MATHEMATICA	-	REVUE D'ANALYSE NUMERIOUS	
		REVUE D'ANALYSE NUMÉRIQUE ET DE LA THÉORIS	E

MATHEMATICA, Tome 17 (40), N° 2, 1975, pp. 191-196

AN EXTREMAL PROBLEM FOR THE TRANSFINITE DIAMETER OF A CONTINUUM

by

PETRU T. MOCANU and DUMITRU RIPEANU Cluj-Napoca

In this paper we solve an extremal problem connected with the transfinite diameter of a continuum by using SCHIFFER's variational method [2] and also the same simple geometric arguments as described in the paper of REICH and SCHIFFER [1]. As the matter of fact, our problem is quite similar to those solved in [1].

Let

$$\Phi(c_1, c_2, c_3) = |c_1 - c_2| + |c_2 - c_3| + |c_3 - c_1|,$$

where c_1 , c_2 , c_3 are complex numbers. It is obvious that the function (1), which represents the perimeter of the triangle (c_1, c_2, c_3) , is invariant under translations and rotations of the plane.

Let E be a continuum in the complex plane, and let c_1 , c_2 , c_3 be three arbitrary points belonging to E. Our problem is to find

(2)
$$\sup_{c_1,c_2,c_3,E} \frac{\Phi(c_1,c_2,c_3)}{d(E)},$$

(1)

where d(E) is the transfinite diameter of E. The result is the following:

THEOREM. If E is a continuum in the plane and c_1 , c_2 , c_3 belong to E, then

(3)
$$|c_1-c_2|+|c_2-c_3|+|c_3-c_1| \leq 3^{3/2}4^{1/3}d(E)$$
.

2

193

This inequality is sharp, equality being achieved if and only if E is the union of three segments of equal length making angles of $2\pi/3$ with each other, having a common initial point, and c1, c2, c3 as endpoints.

Proof. It is well-known that if c_1 , c_2 belong to E, then $|c_1 - c_2| \leq 4d(E)$, [3]. Hence $\Phi(c_1, c_2, c_3)/d(E) \le 12$, which shows that (2) exists and is assumed. Let E, c_1 , c_2 , c_3 be extremal for (2), and let D be the complementary domain of \tilde{E} which contains the point at infinity. Consider the conformal mapping

(4)
$$w = f(z) = d(E) \left[z + a_0 + \frac{a_1}{z} + \cdots \right],$$

of $1 < |z| < \infty$ onto D.

For $w_0 \in D$, we consider the variation

$$(5) w^* = w + \frac{\lambda}{w - w_0},$$

where $|\lambda|$ is sufficently small. Denote by c_1^* , c_3^* , c_3^* , E^* the images of c_1, c_2, c_3, E by (5).

If we set $\Phi=\Phi(c_1,c_2,c_3)$ and $\Phi^*=\Phi(c_1^*,c_2^*,c_3^*)$ then we have the following variational formulas

(6)
$$\log \Phi^* = \log \Phi - \text{Re} \left\{ \frac{\lambda}{\Phi} A(c_1, c_2, c_3; w_0) \right\} + o(\lambda),$$

where

$$A(c_1, c_2, c_3; w_0) = \frac{|c_1 - c_2|}{(c_1 - w_0)(c_3 - w_0)} + \frac{|c_2 - c_3|}{(c_2 - w_0)(c_3 - w_0)} + \frac{|c_3 - c_1|}{(c_3 - w_0)(c_1 - w_0)}$$

and

(7)
$$\log d(E^*) = \log d(E) - \operatorname{Re}\left\{\frac{\lambda}{z_0^2 f'(z_0)^2}\right\} + o(\lambda),$$

with $w_0 = f(z_0)$, [2].

Since $\Phi^*/d(E^*) \leq \Phi/d(E)$, we have

$$\log \Phi^* - \log d(E^*) \leq \log \Phi - \log d(E)$$

and by using (6) and (7) we obtain

$$\operatorname{Re}\left\{\frac{\lambda}{z_0^2 f'(z_0)^2} - \frac{\lambda}{\Phi} A(c_1, c_2, c_3; w_0)\right\} + o(\lambda) \leq 0,$$

for all small enough values of $|\lambda|$. From this we conclude that if E, c_1 , c_2 , c_3 are extremal for (2), then the extremal function (4) satisfies the differential equation

$$\frac{w - \psi(c_1, c_2, c_3)}{(w - c_1)(w - c_2)(w - c_3)} = \frac{(dz)^2}{z^2(dw)^2},$$

where

Ì

$$\psi(c_1, c_2, c_3) = \frac{1}{\Phi} \left[c_1 |c_2 - c_3| + c_2 |c_3 - c_1| + c_3 |c_1 - c_2| \right].$$

Since

$$\psi(c_1 + a, c_2 + a, c_3 + a) = \psi(c_1, c_2, c_3) + a,$$

and the extremal points are determined within an additive constant, we can suppose $\psi(c_1, c_2, c_3) = 0$, i.e.

