MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

MATHEMATICA, Tome 22 (45), Nº 1, 1980, pp. 131-165

SUR LA FONCTIONNELLE $\frac{f(z_1)}{f'(z_2)}$ AU CAS DES FONCTIONS TYPIQUEMENT REELLES (II)

par

DUMITRU RIPEANU

§ 5. CONSTRUCTION DES BOUCLES (B_s) , $(s = \overline{1, 4})$ DE (23).

Bien que ce soient des courbes unicursales il est commode de se servir d'une représentation paramétrique irrationnelle, en posant $b = \rho s$ (s paramètre) ce qui donne pour la courbe (C_1) les branches

(51)
$$(C_{1,+}): \rho = \frac{1}{\delta + s} \left(-\delta + \sqrt{1 + \delta^2} \cdot \frac{s}{\sqrt{1 + s^2}} \right), b = \rho s$$

(52)
$$(C_{1,-}): \rho = -\frac{1}{\delta + s} \left(\delta + \sqrt{1 + \delta^2} \cdot \frac{s}{\sqrt{1 + \delta^2}} \right), \quad b = \rho s.$$

Il s'ensuit le long de la branche $(C_{1,+})$

$$\varphi_1(s) = \sqrt{\rho^2 + b^2} = |\varphi_2(s)|$$

avec

$$\varphi_2(s) = \frac{1}{\delta + s} (s \sqrt{1 + \delta^2} - \delta \cdot \sqrt{1 + s^2}).$$

s	∞	- 8	0	δ	+∞
φ ₂ (s)	$\delta + \sqrt{1}$	+ 8° / ± ∞	≠ −1	オ.0 ォ ー	$8+\sqrt{1+\delta}$
φ1(s)	2 / /1	+ 82 1 00	\ 1	\ 0 x =	$\delta + \sqrt{1+\delta}$

Tableau 1

Par suite

$$\varphi_2'(s) = \frac{8}{(8+s)^3 \sqrt{1+s^2}} (1-\delta s + \sqrt{1+\delta^2} \cdot \sqrt{1+s^2}) > 0.$$

Selon le tableau 1 la branche $(B_{1,+})$ s'obtient de (51) pour les $valeurs s \ge 0$ (nous désignons par $(B_{1,+})$ la branche de la boucle (B_1) constituée par la section de la branche $(C_{1,+})$ comprise dans Δ).

(53)
$$\frac{d\rho}{ds} = \frac{\varphi_3(s)}{(\delta + s)^2(1 + s^2)\sqrt{1 + s^2}}; \quad \frac{db}{ds} = \frac{\sqrt{1 + \delta^2}}{(\delta + s)^2} \left(\varphi_4(s) - \frac{\delta^2}{\sqrt{1 + \delta^2}}\right)$$

avec
$$\varphi_3(s) = (\delta - s^3)\sqrt{1 + \delta^2} + \delta(1 + s^2)\sqrt{1 + s^2}$$
 et $\varphi_4(s) = \frac{s(2\delta + s + \delta s^3)}{(1 + s^2)\sqrt{1 + s^2}}$

Par suite $\varphi_3'(s) = 3s(-s\sqrt{1+\delta^2}+\delta\sqrt{1+s^2})$. Les tableaux 2 et 3 donnent le tableau 4, auquel

$$\varphi_4'(s) = \frac{(\delta + s)(2 - s^2)}{(1 + s^2)^2 \sqrt{1 + s^2}}$$

s	0	δ	<i>s</i> ₁	∞
$\varphi_{3}'(s)$	+	0	_	
φ ₃ (s)	$\delta(1+\sqrt{1-\epsilon})$	$+8^2)$ $\nearrow 28\sqrt{1}$	+8° × 0 >	. −∞

s	0	S .	$\sqrt{2}$		80
$\varphi_4'(s)$	+		0	_	
φ4(s)	0 7	$\frac{\delta^2}{\sqrt{1+\delta^2}} \nearrow$	$\varphi_4(\sqrt{2)}$	¥	8

Tableau 2

Tableau 3

- 1		1								
	<i>s</i>	0	9	s_1		8		<i>s</i> ₁		∞
	dp ds		+		+		+	0		
	ρ	- 1	×	ρ(s ₂)	×	0	7	ρ(s ₁)	`\	0
	db ds		-	0	+		+		+	
-	b db	0	1	b(s2)	×	0	1	$b(s_1)$	×	$-\delta + \sqrt{1+\delta^2}$
	$\frac{db}{d\rho}$	$-\frac{1}{8}$ (-	$-1+\sqrt{1+8^2})$	0		δ		o o		_ 8

Tableau 4

 $s_2 < \delta < s_1$ ainsi qu'il résulte des relations $\frac{1}{\delta} \cdot \frac{db}{ds} \Big|_{s=\delta} = \frac{d\rho}{ds} \Big|_{s=\delta} = \frac{1}{2\delta(1+\delta^2)} > 0$, données par (53). Le long de la branche $(C_{1,-})$, (52) donne

$$\varphi_5(s) = \sqrt{\rho^2 + b^2} = \frac{1}{\delta + s} \left(s \sqrt{1 + \delta^2} + \delta \sqrt{1 + s^2} \right),$$

par suite

3

$$\varphi_{\delta}'(s) = \frac{\delta}{(\delta + s)^2 \sqrt{1 + s^2}} (-1 + \delta s + \sqrt{1 + \delta^2} \cdot \sqrt{1 + s^2}) \ge 0.$$

s	-∞	- δ	0	00
φ ₅ (s)	$-\delta + \sqrt{1+\delta^2} \nearrow$	$\frac{1}{\sqrt{1+\delta^2}}$	я 1 д	$\delta + \sqrt{1 + \delta^2}$

Tableau 5

Selon le tableau 5, la branche $(B_{1,-})$ s'obtient de (52) pour les valeurs $s \leq 0$ du paramètre. Or, $\frac{d\rho}{ds} = \frac{\varphi_{6}(s)}{(\delta + s)^{2}(1 + s^{2})\sqrt{1 + s^{2}}}$ avec $\varphi_{6}(s) = (-\delta + s^{3})\sqrt{1 + \delta^{2}} + \delta(1 + s^{2})\sqrt{1 + s^{2}}$. Par suite $\varphi'_{6}(s) = 3s(s\sqrt{1 + \delta^{2}} + \delta\sqrt{1 + s^{2}}), \frac{db}{ds} = -\frac{\sqrt{1 + \delta^{2}}}{(\delta + s)^{2}} \left(\varphi_{4}(s) + \frac{\delta^{2}}{\sqrt{1 + \delta^{2}}}\right)$ et $\varphi_{4}(s)$ donnée par (53).

s	- ∞		– 8	0
$\varphi_{6}'(s)$		+	0	_
φ ₆ (s)	_ ∞	×	0>4	$-\delta(-1+\sqrt{1+\delta^2})$

s	-∞	s_3		$-\sqrt{2}$	-	-8	0
$\varphi_4'(s)$	+		+	0	_	0	+
φ ₄ (s)	-87-	$-\frac{\delta^2}{\sqrt{1+\delta}}$	= 1 P4	(- √2		$\frac{-\delta^2}{\sqrt{1+\delta^2}}$	0 بر :

