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A. B. NEMETH

A mapping from a vector space to an ordered vector space is called
convex if it satisfies the convexity inequality with respect to the order
relation. By an analogy with the case of convex functionals here a subgra-
dienl is a lincar operator between the two spaces which satisfy the sub-
gradient incquality (with respect to the order relation in the adress space).
The problem of the existence of the subgradients as well as the properties
of the set of subgradients at a point (the set which is called the subdifferen-
tial at that point) of a convex mapping seems to be the central one in the
analysis of these mappings developed till now by M. VALADIER 8], v. L.
LEVIN [4], M. M. PEL'DMAN [1] and others. Here it can happen (even in
the case of the space of continuous functions [4]) that there are no subgra-
dients in some points. The existence ,,in general” is closely related to the
order relation in the adress space. Thercfore conditions are considered
about this order relation which assure the existence of subgradients for any
convex mapping (sece [1] and [6]). Because these conditions are rather
restrictive, the complete characterization of the situations when subgra-
dients exist is of a real interest. In the present note we shall consider this

problem without any topological assumptions. (However, we shall remark

some conditions of topological character in the case of examples, to illus-
trate that even for some continuous convex mappings we meet sttuatlons
of void algebraic subdifferentials at some points.) T e 48
1. The convex mapping and its subdifferential. Consider an order:ldl;
rea] vector space Y. Let K be the cone of positive elements 1 Y. We shK
suppose throughout that the cone K is a strict one, 1€, that xf X le'
implies. x = 0. Set i o s
Kx={y eY*: {92 0 for any y in K}, . -
. i i ctor space of all
where Y'* stands for the algebraic dual of ¥ (i.e., for the ve .
the real linear functionals on Y). K* is said to be* tilie dual of K .VSJ/‘e sz.1Iy
that K is dually supported by the subset T' in K ,
M o g =N {ker ¥)e Y T

wh A gyt yy B OF o v s e B
er%féksiajl’l );se i{ﬁy tle1e seq<'1)11el zlso/the notation kery = {y GlY@’ y >
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: d by I' C K* then 1t 1s dually_ su
Ifd}(itlsi;lz?:izl;uclﬁzitein t].?;e sense1 _that the interesection

too Ar e i bset of the line. .
straight line 15 ?eclgzz?dfa‘;ations which use some alg_ebram se
From S?:;Ex sets (see e.g. [7], Theorems 5and 6 in § 8), it follg
gi?? f?irnggny closed and has an algebraic interior point, then it j

1S
*

supportte([i] lEg afcfoﬁvex subset of the real vector space X. Then t.he. mappiy
F: ULi Y is said to be convex if for any %, %, 10 U and any ¢ in the intey
val [0, 1] of the real axis, it holds the relation

Fltx, + (1 — %) < tF(%) + (1 — §)F (x,).

< is the ordering defined in Y.
Wher]t?,et uslilenote by X i— Y the direct sum of the vector spaces X andy
andlet U+ Y={x+yeX+Y:2 € U}. The set

epi F:={x+y e U+Y:F(x) > 5}

of K wity aﬁy

is calléd the epigraph of F. By a straightforward verification it can be shown |

Paration ¢y, |
WS that |
§ dllally ;

that the mapping F is convex if and only if its epigraph defined as above |

isa convex set in X + Y.
tion- . ;
' ge:i={x+ycU+Y :y=G)
g G is said to be the graph of G,

Denote by (X, Y) the space of the linear operators from X to ¥ and

suppose z e U. The operator 4 in *(X, Y) is called an (algebraic) o
gradient of F af z if it holds. the relation

o Ax < F(z + x) — F(2)
‘:lvil;ﬂ;seve; the right hand side of it is defined. The set dF(z) of all subgr®
o tf) F at 15 called the subdifferential of F at z. 0}, thet
itis called the 5y 2 X there exists inf {~1(F(; + tx) — F(2)):1 > oot
by Iga;(z? 94:‘)he Sirectional. derivative of F at z in the direction x and is &
here exist . ' out dﬁ;f;
ivati h 0
derivatiy ections and without subgr adientsbsszsge.n‘
t?:si furnish the non—existen(;:i Oft hS: nonﬂ;:;
o 5 S is in fact closely related to ingl
'dJIECtIOIlal derivatiVes (see, e.g. 3{4]). It isn't meaning>

_ the
the above two questions (i.e., that Of'ents)

€xemples of (continuous) convex operators with
€S 1 some gir

aft

: : di .

