gl I N B2 + A2G1 A2 ’

Therefore the under-matrix G satisfies G; = —A; ! B,, hence

I 0
s=( 1)
Construction of T

We now want to construct a matrix ‘T of the form:

im_ (I G2
r=(5 ).



and such that *TAS is bloc diagonal. We have
A _t TZS — Al + BlGl B1 + G2A2
0 Ay )7

and then G5 must satisfy B; + Go Ay = 0.

Thus
i [T —BiA?
T= ( 0 I )’
and then A can be written in the form

A1 +BlG1 0 )

R
A_TAS—< 0 A,

We note that since the linear system is non-symmetric, these IUs lead to a
non-symmetric hierarchical preconditioner.

The first diagonal bloc of A is still tridiagonal and we can repeat recursively
the reduction procedure described above by using d levels of IUs.

2 A Priori Estimates

We can obtain (see [1])a priori energy estimates that show that the (induced)
1Us are indeed small structures as expected.

We multiply (2) by §;u;, §; to be fixed later, and summing these expressions
on all indices i, we obtain

2N—1 2N—1 aN—1
> Bibi(us —uiia)ui — Y 0abi(uigr —uiu; = Y hfidiu;.
=1 =1 =1
Hence,
2N—1 2N—1
D Bipadipauips — aidiug) (wigs —wi) = Y hfibius. (4)
=0 i—1
We now choose §; such that
»
So =1, 61 = g,
0 +1 Bi—i—l %

and we make the following hypothesis [1]:
Hypothesis(H)
i. There exists two strictly positive real numbers a and 8 such that
a<o; < BV

ii. a; and B; are strictly positive numbers, Vi =0, ...,2N.



iii. There exists a strictly positive real number v such that

(67 Z%Vl

We shall see later that (H) is not too restrictive for practical cases.
From (4) we infer

2N-1 aN-1
Z b (Uip1 — u;)? Z hf;d;u;. (5)
i=0

We recall the discrete Poincaré inequality (see e.g. [2]):

Lemma 1 Let u;,i = 0,...,2N be a sequence of real numbers such that ug =
usny = 0. Then we have

2N—-1 2N — 1

2
E hu; < E A (i1 —
=1 =0

Using (H), Cauchy-Schwartz inequality and Poincaré inequality, we bound
the right-hand side of (5) by

2N—1 2N—-1 2N—1 2N-—-1 2N—1 1 2N—1
hiéiui< hiui< huf h12< —\U; —uiz hz2
;f _B;f_ﬁg ;f_ﬂ ;hul );f

Also, using (H) we can bound the left-hand side of (5) by

2N -1 2N—1 2N-1
Z ai0i(uip1 —ug)? > a Z (i1 —ug)? > ay Z (g1 —ug)%. (7)
i=0 =0 =0

From (6) and (7) we have:

2N-1 g2 22!
Z E(u¢+1 —u;)? < 2 Z hf?. (8)
=0

We now introduce the incremental unknowns defined by (3). Since

2N-1

2

N-—

,..

1 1 1
Z —(Uip1 — Uz’)2 = —(U21+1 — u2;) 2 + —(u2ip2 — U2i+1)27
( h h
=0 =0 =0
we ﬁnd, setting Y2i = U2;
N-1 2
Zl<z o (Basrayni +02i11 )y)
- | #2i+1 2i+1Y2i 2i+1Y2i+2) — Y2i
i=0 h " 02441 + B2it1 i e '