Tableau 6

Tableau 7

Les tableaux 6 et 7 donnent le tableau 8 et les tableaux 4 et 8 donnent la forme de la boucle (B_1) de la fig. 2. L'équation (23) de (C_2) place la boucle (B_2) comme symétrique de la boucle (B_1) par rapport à l'origine des axes. Les points M_1 , M_2 , M_3 de la fig. 2 sont donnés par (51) ou (52), pour les valeurs du paramètre écrites en paranthèse. Si dans l'équation (23) de (C_1) , $\rho^2 + b^2 = 1$, il vient $\rho = -1$. Par conséquent, le seul point d'intersection de (B_1) avec le cercle — unité est le point A_- . En posant dans l'équation (23) de (C_3) , $b = \rho s$, il vient les deux branches

(54)
$$(C_{3,-}): \rho = -\frac{1}{1-\delta s} \left(1 + \sqrt{1+\delta^2} \cdot \frac{s}{\sqrt{1+s^2}}\right), \ b = \rho s$$

(55)
$$(C_{3,+}): \rho = \frac{1}{1-\delta s} \left(-1 + \sqrt{1+\delta^2} \cdot \frac{s}{\sqrt{1+s^2}}\right), \ b = \rho s.$$

(56)

Il s'ensuit le long de la branche $(C_{3,-})$:

$$\varphi_7(s) = \sqrt{\rho^2 + b^2} = |\varphi_8(s)|, \text{ avec } \varphi_8(s) = \frac{1}{1 - \delta s} (s\sqrt{1 + \delta^2} + \sqrt{1 + s^2}).$$

Par suite $\varphi_8'(s) = \frac{\delta + s + \sqrt{1 + \delta^2} \cdot \sqrt{1 + s^2}}{(1 - \delta s)^2 \cdot \sqrt{1 + s^2}} > 0$. Selon le tableau 9, la branche $(B_{3,-})$ s'obtient de (54) pour les valeurs $s \leq 0$ du paramètre.

	1		-3000			
s	-∞.	. s ₃		- 8	٥	0
$\frac{d\rho}{ds}$			-	$-\frac{3\delta}{2(1+\delta^2)^2}$	_	
ρ	0	ρ(s ₃)	1	$-\frac{1}{1+\delta^2}$	¥	-1
$\frac{db}{ds}$		+ 0	-	$-\frac{2-\delta^2}{2(1+\delta^2)^2}$	-	
<i>b</i>	$-\delta + \sqrt{1}$	$+\delta^2$ \nearrow $b(s_3)$	7.	$\frac{\delta}{1 + \delta^2}$	`\	0
$\frac{db}{d\rho}$	-8	0		$\frac{2-\delta^2}{3\delta}$	$\frac{1}{\delta}$ (1 +	$\sqrt{1+\delta^2}$

Tableau 8

Tableau 9

$$\frac{d\rho}{ds} = -\frac{\varphi_{\theta}(s)}{(1-\delta s)^2 \cdot (1+s^2)\sqrt{1+s^2}}, \quad \frac{db}{ds} = -\frac{\sqrt{1+\delta^2}}{(1-\delta s)^2} \cdot \left(\varphi_{10}(s) + \frac{1}{\sqrt{1+\delta^2}}\right),$$

avec

$$\varphi_{9}(s) = \sqrt{1 + \delta^{2}(1 + \delta s^{3})} + \delta(1 + s^{2}) \sqrt{1 + s^{2}} \text{ et}$$

$$\varphi_{10}(s) = \frac{s(2 - \delta s + s^{2})}{(1 + s^{2}) \sqrt{1 + s^{2}}}.$$

Par suite

$$\varphi_9'(s) = 3\delta s(\sqrt{1+s^2}+s\sqrt{1+\delta^2}) \text{ et } \varphi_{10}'(s) = \frac{(1-\delta s)(2-s^2)}{(1+s^2)^2 \cdot \sqrt{1+s^2}}$$

s	-∞		_	$\sqrt{2}$			S 5	0
φ'10(s)		_	0		+			+
φ10(s)	-1	¥	φ ₁₀ (—	$\sqrt{2}$) 7	- 7	1 1+δ	- × 0

Tableau 10

Tableau 11-12

Les tableaux 10 et 11–12 donnent le tableau 13, où $s_4 < -\frac{1}{\delta} < s_5$, ainsi qu'il résulte des relations $\frac{d\rho}{ds}\Big|_{s=-\frac{1}{\delta}} = \frac{-\delta^3}{2(1+\delta^2)} < 0$ et $\frac{db}{ds}\Big|_{s=-\frac{1}{\delta}} = \frac{\delta^2}{2(1+\delta^2)} > 0$ données par (56). Le long de la branche $(C_{3,+})$ (55) donne $\phi_{11}(s) = \sqrt{\rho^2 + b^2} = \frac{-s\sqrt{1+\delta^2} + \sqrt{1+s^2}}{1-\delta s}$, $\phi_{11}'(s) = \frac{\delta + s - \sqrt{1+\delta^2} \cdot \sqrt{1+s^2}}{(1-\delta s)^2 \sqrt{1+s^2}} \le 0$ Selon le tableau 14, la branche $(B_{3,+})$ s'obtient de (55) pour les valeurs $s \ge 0$ du paramètre.

s	- ∞			84		$-\frac{1}{8}$	-	S		0
$\frac{d\rho}{ds}$	+	+		0	_	-	_		_	
ρ	0	1		ρ(s ₄)	×	0	¥	ρ(s ₅)	7	-1
$\frac{db}{ds}$, ,	+		+		+		0	211	
b	$-\frac{1}{\delta}$ (-	$-1 + \sqrt{1 + 8^3}$	1	b(s ₄)	1	0	1	b(s ₅)	7	0
$\frac{db}{d\rho}$	1 8	· · · · · · · · · · · · · · · · · · ·		∞ .	-	$-\frac{1}{8}$	-	0	-δ+ v	1+

Tableau 13

s	-∞		0		1 8			- 8
φ11(s)	$\frac{1}{\delta} (1 + \sqrt{1 + \delta^2})$	×	1	¥	$\frac{\delta}{\sqrt{1+\delta^2}}$	¥	$\frac{1}{\delta}(-1+\sqrt{1+\delta})$	

Tableau 14

$$\frac{d\rho}{ds} = \frac{\varphi_{13}(s)}{(1 - \delta s)^2 (1 + s^2) \sqrt{1 + s^2}}$$

$$\frac{db}{ds} = \frac{\sqrt{1 + \delta^2}}{(1 - \delta s)^2} \left(\varphi_{10}(s) - \frac{1}{\sqrt{1 + \delta^2}} \right)$$

$$\varphi_{13}(s) = \sqrt{1 + \delta^2} (1 + \delta s^3) - \delta (1 + s^2) \sqrt{1 + s^2}$$

avec

et $\varphi_{10}(s)$ donnée par (56). Par suite $\varphi_{12}'(s) = 3\delta s (\sqrt{1+\delta^2} \cdot s - \sqrt{1+s^2})$

All the same of th					
s	0	•	$\frac{1}{\delta}$		∞
φ' ₁₃ (s)		-	0	+	
φ13(s)	- δ + √ī	(+ 8° ×	0	1	∞

s	0	s ₆	$\sqrt{2}$		$\frac{1}{\delta}$	ø
φ ₁₀ (s)	+	-1-	0	_	0	+
φ10(s)	0 × -	$\frac{1}{\sqrt{1+\delta^2}}$	₹ 910 (√	(2) -	$\frac{1}{\sqrt{1+\delta}}$	<u>7</u> 1