In genera] j tives and that of existence of subgra LaNst
Independent, yyq Temark first that the example of ¥ B oo |

In [5]¢ :
@Ecgiogglb;egsg?mmd 452 case of (continuous) convex map D gradies;
10 that pojnt_ ( tll‘;es 3t a point jy any direction and without SU fg; (e
nuous) man s ter hand we consider below an example ofof whi”
i Which has subgradients at a point and'n v
Some directiopa] derivatives at the same pe’

Let G: U-+Y be a mapping from UtoY. We shall use also the pota-
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Example. Consider the convex i .
defined by the relation F (2)(t): = g(pﬁ?ﬁ?pmg Fr bl
is the function defined by the relations

Lotz 0
f): = 4
- [0. t <. )
Consider the element z in C[—1, 1] defined by the formula

0, 0<tgi, e
2(t): = L

t, —1gt<oO, cud iy
By a s‘fraightforward verification it can be seen that the directional deriva-
tive F'(z; x), where () =1, 1 e [—1, 1] does not exist. We have also

F(z) = 0 and F(«) > O for any u, if we consider > as to be the pointwise
ordering in C[—1, 1). Therefore for any v in C[—1, 1] we have

F(z 4+ v) —F(@)=F(z+v) >0,

that is, the zero operator is in oF (z). (We observe also that
and the zero operator is continuous too.)

=1, 11— C[=1, 1]
where % is in C[—1, 1] and g

F is continuous

1. The existence of the algebraic suhgradients, A geometriléal‘l api
proach. : :

l. Proposition. Let Y be an ordered vector space with the positive
cone K dually supported by ' C K*. Let F: U —Y be a convex mapping
Jrom the convex subset U of X to Y and suppose z is a point in the algebraic
interior of U. Then OF (z) # O if and only if for the mapping G t=F+ )—
— F(z) there exists a mapping u : T — X* with the properties : '

) )((1) ker (u(y’) + ¥') 1s a supporting hyperplane for the comvex set epi G
mn Yz - . 3 o LB

(ii?—if P11 denoles the projection onto X in the space X + Y, then it holds

(N {ker(u(y’) + ) 1y eT}) = X.

There exists A in oF (z) with Ax,

and in plus it holds , .
(iii) %o + y, < ker (u(y’) + »') for any ¥’ in T.
Proof. Without further remarks in all the relations that prIO‘_Kf»iTV}?

shall consider only elements for which these re]atlons have sense.: ' ‘¢

ey, o s i )

The mecessity. We have dF(z) = 8G(0). Suppose that 4 is in oF
and let be y* eJI". Consider the (el)ement ' in X* defined by the gelaﬁltél
&y %) =<y, —Ax). Then ' 4, x4 A =0, that b g 4G
San ey Let & 1y be i ept G- Then g - dlF B B T LT
and because y° e I' C K* we have &'y — A% 2 0. uortin' }iwperplane
=u 4y, x + > and then ker (u + ') is a suppor fgthe proposi-
for epi G, Putting now #(y’) + = #’ we have the corlldltlolf (If) 4 any y' in T
ton. It holds also the inclusion gr 4 C ker(u(y’) + y') for A)S.;‘ X the
clengr 4 = () {ker (u(y) +y):y <1} and because pulgr A) =5 0
condition (ii) also follows. If A= 3, then obviousy oo <7
(u(y') + ¥')-for any ¥’ in I’ and we have (iii):

— y, if and only if (i) and (i) are satisfied

(}
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hat there exists #%: ' — X* so as to have (i)

The sufficience. Assume t S %" .
f projection p, onto X in the space

and (ii). We shall check at once that the
X+Y restricted to L)
V= {ker (%) +y):y eT}

tﬁis that z « V(N Y. Then from

is a bijection onto X. Let us suppose for =
' z) for any " in I'. Because K is

(i) it follows that a(y) + ¥ 2 =< ;
dually supported by I, this implies z = 0. Two elements in Y which have
the same image x by p, are of the forms % + y, and x + ¥, respectively,

with y,, ¥, in Y. V is a subspace in X + Y and then (x 4+ ¥;) — (x + v,) =
=y — Y € V, and in accordance with the above observation if follows
y, = ¥, because ¥, — ¥z € Y. That is, p,] ¥ is a bijection. Denote by B,
B: X — V the inverse operator of p,| V. We have then p, B = I, where I,
stands for the identity operator of X. Let I be the identity operator of
X 4+ Y and denote by p, the projection onto Y in the direct sum space.

Set , s
A i =.jsz.

