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NEAR TO MINIMALITY IN ORDERED VECTOR SPACES

by
A. B. NEMETH

0. In [2] we had to consider two near to minimality notions in
ordered vector spaces.

The first of them defines points in a subset of the ordered vector
space with the property that translating them downward in a given direc-
tion (characterized by an element of the positive cone) with a given
distance, the obtained points be minimum points for the set.

The second notion defines points of a subset with the property that
moving them downward in any direction characterized by the elements
of the positive cone, the obtained points be minimal for the set. We
have here again to translate points ,with a given distance”. While in
the above casc this distance can be characterized by the element of the
cone characterizing the deplacement’s direction, here we need a notion
of distance in general. This and the applications in [2] justify to con-
sider the simplest possible case: the case when we have to do with orde-
red normed vector spaces, and to characterize the length of the deplace-
ment by its norm.

The present note aims to show that the ordered vector spaces with
the property that each subset of them which is bounded from below
have near to minimum points in one of the above sense, can be characteri-
zed by some usual notions of the ordered vector space theory. In the
first case they are the semi-Archimedian ordered vector spaces and in
the second case they are the regular normed spaces (see 1. of this note
for definitions).

1. Notations and terminology. Iet X be a vector space over the
reals ordered by the (proper) cone K. The cone K will be called the
positive cone of X. The expressions ,the ordered vector space X has the
property p“ and ,the come K has the property “ will be used in the
sequel as having the same meaning.

The ordered vector space X (and equally, its positive cone K) will
be said to be Archimedian if x € 0 whenever ax < @ for some 4 in K
and all the reals « > 0. X is called almost Archimedian if — Ba < x < Pa
for some a in K and all real numbers f > 0 implies x = 0. (See [3]

p. 4.)
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1 an(‘)l;e Oor<de;§ < a for some a in K and %]1 « > 0 implies X =
rela o Arzhime dian ordered vector space is almost Archimedjan.

i i i i-Archimedian.
t Archimedian one fs Semi-Ar . |
an a\l&osgive simple examples illustrating the c<.)n51stency of the aboy, |
notions. Let us comsider X = R? and the cones: -

K ={x= (s 2) <Re:|a <22 U{0, 0},
g‘; K= Ex = (#, x?) = R: 2 > 0} U {(O, O)};
3) K={x= (s, 22) €R?: 2> 0 or 2 =0 and x > 0},

A straightforward verification shows that the cone (1) is a
Arditsedian Tt & Gt Archimedian, while the cone (2) is s)emi-AlIl;ﬁ
median but isn’t almost Archimedian. The cone (3) is an example of 5
cone which isn’t semi-Archimedian. _

According the propositions I1.1.29 and II.1.31 in [3], if there exists
a Hausdorff locally convex topology on X such that the closure of g
iIs a cone, then X is almost Archimedian. This fact shows that the con-
dition to be almost Archimedian or semi-Archimedian is quite mild for
an ordered vector space.

Assume now that X is also a normed space. The cone K of the
positive elements in X is called regular if every monotone order bounded
sequence in X is fundamental. (See [1] p. 34.)

2. The positive direction mear to minimum property. Consider the
ordered vector space X with the positive cone K. Tet ¢ be a positive
real number and let & be an element in K \{0}. The point in the sub-
iSfEt M of X is said to be an ek-near to minamum (ek-NM) point of M

(F—ck—K)\ M =g,

The ordered vector space X is said to have the positive direction
near to minimum (PDNM) progerty if each subset W 6F X which B bones
ded from below has ek-NM points, for any ¢ > 0 and any £ in K \ {0}

., PROPOSITION 1. The ordered yector space X has the PDNM properly
;)fo l_:;;d only if each subset of it flqr i bounded from below, has k-NM

Proof. Let ¢ be a Positive number. Then

W W=k~ KN\ M = (15— p — gy ().
e observe that M ; i if 1M i .
kst B, ?he ab:)své)ounded from below if and only if ¢71M is. This

relation give the roof. Q.E.D

PROPOSITION 2. The ordereq e ek ] operty

if and only if i semz‘-Archz’nfedizerg.tor ks X e i PO P
; ; t
l it suffices to show that each subs
K\ (0], if and ppc29d from below hag 5N AT aeinte far any b 1
» 1and omly if X ig Semi-Archimedian. ’ b-
X is Semi-Archimedian and it contains 2 5 uts
from below by ¢, but hasn’t any &-NM poist>

E—k—R)n M2 g

2
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for any x in M. Let x, _be ‘arbitrarily choosen in M. We construct the
sequence (x;)i—o by choosing _ ,

LEXa—k—KNM
arbitrarily (+ =1, 2, ...). This means that
% < %, —k
for any 7. Adding these relations from 1 to #, we obtain
X, € Xy — nk,
and since ¢ < x, for any #, it follows that 0 < #k < %9 — ¢. But them
O <ak <xy—c

for any positive « and we get a contradiction with the hypothesis that

X is semi-Archimedian. L _
Assunmie now that X has the PDNM property but it isn’t semi-

Archimedian, that is, there exist x and y in K, x # 0, such that -

(4) 0Sax <y

for any « > 0.
Define the set M by

M={_a —px:)p>0}

1 * -
Then M C K since from the relation (4) we have A(y = x’ >0 for

any positive A and p. Hence M is bounded from below by 0. According
our assumption there exists a z in M such that

(5) z—x—KNM=0.

