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In this paper we solve an extremal problem connected with the trans-
finite diameter of a continuum by using SCHIFFER’s variational method
[2] and also the same simple geometric arguments as described in the

paper of REICH and SCHIFFER [1]. As the matter of fact, our problem
is quite similar to those solved in [1].
Let

(1) (l;(cxs Ca Ca) = |6y = o] + ¢ — ¢ + les — ¢,

where ¢y, ¢,, ¢; are complex numbers, It is obvious that the function (1),
which represents the perimeter of the triangle (¢, ¢,, ¢,), is invariant under
translations and rotations of the plane.

Let E be a continuum in the complex plane, and let ¢,, ¢,, ¢; be three
arbitrary points belonging to E. Our problem is to find

7 Dey, ¢4, ¢s)
(2) ‘xi:i'nE d(E)

where d(E) is the transfinite diameter of E.
The result is the following :

THEOREM. If E is a continuum in the plane and c,, ¢y, ¢y belong to E,

7

then

®) ey — cal + Jca — cs] + lea — 1] < 3%241°4(E).
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equality being achicved if and only tf E is the
union of three segments of equal length making angles of 23 with each other,
having a common initial point, and ¢, Cq Cy @S endpoints.

Proof. It is well-known that if ¢,, ¢, belong to E, then e, — ¢o| < 4d(E),
[3]. Hence ®(c,, Cs co)d(E) < 12, which shows that (2) exists and is
assumed. Let E, ¢y, Cg, s be extremal for (2), and let D be the comple-
mentary domain of E which contains the point at infinity. Consider the

conformal mapping

This tnequality s sharp,

) w=f.(z)=d.(E)z+ao+{1+...J.

of 1 < |z| < oo onto D.

For w, e D, we consider the variation

(5) w* =w +

where |A| is sufficently small. Denote by ¢}, ci, ¢5, E* the images of
¢y, €3, €3 E DY (5).

If we set ® = ®(cy, 63, 5) and O* = O(c], c3, ¢3) then we have the
following variational formulas

(6) log ®* = log @ — Re{%A:(cl, By By wo)}+ o(),
where

leg — ¢4 leg — el les — el

(62 — wo)(ea — wo) (63 — wo)(cs — wo) (63 — wo)(c; — W)

Afcy, ¢y, €35 Wo) =

and

@) log d(E¥) = log d(E) — Re{ 3 }+ o(A),

5f'(z0)*
with w, = f(z,), [2].
Since ®*/d(E*) < ®/d(E), we have
log ®* — log d(E*) < log ® — log d(E)
and by using (6) and (7) we obtain

A A4
we {,; it GO T wo)} +o(d) <0,
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for all small enough values of |\ From this we conclude that i
are extremal for (2), then the extremal function (4) satisiielsligl‘;f fif’f:}'e;?izf

equation

w — Py, 6y, Cy) _ [a=p
®) (W — )@ — )@ —c))  aMdu)h
where
1
$(cq, C2 cy) = 5 [cilcs — sl + cales — 4] + e5le; — €41
Since

'~l"(01 + a, ¢, + a, Cy + a) = ‘Hﬁ; Ca Cs) + 4q,

and the extremal points are _determined within an additive constant, we
can suppose l,'J(cn €y, C3) = 0, 1.e.

9) ciles — ol + cales — il + esler — ¢of = 0.

The differential equation (8) becomes

(10) ool B, >,

(w — &)(w — 6)(w — Gy) 7

As in [1] it is easy to show that the extremum continuum E is the
set of values omitted by the extremal function f, and the range D of
f has no exterior points.

The extremal points ¢, are distinct from each other and distinct from
0. Indeed, if ¢, = 0, then from (9) we deduce colcs| = — c4lcy| and we
have ® < 2 max {|c,|, |csl}, and Djd(E) <8 ¢y =Cca =28 6= b, then
® = 2|b — a| <8d(E). In each case the value of ®/d(E) is not extremal.
We remark that the extremal points ¢y, ¢z Cs CaI not be collinear, since
in this case we also have @ = 2j¢; — ¢c,] < 8d(E), if we suppose that ¢,
lies between ¢; and c¢s.

Since @ is invariant under rotations we can suppose Cy > 0. .