2N—-1

N-1 1 1 2 ﬂQ
+ ; 7 (y2i+2 — 22i41 — ——————(B2i+1Y2i + Q2i41Y2i42 ) S a2z Z hft,

02iq1 + B2it1

which yields
N-1

2
Q2441
> (z21+1 + —— (it — ?/2i)> +

pars zit1 + P2ip1

N-1

N-1 B 2 ﬁz 2
+ Z <22i+1 - $(y2i+2 —Y2i ) < Z h?f2.
i=0

02i+1 + B2it1

Replacing f; = f(z;) by fi = 5= ;::1 f(z)dr and using Holder inequality we

have:
N-1

2
Q2i+1
Z <22¢+1 +—— e (yaipn — ym‘)) +

Q241 + P2it1

1=0
e Bai+1 i g v “““ 2
+ R2it1 — o \Y2i+2 — Y2 = / D] <
; ( P it + Bain (2ie2 =y )) 40‘ 4a?y? ; Ti-1
2 aN—1 Tig1 Ti41 BQ 2N—-1 Ti4+1
i ([ ron) ([70) s 8 ([
where [|f[| = |f| 20,1

We now develop tiie left-hand side of this inequality and we obtain:
N-1 2 2 N-1
i1 + Baiq 2 a2i41 — P2it1
A=2 + —yw —Y2i)°+2 = o1 (Y2i2—Y2i)-
;0 2i+1 Z a2i+1 +ﬁ2i+1)2( 242 21) ; Qi1 +ﬁ2i+1 21+1( 2142 21)

Using Young inequality, we then find

N—l

{agips — Baint (02i41 — B2iy1)?
2 E ="z > —c E 22 E T .
= @i + B2it1 241 (Y2i2 i) 2 2 = (a2iq1 + P2iy1)? (y21+2 )’

Here ¢ is a strictly positive real number which will be fixed later. Hence

N-1 N-1 2 2
as, 1 + B3, 1 (auo;
A Z (2—6) z :z§i+1+§ : ( 21+1 2141 _ _( 2i+1 — ;821—1-1) ) (y21+2 yzz) )
=0 =0

(2iy1 + B2iy1)? € (q2ip1 + Poir1)?

Since a; > 0 and B; > 0, Vi, we have

1 1 . 1\ 3., + B3
(0421+1 + /321+1 c —(0a2i41 — 52z‘+1)2> > (1 - —) (MH—QZH

(a2it1 + P2it1)? e/ (a2it1 + B2it1)?

We set § = §* and we introduce the function o(&) = for £ > 0. It is easy

- (1+€
to check that ¢(§) > 1, V£ > 0. Hence
2 2
0544 + ﬁ2i+1 1
_oigt T Paig1 > Vi=0,..N,
(@2i41 + B2it1)? = (i) 2 2’




and we then have
: 3 2 1 2 1 1
- - , o s — Bos Sty
(a2i41 + B2iy1)? (a2z+1 + B2it1 5( 241 — B2it1)” | > 5
Thus, taking e = §7 we obtain, after some simplifications

N-1 N-1

1 1
Az¢ D B+ 6 D (yois — y20)™
i=0 i=0

We have then the following result:

Proposition 2 [1]Under the hypothesis (H), the incremental unknowns defined
by (3) satisfy the following a priori estimates:

N-1
632
2
Z Zit1 <
=0 a*f
N-1 .
6/3°
2
;:O (Y2i+2 — y2i)” < a2—ﬂzh'

Proposition is valid for general definition of the IUs given in (3), under
Hypothesis (H). In particular, the scheme used for the discretization of the
convective term is not specified.

i. Centered Convection-Diffusion IUs

We have ) " . L
C; _ 4 Cz_
=i (1-%) a=5 (r %)

Hence, if there exists a strictly positive real number ~ such that

1- max M 2 Y,
i 2
then the asumptions i., ii. and iii. of (H) are satisfied. This condition can be
satisfied by taking h small enough.
ii. Uncentered Convection-Diffusion IUs
o If ¢; > 0 then

1 1
aizafzﬁ, Bizﬂfzﬁ+ci.
Hence, a; and §; are stricly positive real numbers.
e If ¢; <0 then

1 1
OLiZCk;:E—Ci, /Bi:ﬁ;:E'

Here again, a; and f; are strictly positive real numbers.
In conclusion, and without any asumption, the asumptions i., ii. and iii. of
(H) are satisfied.