6 7

Tableau 16

s	0		$s_{\phi} = \sqrt{2}$		œ
φ'10(s)		+	0	+	
φ ₁₀ (s)	0	7	$\frac{1}{\sqrt{1+\delta^2}}$	7	1

s	0	$\frac{1}{\delta}$		$\sqrt{2}$		s.	œ
$\varphi_{12}'(s)$	+	0	-	0	+		+
φ10(s)	0 × -	$\frac{1}{1+\delta^2}$	= × ¢	o ₁₀ (√2) / J	$\frac{1}{1+\delta}$	1/1

Tableau 18

Les tableaux 16, 17, 18 sont valables selon que $\delta < \frac{1}{\sqrt{2}}$, $\delta = \frac{1}{\sqrt{2}}$ ou $\delta > \frac{1}{\sqrt{2}}$. Les tableaux 15–18 donnent le tableau 19, où pour fixer les idées, $\delta < \frac{1}{\sqrt{2}}$ et les tableaux 13 et 19 donnent la forme de la boucle (B_3) de la fig. 3. L'équation (23) de (C_4) place la boucle (B_4) comme symétrique de la boucle (B_3) par rapport à l'origine des axes. En faisant dans l'équation (23) de (C_3) , $\rho^2 + b^2 = 1$, il vient $\rho = -1$. Par suite le seul point d'intersec-

5	0		S ₆	,	1 8	∞
$\frac{d\rho}{ds}$			+		$\frac{3\delta^3}{2(1+\delta^2)^2}$	+
ρ	-1	7	ρ(S ₆)	1	$-\frac{\delta^2}{1+\delta^2}$, 0
$\frac{db}{ds}$	_		0	+	$\frac{\delta^2(1-2\delta^2)}{2(1+\delta^2)^2}$	or i e diving
b	0	×	b(s ₆)	1	$-\frac{\delta}{1+\delta^2}$	
$\frac{db}{d\rho}$	(δ+	√ 1+	δ^2) 0		$\frac{1-2\delta^2}{3\delta}$	<u>1</u> δ

Tableau 19

tion de (B_3) avec le cercle-unité, est le point A_- . En éliminant ρ^2 entre les équations (23) et (27) de (C_1) et de ($K_{\Lambda_1,-}$) il vient $\rho = -\frac{1}{\delta(1+l_1b)}(\delta +$ $+28l_1b+l_1b^2$). En portant cette valeur dans l'équation (27) il vient $b^4=0$. La boucle (B_1) et l'arc $(K_{\Lambda_1,-})$ se coupent par suite au seul point A_- . En éliminant ρ^2 entre les équations (23) et (28) de (C_1) et de $(K_{\mu_1,+})$ il vient $-\frac{\delta l_1 - 2 \delta b - b^2}{\delta l_1 - 2 \delta b}$. En portant cette valeur dans (28), il vient $b^4 = 0$. Par suite la boucle (B_1) et l'arc $(K_{\mu_1,+})$ se coupent au seul point A_- . En éliminant ρ^2 entre les équations (23) et (29) de (C_3) et de $(K_{\Lambda_3,+})$, il vient $\rho = -\frac{1 - 2l_3b + \delta l_3b^2}{1 - l_3b}.$ En portant cette valeur dans (29), il vient $b^4 = 0$. Par suite la boucle (B_3) et l'arc $(K_{\Lambda_3,+})$ se coupent au seul point A_- . En éliminant enfin ρ^2 entre les équations (23) et (30) de (C_3) et de ($K_{\mu_3,-}$), il vient $\rho = -\frac{l_3 + 2b - 8b^2}{l_3 + b}$. En portant cette valeur dans (30), il vient $b^4 = 0$. La boucle (B_3) et l'arc $(K_{\mu_3,-})$ se coupent par suite au seul point A_- . Si (B_s^+) , (B_s^-) désignent les arcs de la boucle (B_s) situés au-dessus, respectivement au-dessous de l'axe O_{ρ} ($s=\overline{1,3}$) alors il résulte des tableaux 4 et 8 et des équations (27) et (28) des arcs $(K_{\Lambda_{\rm D}})$ et $(K_{\mu_{\rm D}})$ que l'arc $(K_{\Lambda_{\rm D}})$ et l'arc (B_1^-) sont tangents au point A_- et que l'arc $(K_{\mu_1,+})$ et l'arc (B_1^+) sont tangents au point A_{-} et des tableaux 13 et 19 et des équations (29)

DUMITRU RIPEANU

et (30) des arcs $(K_{\Lambda_3,+})$ et $(K_{\mu_3,-})$ que l'arc $(K_{\Lambda_3,+})$ et l'arc (B_3^+) sont tangents au point A_- et que l'arc $(K_{\mu_3,-})$ et l'arc (B_3^-) sont tangents au point A_- . Les équations (23) donnent l'origine comme seul poinr commun aux boucles (B_1) et (B_2) respectivement (B_3) et (B_4) et l'origine et le point A_{-} comme seuls points communs aux boucles (B_{1}) et (B_{3}) comme il résiulte de la relation

$$C_1(\rho, b) - \delta \cdot C_3(\rho, b) = (1 + \delta^2) \cdot b(-1 + \rho^2 + b^2)$$

donnée par (23).

Ces informations donnent les figures 4 et 5.

§ 6. CONSTRUCTION DES ARCS (β_s) $(s = \overline{1, 4})$ DE (41)

La substitution $b = (1 + \alpha)s$ (s paramètre) donne pour la courbe (Γ_1) les branches

(57)
$$(\Gamma_{1,+}): \rho = -1 + \frac{1}{\delta(1+s^2)} \left[\delta + s + \sqrt{-\delta^2 - 2\delta s + (1+2\delta^2)s^2}\right]$$

$$b = (1+\rho)s$$

et

(58)

$$(\Gamma_{1,-}): \rho = -1 + \frac{1}{\delta(1+s^2)} \left[\delta + s - \sqrt{-\delta^2 - 2\delta s + (1+2\delta^2) \cdot s^2}\right]$$

$$b = (1+\rho)s$$

Il s'ensuit le long de la branche $(\Gamma_{1,+})$

(59)
$$1 - (\rho^2 + b^2) = \frac{2}{\delta^2 (1 + s^2)} \cdot \varphi_{12}(s) \quad \text{avec}$$

$$\varphi_{12}(s) = \delta^2 + \delta s - (1 + \delta^2) s^2 - s \sqrt{-\delta^2 - 2\delta s + (1 + 2\delta^2) \cdot s^2}$$
La relation $\pi_1(s) = \delta^2 + \delta s - (1 + \delta^2) s^2 - s \sqrt{-\delta^2 - 2\delta s + (1 + 2\delta^2) \cdot s^2}$

La relation $\varphi_{12}(s) = 0$ s'écrit par rationnalisation $(1 - s^2)(\delta + 2s - \delta s^2) =$ = 0. Mais, pour $s = \frac{1}{8} (1 \pm \sqrt{1 + \delta^2})$ ou s = 1, $\varphi_{12}(s) \neq 0$ et $\varphi_{12}(-1) = 0$,

	T					
s	- ∞	-1	8		-	
	-		$1+\sqrt{2(1+\delta^2)}$	$\frac{\delta}{-1+\sqrt{2(1+\delta^2)}}$		∞
Ψ _{1 2} (s)	-∞ -	0	+		_	- ∞

Tableau 20

SUR LA FONCTIONNELLE $\frac{f(z_1)}{f'(z_2)}$

139

Il en résulte le tableau 20, selon lequel la branche $(\beta_{1,+})$ s'obtient de (57) Il en resulte le table $-1 \le s \le \frac{-\delta}{1 + \sqrt{2(1 + \delta^2)}}$ du paramètre.