—x— K
i = Ay — px with given A, p. > 0. We have z — 2 €2 — %
}12:1 Ec—zx =)\}3\'\! —M .(cp. + l).% € M. These relations contradict (5). Q.E.D.

irecti ini rty. Let X be a mnor-
3. The eone direction near to minimum prope i
med space ordered by the come K. Let us introduce the notation

H={x:x <K, ||z|]| = 1}.

; ; y
The element % of the subset M of X will be §a1dr ;:I ;Ijm’éiir icfr_
minimum (cH-NM) point of M, where e is a positive !

(x—ecH—K)NM=2.

The space X will be said to have the cone dz'rect'ioc;z gefarr;) rif g::zlg:;
mum (CDI\I.;M ) property if each subset in it that is bouz:m_ ih g, e
has eH-NM points for any positive ;:f By a similar way

f of Proposition 1 we can verily - _
prooPRZ)POSITl;ON 3. The space X has the CDNM ﬁy\orﬁ;rtyogt sand only if
each subset 1n 1t that is b;unde;l{ f;zzzt%lo&ﬂplﬁjs‘l Hj;roper t{; 7 E only if

PROPOSITION 4. The space '

is regular. _
re%Ve need in the proof the following
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. lar 1f and only ;f ;
Lemma. The space X s reguiar 1 Y U it hgs
propenty : for any sequence % 1n K, 1=1, 2, . 4 the pl:z foltowi

. Derty, 8
there exists an € > 0 such that %]l = € for each i, tp, set. of 4 n”‘ﬂt
Sumyg )

W= 1, 2,... connol have any wpper bound..

Proof. Assume that ()71 is an increasing order boung 1
that isn't fundamental. Then there exists a positive Dumber y
passing if necessary to a subsequence of it (and using the Safne Ch thy

for this), it holds Totatiy,

“yn-{-l _yn” 2 g, N = 1, 2, -

Put x, = Ys41 — J» Then we have

n

?;{x.- =M1 =N sa—y,
where 4 denotes an upper bound of (y;)2,. This relation

there exist ¢ > (0 and the "sequence (%)een, %, in K s shows thyy

]| > ¢ for
are bounded from above,

1=
Assume now that X is regular and th i
: 5 € property i )
hold, that is, there exist the number g > () alle d ifhensggﬂﬂ (%2(’55:1t
i

1, €K an;i I%]l > ¢ for each 4, which has the property that the ,;lt

any 4, such that the sums Ex,—, "= ) T S

OfJ . —
! sums Ex,, n=1 2 ... has an upper bound. Then (Vu)n=1, where

1=]

In= Ex‘-, 1S an increasing sequence bounded from above. By the regularity

i=1
of X this sequence must 1,
- fundamental
n=1, 2, L be ental. But g ] e >
-+» contradiction that completes tll?pt}oof.JSIE DHxn-HH ¢,

Remark, T e i
for any Sequenlc:: ;?%ﬁlt}gn .1[_‘_ Lemma can be reformulated as follows:
- ' t=L 2 Il =1 for any 1, the set of

Sums Ex,-, n=1 92
= » % +++ cannot be bounded from above. The equivalence

of thge two f
orms
of Proposition ], €an be shown by the method we used in the proof

The Proo o
f pfOPOS’ltion 4 FI'Om PTOPOSitiOH 3 it fOHOWS that it

es t s
: O prove that x ; ; :
1 bounded frop blpie hlassrt}g}}{?r 1fp ;_nsci only if each subset in it thaf

M points.

-Nu PointsA'emSts- a subset M, bounded from below by
s .l-e-, with the Property that

C—H-K)ny 20

Xy be ¢ . - . stI’UCt
70 by choosing hoosen arbitrarily in M. We con

Yy & (x"-l —H

H {14 Let

€ sequence (x;)

KNM,n=12 ....

% < Xpy — h’m

“—_—*——“
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here h, € H, n=1, 2, ... . i .
"v?vv'eeobtain Adding from 1 to m the above relations,
;hngxo—xmgxu—C.
Because iy < K, |||l =1 for each # and the above relation holds for

any Sm we get usinl% Lemma that X cannot be regular

uppose now that each subset of X that is bounded f
has H-NM points but X isn’t regular. That is, using now tr}?én r;)rfxl;r\;
after the lemma, there exist x; in X, [|%]l = 1 for each 7 =1, 2

such that the set of sums Exi, n=12, ...

t=1

has] an upper bound c.

This means that the set M = {— 2 %iin=12 .. I is bounded from be-
1=1

low by —c¢. Let x be an arbitrarily choosen element in M. Then
" n+1

X = — Z’ x; for some n. We have % — x,. = — 3, %, € M, and

x—x,.g.zex—HCx—H—K.Thatis, =
x—H—-—KNM=#0

for every x in M. This contradiction completes the proof. Q.E.D.
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