(9)
$$c_1|c_2-c_3|+c_2|c_3-c_1|+c_3|c_1-c_2|=0.$$

The differential equation (8) becomes

(10)
$$\frac{w(dw)^2}{(w-c_1)(w-c_2)(w-c_3)} = \frac{(dz)^2}{z^2}, \quad |z| > 1.$$

As in [1] it is easy to show that the extremum continuum E is the set of values omitted by the extremal function f, and the range D of f has no exterior points.

The extremal points c_k are distinct from each other and distinct from 0. Indeed, if $c_1 = 0$, then from (9) we deduce $c_2|c_3| = -c_3|c_2|$ and we have $\Phi \leq 2 \max\{|c_2|, |c_3|\}$, and $\Phi/d(E) \leq 8$. If $c_1 = c_2 = a$, $c_3 = b$, then $\Phi = 2|b-a| \le 8d(E)$. In each case the value of $\Phi/d(E)$ is not extremal. We remark that the extremal points c_1 , c_2 , c_3 can not be collinear, since in this case we also have $\Phi = 2|c_1 - c_2| \leq 8d(E)$, if we suppose that c_2 lies between c_1 and c_3 .

Since Φ is invariant under rotations we can suppose $c_1 > 0$.

The extremum continuum E consists of the union of three analytic arcs γ_k , k=1,2,3, having 0 as the only common initial point and c_1 , c_2 , c_3 as endpoints. The three arcs γ_k meet 0 in equally spaced angles [1]. Using the same topological argument as in [1], we conclude that there exist numbers t_k , $0 < \tilde{t_k} < 1$, such that

(11)
$$\operatorname{Im} \frac{c_{k+1} + c_{k+2}}{c_k} t_k = \operatorname{Im} \frac{c_{k+1} c_{k+2}}{c_k^2}, \ k = 1, 2, 3,$$

where we denote $c_4 = c_1$, $c_5 = c_2$.

6 - Mathematica 2 1975 - Tome 17 (40)

From (9) we obtain

$$\lim \frac{c_{k+1}}{c_k} = -\frac{|c_{k+1} - c_k|}{|c_{k+1} - c_k|} \lim \frac{c_{k+1}}{c_k}$$

and

$$\operatorname{Re} \frac{c_{k+2}}{c_k} = -\frac{|c_{k+2} - c_{k+1}|}{|c_{k+1} - c_k|} - \frac{|c_{k+2} - c_k|}{|c_{k+1} - c_k|} \operatorname{Re} \frac{c_{k+1}}{c_k}.$$

Hence

(12)
$$\operatorname{Im} \frac{c_{k+1} + c_{k+2}}{c_k} = \frac{|c_{k+1} - c_k| + |c_{k+2} - c_k|}{|c_{k+1} - c_k|} \operatorname{Im} \frac{c_{k+1}}{c_k}$$

(13)
$$\operatorname{Im} \frac{c_{k+1} c_{k+2}}{c_k^2} = -\left[\frac{|c_{k+2} - c_{k+1}|}{|c_{k+1} - c_k|} + 2 \frac{|c_{k+2} - c_k|}{|c_{k+1} - c_k|} \operatorname{Re} \frac{c_{k+1}}{c_k} \right] \operatorname{Im} \frac{c_{k+1}}{c_k}$$

Using (9), (11), (12) and (13) we find that the extremal points c_1 , c_2 , c_3 satisfy the following conditions

$$c_1|c_2-c_1|+c_2|c_3-c_1|+c_3|c_1-c_2|=0,$$

(15)
$$(|c_3-c_1|-|c_2-c_1|)t_1=|c_3-c_2|+2|c_3-c_1|\operatorname{Re}\frac{c_2}{c_1},$$

(16)
$$(|c_1 - c_2| - |c_3 - c_2|)t_2 = |c_1 - c_3| + 2|c_1 - c_2| \operatorname{Re} \frac{c_3}{c_2},$$

(17)
$$(|c_2 - c_3| - |c_1 - c_3|)t_3 = |c_2 - c_1| + 2|c_2 - c_3| \operatorname{Re} \frac{c_1}{c_2},$$

where $c_1 > 0$ and $t_k \in (0, 1)$.