Or (57) donne

Or (57) dolline
$$- \left[\delta - (1+4\delta^{2})s - 3\delta s^{2} + (1+2\delta^{2})s^{3} \right] + \frac{d\rho}{ds} = \frac{+(1-2\delta s - s^{2}) \cdot \sqrt{-\delta^{2} - 2\delta s + (1+2\delta^{2}) \cdot s^{2}}}{8(1+s^{2})^{2} \cdot \sqrt{-\delta^{2} - 2\delta s + (1+2\delta^{2})s^{2}}}$$

$$\frac{db}{ds} = \frac{-\left[\delta^{2} + 3\delta s - (2+5\delta^{2})s^{2} - \delta s^{3} \right] + (\delta + 2s - \delta s^{2}) \sqrt{-\delta^{2} - 2\delta s + (1+2\delta^{2})s^{2}}}{8(1+s^{2})^{2} \cdot \sqrt{-\delta^{2} - 2\delta s + (1+2\delta^{2})s^{2}}}$$

$$\frac{db}{d\rho} = \frac{\delta^{2} + 3\delta s - (2+5\delta^{2})s^{2} - \delta s^{3} - (\delta + 2s - \delta s^{2}) \sqrt{-\delta^{2} - 2\delta s + (1+2\delta^{2})s^{2}}}{8 - (1+4\delta^{2})s - 3\delta s^{2} + (1+2\delta^{2})s^{3} - (1-2\delta s - s^{2}) \sqrt{-\delta^{2} - 2\delta s + (1+2\delta^{2})s^{2}}}$$

Les relations $\frac{d\rho}{dc} = 0$, $\frac{db}{dc} = 0$ s'écrivent respectivement

$$\varphi_{13}(s) = \frac{\delta - (1 + 4\delta^2)s - 3\delta s^2 + (1 + 2\delta^2) \cdot s^3}{(1 - 2\delta s - s^2)\sqrt{-\delta^2 - 2\delta s + (1 + 2\delta^2) \cdot s^3}} = 1$$
(61)
$$\varphi_{15}(s) = \frac{\delta^2 + 3\delta s - (2 + 5\delta^2)s^2 - \delta s^3}{(\delta + 2s - \delta s^2)\sqrt{-\delta^2 - 2\delta s + (1 + 2\delta^2) \cdot s^2}} = 1$$

ce qui donne

$$\varphi'_{13}(s) = \frac{2\delta(1+\delta^2)(1+s^2)[\delta+3\delta s^2-2(1+2\delta^2)s^3]}{(1-2\delta s-s^2)^2[-\delta^2-2\delta s+(1+2\delta^2)s^2]\sqrt{-\delta^2-2\delta s+(1+2\delta^2)s^2}}$$

$$(62)$$

$$\varphi'_{15}(s) = \frac{2\delta(1+\delta^2)s(1+s^2)[3\delta^2+6\delta s-(2+5\delta^2)s^2]}{(\delta+2s-\delta s^2)^2[-\delta^2-2\delta s+(1+2\delta^2)s^2]\sqrt{-\delta^2-2\delta s+(1+2\delta^2)\cdot s^2}}$$

Il en résulte les tableaux 21 et 22, qui donnent le tableau 23.

s	-1	•	s ₇	· - 1 -	$\frac{\delta}{+\sqrt{2(1+\delta^2)}}$
φ ₁₃ (s)	$-\frac{1-\delta}{1+\delta}$	1	1	×	∞ .

Tableau 21

Les relations (58) donnent le long de la branche $(\Gamma_{1,-})$

					, -,
s .	-1		S7		$-\frac{\delta}{1+\sqrt{2(1+\delta^2)}}$
$\frac{d\rho}{ds}$		+	0	_	
ρ	0	1	ρ(s ₇)	¥	P1
db ds			+		
b	-1	1	b(s ₇)	1	b_1
$\frac{db}{d\rho}$	8		œ		

Tableau 23

$$1 - (\rho^2 + b^2) = \frac{2}{\delta^2(1+s^2)} \cdot \varphi_{16}(s)$$

(63)

avec
$$\varphi_{16}(s) = \delta^2 + \delta s - (1 + \delta^2)s^2 + s \cdot \sqrt{-\delta^2 - 2\delta s + (1 + 2\delta^2)s^2}$$

La relation $\varphi_{16}(s) = 0$ s'ésn't

La relation $\phi_{16}(s)=0$ s'écrit par rationnalisation

$$(1 - s^2)(\delta + 2s - \delta s^2) = 0$$

Mais, dans notre cas, $\varphi_{16}(-1) \neq 0$, $\varphi_{16}\left(\frac{1-\sqrt{1+\delta^2}}{\delta}\right) = \varphi_{16}\left(\frac{1+\sqrt{1+\delta^2}}{\delta}\right) = \varphi_{16}\left(\frac{1+\sqrt{1+\delta^2}}{\delta}\right) = \varphi_{16}\left(\frac{1-\sqrt{1+\delta^2}}{\delta}\right) \cdot \varphi_{16}'\left(\frac{1+\sqrt{1+\delta^2}}{\delta}\right) \cdot \varphi_{16}'(1) \neq 0$

Il en résulte le tableau 24, selon lequel

11

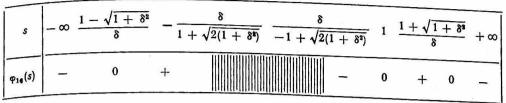


Tableau 24

la branche $(\beta_{1,-})$ s'obtient de (58) pour les valeurs $\frac{1-\sqrt{1+\delta^2}}{\delta} \leqslant s$ $\leqslant -\frac{\delta}{1+\sqrt{2(1+\delta^2)}}$ et $1 \leqslant s \leqslant \frac{1+\sqrt{1+\delta^2}}{\delta}$ du paramètre.

Les rexpressions de $\frac{d\rho}{ds}$, $\frac{db}{ds}$, $\frac{db}{d\rho}$ le long de la branche $(\beta_{1,-})$ s'obtiennent en changeant en (60) le signe de $\sqrt{-\delta^2 - 2\delta s + (1+2\delta^2)s^2}$. Par conséquent, les relations $\frac{d\rho}{ds} = 0$, $\frac{db}{ds} = 0$ s'écrivent respectivement $\varphi_{13}(s) = -1$, $\varphi_{15}(s) = -1$, avec $\varphi_{13}(s)$ et $\varphi_{15}(s)$ données par (61). Les relations (62) donnent dans notre cas les tableaux (25) et (26).

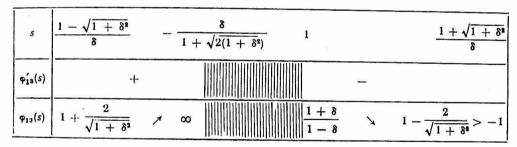


Tableau 25

3	$\frac{1-\sqrt{1+\delta^2}}{\delta}\delta$	$\frac{3-\sqrt{15(1)}}{2+58}$		$-\frac{\delta}{1+\sqrt{2(1+\delta^2)}}$	·)	$\delta \frac{3 + \sqrt{15(1 + \delta^2)}}{2 + 5\delta^2}$	$\frac{1+\sqrt{1+\delta^2}}{\delta}$
φ'18(s)	+	0	<u> </u>		+	0	-
φ15(s)	$-\infty \nearrow -\left(5\sqrt{5}\right)$	$\sqrt{\frac{3}{1+6}}$. 82	$-\infty$	$+2\frac{\delta^2}{1-\delta}$	$\left(5\sqrt{5}-6\sqrt{5}\right)$	$\frac{3}{1+8^3}$ $\Big \lambda - \infty \Big $

Tableau 26

Au tableau 26 il est supposé, pour fixer les idées, $\delta > \frac{3-\sqrt{5}}{2}$ qui équivaut à $1 < \frac{\delta}{2 + 5\delta^3} [3 + \sqrt{15(1 + \delta^2)}].$

Si $\delta \leqslant \frac{3-\sqrt{5}}{2}$, alors la section $s \geqslant 1$ du tableau 26 se remplace par le tableau 27. Lorsque & croît de 0 à 1.