A is obviously in ‘JC(X, Y) We shall shoL\Jv" that gr A C V. Indeed, for any %
in X it holds , ) .
x+Ax‘=x+j>sz=x—|- (I—pl)Byg-__— ¥ + Bx — pBx = Bx e V.

¥i T4

Let now suppose that G(x) — Ax & K. Then by the property of K to be
dually supported by I' we have £ i :

(2) ' (Y Glx) — Ax) <0 ¢ |

for an appropriate y' in P Because ke ' n 4 hyper-
plane for epi G, we have ‘G .r(u(_y )+y) 18 & Suppo i yp

3 wy) + 5 %+ Gla)> = <u(y), £ 4 < G(x)) 2 0,
and because x + Ax < ker (u(y') + »'), - ‘ oo | |
@ ) w0 Ay =07 ..
s N get 2

Sﬁbfr:iéﬁng the equality (4) term b vt. " . i .
. . . e f 3 nE
contﬁmctlon' with (2). Thus, G(x)y__ 21;1 Gr (}? t;hee Iiat;o%(;( ) = F(2)
i stfume in addition that x, 4 y,  ker (u(y’) + ') for any g i
eu( y the onme-to-ones of B, Bx,= x,+ y, and A%¢= $2B%s =
= x = i ’ iti
sta?cﬁezs. b_l;:‘,yf)) Yo an_d Wé obtain what the last part of the proP OSIt.IOﬂ

- Remarks. 1) It can be showﬁ th ot e
; ! at for an
gny Y with a lineally closed cone K having znc;)ln ziiaﬁa&%gfm point cant
e determined a set I in K* and a mapping «: I’ B X* s to have ¢of d
tion g)) in our proposition. 5 b saaediats : ' o
If Y = R” and the cone K of 0 s ¥ ! o . 'edr
5 Lol A e ositi in Y is ounie
(i.e., the ordering in Y is a latticial onef the; ihilegfsﬁig of Subgradleﬂts

W |
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for any convex operator can be derived from the ab iti

we can find a method of an effective constructio:])voef%:?é) folf)l?:dlzd o1;eov‘§:fr,
do not still prove by this method the existence of subgradientsg for :ﬁes;n- :
[gﬁx)eral case of spaces Y with the chain completeness property (see[1] a(:c?

3) We observe that if Y = R! then the ition is

' . - proposition is in fact th -
ric variant of the so called epigraph method in the proving the exisfe?llc%:egf‘
subgradients for a convex functional (see e.g. [2]). A

9. The operator theoretic approach of the problem of existenee of the
algebraic subgradients. Let Y be an ordered vector space with the positive
cone K. The functional f: ¥ — R is said to be tncreasing if for y;, y,in Y
in the relation y, < ¥, it follows f(y,) < f(»e). Let F: U — Y be a convex
mapping {rom the convex subset U of the vector space X to the ordered
vector space Y. If f: Y — R is an increasing and convex functional, then
F: U — R is a convex functional. If z is a point in the algebraic interior
of U, then &fF(z) # 9. (This is a consequence of the classical result for
continuous case adapted for the algebraic subgradients [2], and also from

2 and 3.) In particular any ¥’ in K* is an increasing

Proposition 1, Remarks
functional and therefore for z as above it holds d(y'F)(z) # 9. il a8

Assume that K is dually supported by ' &Y.

2. Proposition. For T, F, U and z as above JF (z) # O if and only
if there exists a mapping @: ' —» X* and for each x in U — z there exists
y in Y with the properties:

() o(y) = TR .

(i) (o(y'), %) = &y, ¥ for any ¥y I.
There exists an A in OF (2) with the property Axg =
ditions (i) and (ii) hold and

(i) <p(y'), %e> = '

~ Proof. The necessity.

yo if and .only if the con-

yoy for any y' in I. _
Iet A e dF(z), i.e., . | S ‘

Az < F@z + %) —F@)

_ 7z, For any ¥’ in K* it holds then -

pr(_)vided- = 4 b T
o + 1) — F@>

<J"'- Ax) < <y" F

and hence ' ;
i + ). OB iy ot 5 o

ation f)?oveé that Ay’
element of X, puty =

Ay, # < OF
' & roat ¢ ‘e "4. This rel
where A’ is the adjoint of the operator 4. 17

is in a(jV'I*')S(z). Set ;a . = Al Let % be an arbitrary
= Ax and assume that ¥y’ 1518 I. Then