We shall show that this conditions imply

(18)
$$|c_1-c_2|=|c_2-c_3|=|c_3-c_1|.$$

If we let

(19)
$$c_2 - c_1 = d = re^{it}, \quad c_3 - c_1 = \delta = \rho e^{i\tau},$$

condition (14) becomes

(20)
$$|c_3 - c_2| = |\delta - d| = -\left[r + \rho + \frac{r\rho}{c_1}(e^{it} + e^{i\tau})\right].$$

From (15) we obtain

(21)
$$(r-\rho)(1-t_1) = \frac{r\rho}{c_1} \left[\cos t - \cos \tau - i \left(\sin t + \sin \tau\right)\right].$$

If $r\rho = 0$, then from (21) we deduce $r = \rho = 0$ and from (19) we get the trivial solution $c_1 = c_2 = c_3$ which is not possible. Thus $r\rho > 0$ and from (21) we obtain $\sin t + \sin \tau = 0$, which implies $\cos t = \pm \cos \tau$. Suppose $\cos \tau = -\cos t$. Then (20) becomes $|\delta - d| = -(r + \rho)$, that is, $r = \rho = 0$ which is not possible. Therefore we have only the case $\cos t - \cos \tau = \sin t + \sin \tau = 0$ and from (21) we obtain $r = \rho$. From (19) we deduce

$$(22) c_2 = c_1 + re^{it}, c_3 = c_1 + re^{-it}.$$

Employing (22) together with (16) and (17), we obtain

(23)
$$ax^2 + bx + c = 0, \ a'x^2 + b'x + c' = 0,$$

where $x = r/c_1$ and

(24)
$$\begin{aligned} a &= -3 + 4 \sin^2 t + (1 - 2 |\sin t|) t_2 \\ b &= 2 \cos t [(-3 + (1 - 2 |\sin t|) t_2] \\ c &= -3 + (1 - 2 |\sin t|) t_2 \\ a' &= 1 + (1 - 2 |\sin t|) t_3 \\ b' &= 2 \cos t [1 + 2 |\sin t| + (1 - 2 |\sin t|) t_3] \\ c' &= 1 + 4 |\sin t| + (1 - 2 |\sin t|) t_3. \end{aligned}$$

On the other hand, employing (22) together with (14) or (15) we get

$$(25) x = -\frac{1+|\sin t|}{\cos t}.$$

If $\sin t = 0$, then $x = r/c_1 = -1$, which is not possible. If $\sin t > 0$, then from (23), (24) and (25) we obtain

$$(1-t_2)\sin^2t\ (1-2\sin t)=0$$

and

6

$$(1-t_3)\sin^2 t(1-2\sin t)=0,$$

hence $\sin t = 1/2$ and from (22) we get (18). In the case $\sin t < 0$ we obtain:

$$(1 - t_2)\sin^2 t (1 + 2\sin t) = 0$$

$$(1-t_3)\sin^2 t(1+2\sin t)=0,$$

hence $\sin t = -1/2$ and from (22) we also get (18).

100

1

6

We remark that (18) holds if we only suppose $t_k \neq 1$.

We conclude that the extremal points c_1 , c_2 , c_3 must satisfy (18), that is, (11) is of the form $0 \cdot t_k = 0$, for k = 1, 2, 3. As in [1] this means that the arc γ_k coincides with the segment from 0 to c_k , for k = 1, 2, 3. We have $c_2 = \omega c_1$, $c_3 = \omega^2 c_1$, where $\omega^3 = 1$ and the differential equation (10) becomes

$$\frac{z^2w}{w^3-c_1^3}\left(\frac{dw}{dz}\right)^2=1.$$

The extremal function will be

$$f(z) = d(E)z(1 + z^{-3})^{2/3},$$

where $d(E) = 4^{-1/3}c_1$. Moreover the extremal value of Φ is $\Phi = 3 \cdot 3^{1/2}c_1 = 3^{3/2}4^{1/3}d(E)$. This completes the proof of our Theorem.

COROLLARY. If the function

$$f(z) = z + a_0 + \frac{a_1}{z} + \dots$$

is regular and univalent in $1 < |z| < \infty$ and E is the complement of its range, then the perimeter of any triangle with vertices in E is less or equal to $3^{3/2}4^{1/3}$. The equality holds if and only if the function f is

$$f(z) = a_0 + z(1 + e^{it}z^{-3})^{2/3}$$

In this case E is the union of three segments of equal length $L=4^{1/3}$, making angles of $2\pi/3$ with each other, having a common initial point. The vertices of the triangle are the endpoints of the three segments.

REFERENCES

[1] Reich, E. and Schiffer M., Estimates for the transfinite diameter of a continuum, Math. Zeitshr. 85, 91-106 (1964).

[2] Schiffer M., Hadamard's formula and variation of domainfunctions. Amer. J. Math., 68, 417-448 (1946).

[3] Szegö G., Jahresbericht Deutsche Math. Ver. 31, problem section, p. 42 (1922); 32, problem section, p. 45 (1923).

Faculty of Mathematics Babeş-Bolyai University Cluj-Napoca, Romania