			$1+\sqrt{1+\delta^2}$
s	1		8
$\overline{\varphi'_{15}(s)}$			
φ ₁₅ (s)	$-11 + \frac{28}{1}$	2	- ∞
418(*)	1 1 -	8)	

Tableau 27

 $\varphi_{14}(\delta) = -5\sqrt{5} + 6\sqrt{\frac{3}{1+8^2}}$ décroit de $-5\sqrt{5} + 6\sqrt{3} > 1$ à $-5\sqrt{5} + 6\sqrt{5} = 1$ $+6\sqrt{\frac{3}{2}}$ < -1 mais du fait que $\varphi_{14}\left(\frac{3-\sqrt{5}}{2}\right)=3-2\sqrt{5}<-1$ il résulte que pour $\delta > \frac{3-\sqrt{5}}{2}$, au tableau 26, $-5\sqrt{5}+6$ $\sqrt{\frac{3}{1+8^2}} < -1$. Les tableaux 23 et 28 donnent la forme de l'arc (β1) de la fig. 6. L'arc (β1) est selon son équation de (41) le symétrique de l'arc (β1) par rapport à l'origine des axes. La substitution $b = (1 + \rho)s$ dans l'équation (41) de (Γ_3) donne les branches

(64)
$$(\Gamma_{3,+}): \rho = -1 + \frac{1}{1+s^2} \left[1 - \delta s + \sqrt{-1 + 2\delta s + (2+\delta^2)s^2} \right]$$

$$b = (1+\rho)s$$

et

142

	$ 1 - \sqrt{1} $	+ 82	δ	i	$1+\sqrt{1+\delta^2}$
s	8		$-1 + \sqrt{2(1 + \delta^2)}$		8
d p ds		. +			
P	-1	7	P2	0	٦ - ا
db ds		-			_
b	0	7	b ₁	1.	`
$\frac{db}{d\rho}$	$\frac{1}{\delta}(1-\gamma)$	$\sqrt{1+\delta^2}$		8	$\frac{1}{\delta}(1+\sqrt{1+\delta})^{s}$

Tableau 28

(65)
$$(\Gamma_{3,-}): \rho = -1 + \frac{1}{1+s^2} \left[1 - \delta s - \sqrt{-1 + 2\delta s + (2+\delta^2)s^2} \right]$$
$$b = (1+\rho)s$$

Le long de la branche $(\Gamma_{3,+})$, (64) donne

.13

$$1 - (\rho^2 + b^2) = \frac{2}{1 + s^2} \cdot \varphi_{17}(s) \text{ avec}$$

$$\varphi_{17}(s) = 1 - \delta s - (1 + \delta^2)s^2 + \delta s \sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}$$

La relation $\varphi_{17}(s) = 0$ s'écrit par rationnalisation $(1 - s^2)(1 - 2\delta s - s^2) = 0$. Mais, pour $s = -\delta \pm \sqrt{1 + \delta^2}$, $\varphi_{17}(s) \neq 0$ et $\varphi_{17}(-1) = \varphi_{17}(1) = 0$, $\varphi_{17}'(-1) \cdot \varphi_{17}'(1) \neq 0$. Il s'ensuit le tableau 29, selon lequel la branche $(\beta_{3,+})$ est i donnée par (64) pour les valeurs $s \in \left[-1, -\frac{\delta + \sqrt{2(1+\delta^2)}}{2+\delta^2}\right]$ et $s \in \left[\frac{-\delta + \sqrt{2(1+\delta^2)}}{2+\delta^2}, 1\right]$ du paramètre. Or, (64) donne

$$\frac{d\rho}{ds} = \frac{\delta + (4 + \delta^2)s - 3\delta s^2 - (2 + \delta^2)s^3 - (\delta + 2s - \delta s^2)\sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}}{(1 + s^2)^2 \cdot \sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}}$$

(67)
$$\frac{db}{ds} = \frac{-1 + 3\delta s + (5 + 2\delta^2)s^2 - \delta s^3 + (1 - 2\delta s - s^2)\sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}}{(1 + s^2)^2\sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}}$$

$$\frac{db}{d\varphi} = \frac{-1 + 3\delta s + (5 + 2\delta^2)s^2 - \delta s^3 + (1 - 2\delta s - s^2)\sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}}{\delta + (4 + \delta^2)s - 3\delta s^2 - (2 + \delta^2)'s^3 - (\delta + 2s - \delta s^2)\sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}}$$

Les relations $\frac{d\rho}{ds} = 0$, $\frac{db}{ds} = 0$ s'écrivent respectivement

(68)
$$\varphi_{18}(s) = \frac{\delta + (4 + \delta^2)s - 3\delta s^2 - (2 + \delta^2)s^3}{(\delta + 2s - \delta s^2)\sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}} = 1$$
$$\varphi_{19}(s) = \frac{1 - 3\delta s - (5 + 2\delta^2)s^3 + \delta s^3}{(1 - 2\delta s - s^2)\sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}} = 1$$

ce qui donne

$$\varphi_{18}'(s) = \frac{-2(1+\delta^2)(1+s^2)[\delta+3\delta s^2+2(2+\delta^2)s^3]}{(\delta+2s-\delta s^2)^2 \cdot [-1+2\delta s+(2+\delta^2)s^2] \sqrt{-1+2\delta s+(2+\delta^2)s^2}}$$

(69)
$$\varphi'_{19}(s) = \frac{2(1+\delta^2)(1+s^2)\cdot s\cdot [3-6\delta s-(5+2\delta^2)s^2]}{(1-2\delta s-s^2)^3[-1+2\delta s+(2+\delta^2)s^2]\sqrt{-1+2\delta s+(2+\delta^2)s^2}}$$

Tableau 29

En posant en (69)

$$P_1(s) = \delta + 3\delta s^2 + 2(2 + \delta^2)s^3$$

il résulte le tableau 30, où

$$P_1(-1) = -2[1 + (1 - \delta)^2] < 0$$

s	_∞ _1	s ₈	$-\frac{\delta}{2+\delta^2}$	0	œ
$P_1'(s)$		+	0	0	+
$P_1(s)$	-∞ A	0 1	$P_1\left(-\frac{\delta}{2+\delta^2}\right) \searrow$	8	× ∞

Tableau 30

D'autre part,

$$P_1\left[-\frac{\delta+\sqrt{2(1+\delta^2)}}{2+\delta^2}\right] = -\frac{1+\delta^2}{(2+\delta^2)^2}\left[\delta(2-\delta^2)+4\sqrt{2(1+\delta^2)}\right] < 0$$

et
$$\frac{1-\sqrt{1+\delta^2}}{\delta} > -\frac{\delta+\sqrt{2(1+\delta^2)}}{2+\delta^2}$$
, du fait que