(p(y"), %> = (AY, %)=

and (i) hold for q)Ldefi
e obviously {(o(y

i

Gy Ax) = A2

g s ned in thi.s way. . - oo
that 1s, the conditions (i) ", 2D = o' i for any
If Ax, =y, then We hav s s g gedl 900

¥ in T

/
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" The sufficience. By the condition (ii) it ‘can be defined a mapping from
X to the subsets of Y. This mapping 1s 1n fact a point-to-point one. Indeed,
assume that for a given x there exist ¥y, ¥y 10 Y such that

Co(y), 2y = ¥ y> = ' 90

for any ¥’ in'-I‘, that 1s G N — Yy = O_for any ¥’ in_I". Because K is
dually supported by I' we have y; = Ya L€, the relation (o(y’), *)=
= (y', y) forany y’in T, defines a mapping 4 : X — Y, and this mapping is

by the definition a linear one. So we have
() . {oly), ) = <, Ax) for any y' in T,
where A is a linear operator from X to Y. From the condition (i) for any «
inU-—z'wghave S o ‘ :

L Ay =G, 2 < F)z+ %) — (YE)a),
hence: i Wdle Al W iy , _
et O An < 4, F(?;‘I‘. x)’—"F(z)) for any y' in I
K being dually supported by T' this relation yields
 Flat+x) —F@) —4x < K.

that is, A e 9F (7). From the condition (iil) and the relation (5) it follows
also that Ax, = y,-Q.E.D. ,

i Remarks. 1) We can derive the proof of Proposition 2 from Proposition
. Between the mappings % and ¢ arising in the above propositions which
rznap I' to X*, we have the relation # = —¢. From the proof of Proposition
th;ierﬁ“d ml this way we can also conclude that ker (x' + y’) is & suppor-

EZ)YE"NEIP;ne oileln G(G:=F(z++)—F(z))if and only if ¥’ e 2(y'F)(2).
Y=R" a(;d E-L: ¢ already observed (Remark 2 after Proposition 1) that if
e e it is o};dered by a miniedral cone, the subgradients of any con-
can be I(’llc’mg Can1 e effectively constructed. We shall now show how this
supported ebapprymg P’r0p051t10n 9. Because K is miniedral it is dually
lingla),ﬂy iﬂdepinden;;__f{ﬁ;hf: . -,13’:.}, .where y; e K¥, 1=1, .. ., m are
i1 ¥ with ‘e propechy. ¢ 101?a s. (See eg [3]) Let {,, .. AR basis

Ghoy=845=1, ..., _ mptooth b

§ =
:(hjif)e iﬁl 31((53’}]:1173(2%&0;‘%& symbol. For every 'y, we choose an element
() and (i) of Proposition & fon. 47 4~ @(y) satisfies the conditions
i X be arbitraoposition 2. Indeed, (f) holds by th tion. Let #
arbitrary. Set = : s by the construc wort., Lo

n
1= .
y- aci‘yir
=

wher = lal+) ¥\ T pus e
e ¢ <?(J’s), x). It can be shown by a straightforward vériiicaﬁ"ﬂ

that it holds (ii), i.., <p(y}), %> = ¢!
e a}g( z)) & Q)-<<x>(y¢). %) =<%, 9%, i=1,..., n. (This prove o2

|
i
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Let {#, :v e J} be a Hamel basis i
the elemen; in Y so that n X and for every #, let y, be

(q:(yl), xv) — (y:, y\,), 1= 1, —

Assume that A4 is the linear extension to X of the mappi
Consider an arbjtrary element x# in X. Then x = ZIZP;ng v:i!ch_.zw ;1:‘1 {
pumber of ¢,’s different from 0 and G €

(tp(y:). x) == zcv(‘?(yi,): xv) = ch(yf. yv> = (y:; chyv>=<yt!n Ax)-
Because @(yi) e d(yiF)(z) we have on the other hand

Co(yd), ) < (¥ F)z+ %) — (»iF)), i=1,...,m
Hence
(yi, Ax) € Kyl Flz + %) — F(2))

for any x in X and any + =1, ..., n. Because K is dually supported by
{y{, ..., yn}, this means

Ax < F(z + x) — F(2),

ie, Ae oF(z).

A final comment. We have used the term ,,algebraic subgradient” in
the titie to point aut our approach:i.e., the consideration of the problem
of existence of subgradients without any topological assumptions. In the
case of the topological vector spaces and continuous convex mappings 1S
usual to consider as subdifferential the set of continuous subgradients. The

importance of algebraic subgradients even in this case derives from the
fact that in rather general conditions the two subdifferentials coincide.
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