3 High-order compact schemes (HOC)

The real advantage of (HOC) lies not in the increased accuracy (although this
is sometimes important), but rather in the fact that problems requiring fine grid
can be solved on coarse grids. This implies that less memory and thus less time
is required to solve the same problem to the same accuracy. Since "time is
money”, (HOC) schemes directly reduce the expense of approximating o differ-
ential equation numerically.

High-order compact (HOC) schemes of the type studied here increase the
accuracy of the standard central difference approximation from O(h?) to O(h?)
by including compact approximation to the leading truncation error terms. The
idea is to operate on the differential equation as an auxiliary relation to obtain
expressions for higher-order derivatives in the truncation error.

We define 67u;, n = 1,2 to be the standard central difference operator for
the n — th derivative of u at point ¢ on a uniform grid of mesh size h,

Uit1 — Uj— Uit — 2U; + Uj—
Sty = %7 82u; = i+1 h2z -1
Central differencing (1) yields
—02u; + cibgui — 7 = fi 9)
where 7; is the local truncation error at node 1,
h? d*u  d*u
= — [2¢c— — — ). 1
T [ “da? dx4]i+0( ) (10)

We seek to approximate the leading term in (10) and include it in the differ-
ence formulation to yield an O(h*) method. Assuming the solution is sufficiently
regular, we may accomplish this by differentiating (1) to yield

&
dz3 |,

Pu, dedu &
‘4z T dzdr de],’

which can be approximated compactly as

Pl 2+ bacibyus — bufi + O(R? 11
E.—Cimui'F 2Ci0pt; — Og fi + O(R%), (11)
and similarly

d*u dPu de Pv  d’cdu d°f

aul _ |t pdedu  drcdu A7) 12

da* |, [cdx3 TRt iR T @ ; (12)
dPu 2 2 2 2

=g % . + 26zci5$ui + 6IC¢5ECZ' - (5sz + O(h )




Relations (11) and (12) can be combined with (10) to yield the new truncation
error expression:

h2
T 12
which can be use to increase the accuracy of the approximation scheme. The
resulting high-order compact scheme is

[(€2 = 26,¢:)02u; + (ci0gCi — 62¢i)00u; — 0o fi + 62 f;] + O(RY),

Ti

—Aiéiui + Ciozu; = F; + O(h4)7 (13)
where
A, =1+ _(Ci - 261:01')7 (14)
12
Ci=c¢ + E(émci — €i0zC;), (15)
h?
F; :fz'+ E((szfi—ci(smfi)- (16)

We can write (13) in the form (2) where:

;. C; A; G .
O‘i:#_?l’ ,8i=#+71,f1- = F;fori=1,...,2N,

and we can define IU in this case. If we consider 1D convection diffusion problem
with constant coefficients then:
h2c?
A, =1+ BT Ci=cand F; = f;fori=1,...,2N.

In this case we can see that, without any asumptions, the hypothesis (H) are
satisfied.

4 Condition Number Analysis

The condition number is defined by

_ maxhel (17)
min ||
where {\;} is the set of eigenvalues of the real matrix we wish to solve.

The tridiagonal matrices generated by compact 1D numerical schemes lend
themselves to theoretical eigenvalue analysis, and our hope is that we can draw
some conclusions from such analysis that might apply to higher dimensions.

We will consider 1D convection diffusion problem with constant coefficients.
For a tridiagonal Toeplitz matrix which has the form

d e
c d

TN (Ca da e) = . . )



the eigenvalues are known explicitly (see [5]),
d +2(ce)’? cos(km /(N + 1)), k=1,...,N.