<i>x</i>	0			$\frac{\sqrt{2}}{3}$		1
$P_3'(x)$		+	0		-	-
$P_3(x)$	-4 √2	K	$\frac{-100}{27}$	$\cdot \sqrt{2}$	1	$3(1-2\sqrt{2})$

Tableau 31-32

ceci équivaut à $2\sqrt{1+\delta^2} > 2-\sqrt{2}\delta+\delta^2$ c'est-à-dire à $\delta P_s(\delta) < 0$, avec $P_3(x) = x(x-\sqrt{2})^2-4\sqrt{2}$, relation attestée par le tableau 31-32.

u 34,	
tablea.	
le	
donne	
(69)	
leau 33. La seconde relation (69) donne le	
seconde	
L,a	
33.	
tableau	
le	
en résulte	
en	
Π	l

15

 1		
1		1 0 1 0 0 0 0 0 0 0
		7
_		1
· • • • • • • • • • • • • • • • • • • •	1	1
(28		8
$-\frac{8+\sqrt{2(1+8^2)}}{2+8^2} - \frac{-8+\sqrt{2(1+8^2)}}{2+8^2}$		8
1	+	1 + 8
v	φ'(s)	918(8)

0 > s
section
la
Au cas où $\delta \geqslant \frac{3-\sqrt{5}}{2}$,
$\delta < \frac{3 - \sqrt{5}}{2}.$
cas
au
valable

<i>5</i>	. 1	$\frac{38 + \sqrt{15(1 + 8^4)}}{5 + 28^4}$		$\frac{8 + \sqrt{2(1 + 8^2)}}{2 + 8^2}$	$\frac{+8^{2}}{3} \frac{-8 + \sqrt{2(1 + 8^{2})}}{2 + 8^{2}}$	$\frac{2(1+\delta^2)}{\delta^2}$	$\frac{-38 + \sqrt{15(1+8^2)}}{5 + 28^2}$		$-8+\sqrt{1+8^2}$	120
(s) « 16	+	0 .	1				0	1		-
(s) a1 d	$1 - \frac{2}{8(1-8)}$	$(5\sqrt{5-68})$	$1 + 8^{2}$	^ 11 8 8		- K 8 -	$-\infty_{\mathcal{A}} - \left(5\sqrt{5} + 68\sqrt{\frac{3}{1-1}}\right)$	$\frac{3}{1+8^2}$	V + 8 × 1 + 8(1	$\frac{2}{8(1+\delta)}$

Tableau 34

du tableau 34 se remplace par le tableau 35.

10 - Mathematica. vol. 22 (45) - fascicola 1/1980

Les tableaux 33, 34 et 25 donnent le tableau 36. Les relations (65) donnent le long de la branche $(\Gamma_{3,-})$ $\left(1-(\rho^2+b^2)\right)=$

17

(70)
$$\begin{cases} 1 - (\rho^{2} + b^{2}) = \\ = \frac{2}{1 + s^{2}} \cdot \varphi_{20}(s) \text{ avec} \\ \varphi_{20}(s) = 1 - \delta s - (1 + \delta^{2}) s^{2} \\ - \delta s \sqrt{-1 + 2\delta s + (2 + \delta^{2}) s^{2}} \end{cases}$$

Tableau 35

La relation $\varphi_{20}(s) = 0$ s'écrit comme au cas de la branche $(\Gamma_{3,+})$, $(1-s^2)(1-2\delta s-s^2)=0$. Mais, dans notre cas, pour $s=\pm 1$, $\varphi_{20}(s)\neq 0$, $\varphi_{20}(-\delta-\sqrt{1+\delta^2})=\varphi_{20}(-\delta+\sqrt{1+\delta^2})=0$ et

$$\varphi'_{20}(-\delta-\sqrt{1+\delta^2})\cdot\varphi'_{20}(-\delta+\sqrt{1+\delta^2})\neq 0.$$

Il en résulte le tableau 37 selon lequel la branche (β_{3,-}) est donnée

s	-1		$-\frac{\delta+\sqrt{2}(1+\delta^2)}{2+\delta^2} \frac{-\delta+\sqrt{2}(1}{2+\delta^2}$	+ 82)		1
$\frac{d\rho}{ds}$		_	+	. 0	-	
ρ	0	. 1	P2 P3	β ρ(s ₉)	`\	0
$\frac{db}{ds}$		+		- -		
<i>b</i>	-1	1		$A b(s_0)$	1	1
$\frac{db}{d\rho}$	$-\frac{1}{\delta}$			œ		$-\frac{1}{\delta}$

Tableau 36

Tableau 37

par (65) pour les valeurs $s \in \left[-(\delta + \sqrt{1 + \delta^2}), -\frac{\delta + \sqrt{2(1 + \delta^2)}}{2 + \delta^2}\right]$ et $s \in \left[\frac{-\delta + \sqrt{2(1 + \delta^2)}}{2 + \delta^2}, -\delta + \sqrt{1 + \delta^2}\right]$ du paramètre. Les expressions de $\frac{d\rho}{ds}$, $\frac{db}{ds}$, $\frac{db}{ds}$ le long de la branche $(\beta_{3,-})$ s'obtiennent en changeant en (67) le signe de $\sqrt{-1 + 2\delta s + (2 + \delta^2)s^2}$.

Par suite, les relations $\frac{d\varphi}{ds}=0$, $\frac{db}{ds}=0$ s'écrivent respectivement $\varphi_{18}(s)=-1$, $\varphi_{19}(s)=-1$, avec $\varphi_{18}(s)$, $\varphi_{19}(s)$ données par (68). Les relations (69) donnent dans notre cas les tableaux 38 et 39. Au tableau 39 nous avons $-5\sqrt{5}+6\delta\sqrt{\frac{3}{1+\delta^2}}<-5\sqrt{5}+6\sqrt{\frac{3}{2}}<-1$.

Les tableaux 38 et 39 donnent le tableau 40.

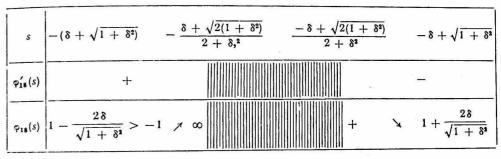


Tableau 38

Les tableaux 36 et 40 donnent la forme de l'arc (β_3) de la fig. 7. L'arc (β_4) est selon son équation (41) symétrique de l'arc (β_3) par rapport à l'origine des axes. En éliminant ρ^2 entre l'équation (27) de l'arc $(K_{\Lambda_1,-})$ qui borne inférieurement la région $(\Delta_1,-)$ de la fig. 6 et l'équation (41) de (Γ_1) , il vient

$$\rho = -\frac{1}{\delta(1+l_1b)} \left[\delta + 2\delta l_1b + (-\delta - l_1 + \delta l_1^2) b^2 \right].$$

En portant l'expression de ρ obtenue dans (27), il vient $b^4=0$ En éliminant ρ^2 entre l'équation

(71)
$$\rho^2 + b^2 + 2l_1b - 1 = 0$$

de l'arc $(K_{\Lambda_1,+})$ qui borne supérieurement la région $(\Delta_1,-)$ sur la fig. 6 et l'équation (41) de (Γ_1) , il vient $\rho = -\frac{1}{\delta(1-l_1b)} [\delta - 2\delta l_1b + (-\delta + l_1 + l_2)]$

Les tableaux 38 et 39 donnent le tableau 40.