The extremum continuum E consists of the union of three analytic
arcs y,, k=1,2,3 having 0 as the only common initial point an
¢y, Cq, Cg as endpoints. The three arcs ¥y, meet 0 in equally spaced angles [1].
Using the same topological argument as in [1], we conclude that there

exist numbers £, 0 < £, <1, such that

(11) T BEL Yt fteg = Im &R0tk =1,2,3
c
(73 k

where we denote ¢, = €1, €s = C2-
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From () e obtain

Qo Leats — lIm Cita

Im
=Y | eadr — ex| cy
and
Re Cpdn —_—r I.ck“i‘. — Cy+1 | G ich‘f‘ﬁ — Ck | Re Cp4-q
& lex+r = &l [ ehsr — cxl Ch
Hence
(12) Im tots ot —altlGta—al Gt
o Leptr — ox | ch
Ch+1 Crte | Cp+a — Catal | Cpta — c c
(13) Im ’c, =—[ 2 s — %l o Gt T Shr
X | exta — el [ex+2 — &l Ck ey

Using (9), (11), {12) and (13) we {ind that the extremal poi
satisfy the following conditions &' points ¢;, ¢, ¢,

{14) c1les — &) + egleg — el + cylen — ¢ =0,

(15) (les — &l — lex — eal)ty = les — €al + 2]eg — ¢1] Re 2,
91

(16) (lex = ¢ = leg — cal)ty = leg — o + 2|e, — ¢s| Re 5,
Cy

(17) {leg — 5] — ey — csl)ts = leg — &) + 2|cy — ¢4 Re Ay
Csy

where ¢, > 0 and ¢, < {0, 1).
We shall show that this conditions imply
(18) ey — 5] = [c3 — sl = [eg — ¢).
If we let
(19) cg == cl = d = fe“, G. — 01 = 8 = pei‘r
condition {14) becomes

(20) lca_C:]=]8—d,=—r+P+t’_P.'(e#+et'1)]_

From (15) we obtain

@) gy
r—po)1 t) -f [cos t — cos v — (sin ¢ 4 sin 1) ].

L 4

%
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If rp =0, then from (21) we deduce 7 — 4
ot the trivial solutloq €1 = €3 = ¢y which is ngt pgss?ll)ll(i f'II‘:')I::: ety
and from (21) we obtain sin¢ + sin+ = 0, which implies cos ¢ = e :
Suppose (f’_s (;- = — cos{, Then (20) becomes |5 — dl=—(r :[- :% cglsla‘:é
js, # = p =0 which 1s not possible. Therefore we have only t?h’e
cost —cost=sint+sint=0 and from (21) we obtain » = Fcase
(19) we deduce e e

(22) Cg = ¢y + re*, ¢y = ¢; + re—*,
Employing (22) together with {16) and {17), we obtain

(23) ax® +bx 4+ c=0, a’x*+b'x 4+ ¢ =0,

where x = 7/c; and

[0 = — 8 + 4sintt 4 (1 — 2 [sin f])f,

b=2cost[(— 3+ (1 — 2|sin#)t,]

c=—3+ (1 — 2|sin{|)t,

a' =14 (1 — 2 |sinf|)t,

b’ = 2cost[l + 2 [sin# 4+ (1 — 2 |sin £])t,]

¢ =14 4sing] + (1 — 2 |sin &)t

(24)

On the other hand, employing (22) together with (14) or (15) we get

1+4|sin ¢|

cos /
If sinf = 0, then x = r/c; = — 1, which is not possible. If sint > 0,
then from (23), (24) and (25) we obtain
(1 — t,) sin (1 —2sinf) =0

and : ,
(1 — t5) sin? ¢(1 — 2sint) =0,

hence sinf = 1/2 and from (22) we get (18). In the case sint < 0 we

obtain :

(1 — #,) sin® #(1 + 2 sin t)=0

(1 — t5) sin?¢(1 + 2 sint) =0,
hence sin ¢ = — 1/2 and from (22) we also get (18).
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‘ 1 ly suppose £, # 1
mark that (18) holds if we onl ! _

&rrz 1'<:eonclude that the extremal points ¢, ¢,, ¢, must satisfy
that is, (11) is of the form 0 -, = 0,for k=1,2, 3. As in (1] this
that t},le arc vy coincides with the segment from 0 to ey for B e
We have ¢, = 00, Cs = w2c,, where @® =1 and the differentia] e

(10) becomes

( 18),
eang

L2 3
quation

2fw [d_wr —e

wd —c}\dz
The extremal function will be
flz) = d(E)z(1 + z73)%3,

where d(E) = 4~,. Moreover the extremal value of @ is ® = 3 . 312
— 3924134(E). This completes the proof of our Theorem.

€ =

COROLLARY. If the function
f) =zt a2+ ..

is regular and univalent in 1 < |2| < oo and E is the complement of its range,
then the perimeter of anmy triangle with veriices 1n E is less or equal to
332418, The equality holds if and only if the function f is

f(z) = ag + 2(1 4 e¥z78)%3

In this case E is the union of three segments of equal length L = 4V3, making
angles of 2r/3 with each other, having a common initial point. The vertices
of the triangle are the endpoints of the three segments.
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