Using this result, we can obtain condition number for each of the 3 schemes (see

[12]):

2h? + 12 + \/(c2h2 + 6¢ch + 12)(c2h? — 6¢ch + 12)

KHOC = ) 18
f# 2h? +12 — \/(hZ + 6ch + 12)(2hZ — 6ch + 12) (18)
24V4—c2h?
K = 2+\/4—(c:—2h2’ jch] <2 (19)
CDS lch|
5 |Ch| > 2
244 c2h?
K - 24++/4—c2h2’ |Ch| <2 (19)
CDS |ch|
=5 |Ch| > 2

PR |ch| + 2+ \/|ch| + 2 (20)
lch| + 2 — \/|ch| + 2

For HOC scheme, as ch — 0, the condition number behaves as ¢ 2h~2 and
for large ch, the condition number behaves as c2h?. This means that for large
N and |ch| very large or very small, the condition number is extremely large
and may pose some difficulty for an iterative solver. This is one instance where
CDS and UDS appear to compare favorably with HOC, except of course for the
fact that for ch > 2, CDS is oscillatory and for large ch, the UDS models an
overly diffusive problem.

Introducing IU, after using all the levels (what means L if h = 2%) we will
obtain a diagonal matrix which have the elements,
c®>h>+6ch+12 2 c>h®—6ch+12 "
c2h? +12 ( 1252 ) + ( 12h2 )
T TR M T L [ e hrreention 2 2h2—6cht12) 2" =2 L
- C —0c¢
[T [(255ette)” o (i)™

and a1 > as > ... > ar. In conclusion, the condition number will be:

(12+ 2R [IS) (212 + 6ch +12)" + (h2 — 6eh +12)” |
(h? + 6ch +12)%"7" + (2h? — 6ch +12)*

KIUHOC = 2

(21)
In the next table we have a comparison between condition number of HOC
scheme and condition number of HOC scheme preconditioned by IU method.
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ch=2 ch=5 ch=10 ch=20

h C k c k C k C k
4.1426 3.3550 8.0960 16.215

é 16 1.5960 40 1.4133 80 2.5549 160 4.5692
1.3322 1.2330 1.8357 2.8620
4.6936 3.6955 10.639 31.394

1 1.7267 1.4915 3.1834 8.3567

i | 32 1.3718 80 1.2524 160 2.1057 320 4.6964
1.3333 1.2333 1.8664 3.3772
4.8523 3.7903 11.526 40.698
1.7646 1.5135 3.4032 10.680

31—2 64 1.3844 160 1.2584 320 2.2051 640 5.8448
1.3341 1.2335 1.8887 3.8699
1.3333 1.2333 1.8667 3.4329

A more acurate bound for k;ygoc can be given as follows:

Proposition 3 Let kjynoc be the condition number given by (21), where h =
1/2L (L € N). Then

1
krvnoc <2871 = —

for each L = 2,3, ... .
Proof. Let

(124 ) [I5 (12 + 6ch +12)7 + (22 — 6ch+12)* ]

oL—-1

RIUHOC = 2 T—1
(2h? + 6¢ch +12)> + (c2h? — 6¢h + 12)

be the condition number of HOC scheme preconditioned by IU method. Let us
denote
A=c?h?+6ch+12, B =c*h?® —6ch+12.

Then A+ B = 2(12 + ¢?h?) and with this notations we shall have

L-2 . X
A+ B A?' + B? Les L2
. _( +B) Il (4% + )_(A+B)2(A2+B2)(A4+B4)...(A2 + B2
IUHOC — A2L_1 +B2L_1 - A2L—1 + B2L—1 .

Now, using the inequality (z + y)? < 2(2% + y?), for real numbers sequentially,
we get

2(A2 + B2?)2(A* 4+ BY)... (42" + B2" %) LA BY)2. (A7 4+ B2"7Y) -

krvroc < 12T goE S A2L-1 4 paret

2L—2(A2L_2 +B2L—2)2 2L—1(A2L—1 +B2L_1)

L—
- XX AQL_l +B2L_1 X A2L—1 +BQL—1 = 2 1'

11
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Remark 4 We notice that the upper bound of the condition number does not
depent of the equation’s coefficient c. From this point of view we can say that
we have a uniform condition number estimate.
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