6	φίς)	φ10(ε) - ω
$-(8+\sqrt{1+8^{8}}) - \frac{38+\sqrt{15(1+8^{8})}}{5+28^{8}} - \frac{8+\sqrt{2(1+8^{8})}}{2+8^{2}} - 8+$	- 0 +	$-\infty \neq -5\sqrt{5} + 68 \sqrt{\frac{3}{1+8^2}} < -1 \neq -\infty$
$\frac{-8 + \sqrt{2(1 + 8^3)}}{2 + 8^3}$	+	8
$\frac{-38 + \sqrt{15(1 + 8^2)}}{5 + 988} - 8 + \sqrt{1 + 8}$	0	$-\left(5\sqrt{5}+68\sqrt{\frac{3}{1+8^3}}\right)^{-1}$
+		Ī

S2 -8 + \sqrt{1 + 83} -8 + \sqrt{1 + 83} -1	$-8+\sqrt{1+8^2}$	
	3 + 1 + 82	
	+	
$-\frac{8+\sqrt{2(1+8^2)}}{2+8^2} - \frac{8+\sqrt{2(1+8^2)}}{2+8^2}$ p_2 p_3 p_4 p_4 p_6 p_8		
$-(8 + \sqrt{1 + 8^2})$ -1 -1 -1 -1	$-(\delta + \sqrt{1 + \delta^8 y})$	
$\begin{vmatrix} a & b & a \\ a & b & a \\ b & a & b \end{vmatrix}$	d p	

 $+ \delta l_1^2 b^2$]. En portant la valeur de ρ obtenue dans (71), il vient $b^2 [4\delta - 8\delta l_1b + (9 + \delta^2)l_1b^2] = 0$. Le réalisant du polynome du second degré en b écrit dans les crochets est $-\frac{4\delta l_1(3-\delta^2)^2}{5+\delta^2+4\sqrt{1+\delta^2}} < 0$ (avec l_1 de (27)) Il en résulte que l'arc (β₁) coupe la frontière de la région (Δ_{1,r}) au seul point A_- (fig. 6). En éliminant ρ^2 entre l'équation (27) de $(K_{\Lambda_{1,-}})$ et l'équation (41) de (Γ_3) , il vient $\rho = -\frac{1}{1+l_1b} \left[1+2l_1b+(-1+\delta l_1+l_1^2)b^2\right]$. En portant la valeur de ρ obtenue dans (27), il vient $b^2 [2(-1+\sqrt{1+\delta^2})+4\delta b+(4+\delta^2)b^2]=0$. Le réalisant du polynome du second degré en b qui figure dans les crochets est $-\frac{8\delta^4}{4+3\delta^2+(4+\delta^2)\sqrt{1+\delta^2}} < 0$. En éliminant ρ^2 entre l'équation (71) de l'arc $(K_{\Lambda_{1,+}})$ et l'équation (41) de (Γ_3) , il vient $\rho = -\frac{1}{1-l_1b} \left[1-2l_1b+(-1-\delta l_1+l_1^2)b^2\right]$. En portant la valeur de ρ obtenue dans (71), il vient

$$b^{2}[2\delta(1-\delta^{2})-4l_{1}\delta(1-\delta^{2})b+(4-3\delta^{2}+\delta^{4})l_{1}b^{2}]=0$$

Le réalisant du polynome du second degré en b écrit dans les crochets est $-\frac{8\delta^5 l_1(1-\delta^2)(3-\delta^2)^2}{2-\delta^2+\delta^4+2(1-\delta^2)\sqrt{1+\delta^2}}<0$. Il en résulte que l'arc (β_3) coupe la frontière de la région $(\Delta_{1,r})$ au seul point A_- (fig. 7). Du fait que (41) donne

$$\begin{split} &\frac{1}{\delta} \left[\Gamma_1(\rho, b) + \Gamma_2(\rho, b) \right] = \Gamma_3(\rho, b) + \Gamma_4(\rho, b) = \\ &= 2 \left[\rho^2 + (1 - b)^2 \right] \left[\rho^2 + (1 + b)^2 \right], \end{split}$$

il résulte que les arcs (β_1) et (β_2) se coupent aux seuls points B_- et B_+ , et que les arcs (β_3) et (β_4) se coupent aux seuls points B_- et B_+ . Si (β_1^-) , (β_1^+) désignent respectivement les sections de l'arc (β_1) situées au-dessous, respectivement au-dessus de l'axe O_P , il résulte du tableau 28 et de (27) que l'arc (β_1^-) est tangent au point A_- à l'arc $(K_{\Lambda_1,-})$. Ces informations donnent les figures 6 et 7.

§ 7. Démonstation de la proposition (44)

Il n'y a rien à changer à la construction des boucles (B_s^0) $(s=\overline{1,4})$ par rapport à la construction des boucles (B_s) , $(s=\overline{1,4})$ ni à l'étude de leur position par rapport aux arcs de cercle $(K_{\mu_1^0,-})$, $(K_{\Lambda_1^0,-})$, $(K_{\Lambda_1^0,-})$, $(K_{\Lambda_1^0,-})$, $(K_{\Lambda_2^0,-})$, $(K_{\Lambda_3^0,-})$, $(K_{\Lambda_3^0,-})$, $(K_{\mu_3^0,+})$ par rapport à l'étude de la position des boucles (B_s) , $(s=\overline{1,4})$ par rapport aux arcs de cercle $(K_{\mu_1,-})$, $(K_{\Lambda_1,-})$, $(K_{\Lambda_1,+})$, $(K_{\mu_1,+})$, $(K_{\mu_1,+})$, $(K_{\mu_2,-})$, $(K_{\Lambda_3,-})$, $(K_{\Lambda_3,-})$, $(K_{\Lambda_3,+})$, $(K_{\mu_3,+})$, (notations 5), au change ment éventuel signalé dans (44) près. Les figures 2, 3, 4, 5 se conservent donc, à ce changement éventuel près. Les seuls changements à apporter donc, à ce changement éventuel près. Les seuls changements à apporter dans (44) près. Les seuls changements à apporter dans la construction des arcs (β_1) et (β_3) pour obtenir les arcs (β_1^0) et (β_3)

21

sont les suivants: 1°. En (59) $\varphi_{12}(s) \neq 0$ pour $s = \frac{1}{\delta_0} \left(1 \pm \sqrt{1 + \delta_0^2}\right)$ et $\varphi_{12}(-1) = \varphi_{12}(1) = 0$, $\varphi_{12}'(-1) \cdot \varphi_{12}'(1) \neq 0$. 2°. Les tableaux 20, 21 et 23 se remplacent respectivement par les tableaux 41-42, 43 et 46 et le tableau 22 par les tableaux 44 su 45 (selon que $\delta_0 \leq \frac{3+\sqrt{5}}{2}$ ou $\delta_0 > \frac{3+\sqrt{5}}{2}$).

Tableau 43

Tableau 44

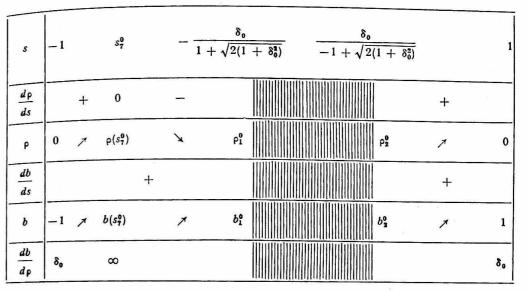


Tableau 46

Au tableau 45,
$$-\left(5\sqrt{5}-6\sqrt{\frac{3}{1+\delta_0^2}}\right) < -5\sqrt{5}+6\sqrt{\frac{3}{2}} < -1$$

3°. En (63) $\varphi_{16}\left(\frac{1-\sqrt{1+\delta_0^2}}{\delta_0}\right) = \varphi_{16}\left(\frac{1+\sqrt{1+\delta_0^2}}{\delta_0}\right) = 0$,
$$\varphi'_{16}\left(\frac{1-\sqrt{1+\delta_0^2}}{\delta_0}\right) \cdot \varphi'_{16}\left(\frac{1+\sqrt{1+\delta_0^2}}{\delta_0}\right) \neq 0, \ \varphi_{16}(-1) \cdot \varphi_{16}(1) \neq 0$$

4°. Le tableau 24 se remplace par le tableau 47.

Tableau 47

et les sections s > 0 des tableaux 25 et 26 respectivement par les tableaux 48 et 49.

	8-	*	1
s	$\frac{\delta_0}{-1 + \sqrt{2(1 + \delta_0^2)}}$		$\frac{1}{\delta_0} \left(1 + \sqrt{1 + \delta_0^2}\right)$
φ ₁₄ (s)		_	
p ₁₃ (s)	∞ .	7	$1 - \frac{2\delta_0}{\sqrt{1+\delta^2}} > -$

Tableau 48

En effet, en posant en (62) $P_o(s) = \delta_0 + 3\delta_0 s^2 - 2(1 + 2\delta_0^2)s^3$, et en désignant par s_0 la racine positive de $P_0(s)$, il vient

s	$\frac{\delta_0}{-1+\sqrt{2}}$	$\overline{(1+\delta_0^2)}$	$\delta_0 \cdot \frac{3 + \sqrt{15(1 + \delta_0^2)}}{2 + 5\delta_0^2}$	$\frac{1+\sqrt{1+\delta_0^2}}{\delta_0}$
φί 5(5)		+	0	_
φ ₁₅ (s)	-∞	Ä	$-\left(5\sqrt{5}-6\sqrt{\frac{3}{1+\delta_0^2}}\right)<$	ζ -1

Tableau 49

$$P_0\left(\frac{\delta_0}{-1+\sqrt{2(1+\delta_0^2)}}\right) = \frac{\delta_0(1+\delta_0^2)(1-6\delta_0^2-16\delta_0^4)}{(1+2\delta_0^2)[-1+\sqrt{2(1+\delta_0^2)}][1+4\delta_0^2+\sqrt{2(1+\delta_0^2)}]} < 0$$

par suite $s_0 \left(< \frac{\delta_0}{-1 + \sqrt{2(1 + \delta_0^2)}} \right)$ ne figure pas au tableau 48. Le tableau 28 se remplace par le tableau 50, auquel le signe de $\frac{d\rho}{ds}$ déduit en changeant

s	$\frac{1}{\delta_0}(1-\gamma)$	$\sqrt{1+\delta_0^2}$		$\frac{\delta_0}{2(1+\delta_0^3)}$	$\frac{\delta_0}{-1 + \sqrt{2(1 + \delta_0^2)}}$	$\frac{1}{\delta_0}$ (1 +	$\sqrt{1+\delta_0^0}$
$\frac{d\rho}{ds}$		+				_	
ρ db	-1	1	P1		ρ <mark>0</mark>	<i>x</i> :	-1
ds	1	-					*
b db	0	7	b_1^0		b_2^0	¥	0
ďρ	$\left \frac{1}{\delta_0}(1-\sqrt{1-1})\right $	$1 + \delta_0^2$				$\frac{1}{\delta_0}$ (1 +	$\sqrt{1+\delta_0^2}$

Tableau 50

en (60) le signe de $\sqrt{-\delta_0^2-2\delta_0 s+(1+2\delta_0^2)s^2}$ est donné par la relation $sg_{\mathbb{O}}[-[\delta_0-(1+4\delta_0^2)s-3\delta_0 s^2+(1+2\delta_0^2)s^3]]_{\mathbb{O}}=sg[-\delta_0+(1+6\delta_0^2)s],$ où s est supposé être une racine du polynome $P_4(s)=-\delta_0^2-2\delta_0 s+(1+2\delta_0^2)s^2$. Le signe de $\frac{db}{ds}$, déduit de (60) par changement de signe de $\sqrt{-\delta_0^2-2\delta_0 s+(1+2\delta_0^2)s^2}$ se déduit au tableau 50 par la relation $-\delta_0^2-3\delta_0 s+(2+5\delta_0^2)s^2+\delta_0 s^3=4(1+\delta_0^2)s^2$, où s est supposé être une racine du polynome $P_5(s)=\delta_0+2s-\delta_0 s^2$. Les tableaux 46 et 50 donnent la forme de l'arc (β_1^0) de la fig. 8.

5°. En (66) $\varphi_{17}(s) \neq 0$ pour $s = -\delta_0 \pm \sqrt{1 + \delta_0^2}$ et s = -1 et $\varphi_{17}(1) = 0$, $\varphi_{17}'(1) \neq 0$.

6°. Le tableau 29 se rempleace par le tableau 51. et les tableaux 33,

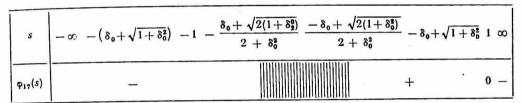


Tableau 51

34 et 36 se réduisent à leur section s > 0 (bien entendu, avec δ_0 à la place de δ).

7. En (70) $\varphi_{20}(-\delta_0 - \sqrt{1+\delta_0^2}) = \varphi_{20}(-\delta_0 + \sqrt{1+\delta_0^2}) = \varphi_{20}(-1) = 0$, et $\varphi_{20}'(-\delta_0 - \sqrt{1+\delta_0^2}) \cdot \varphi_{20}'(-\delta_0 + \sqrt{1+\delta_0^2}) \cdot \varphi_{20}'(-1) \neq 0$, $\varphi_{20}(1) \neq 0$. Le tableau 37 se semplace par le tableau 52.

Tableau 52

Les sections s < 0 des tableaux 38, 39 et 40 se remplacent respectivement par les tableaux 53, 54, 55 (selon que $\delta_0 < \frac{3+\sqrt{5}}{2}$ ou $\delta_0 \ge \frac{3+\sqrt{5}}{2}$) et 56.

25

s	$-(\delta_0+\sqrt{1+}$	- 8°)	S 8	jan.	-1
φ΄(s)		+		+	
φ ₁₈ (s)	$1-\frac{2\delta_0^2}{\sqrt{1+\delta_0^2}}$	*	1	1	$\frac{\delta_0+1}{\delta_0-1}$

Tableau 53

Au tableau 53 nous avons $\varphi'_{18}(s) > 0$, ainsi qu'il résulte du tableau 30.

s	$-\left(\delta_0+\sqrt{1+\delta_0^2}\right)$	$-\frac{1}{5+2\delta_0^2}\left[3\delta_0+\sqrt{15(1+\delta_0^2)}\right]$	-1
φ'19(s)	+	0	_
φ19(s)	-∞ 1	$-5\sqrt{5}+6\delta_0\sqrt{\frac{3}{1+\delta_0^2}}<-1$	$-\left[1+\frac{2}{\delta_0(\delta_0-1)}\right]$

Tableau 54

Tableau 55

Quand δ_0 croît de 1 à ∞ , $\varphi(\delta_0) = -5\sqrt{5} + 6\delta_0\sqrt{\frac{3}{1+\delta_0^2}}$ croît de $-5\sqrt{5} + 6\sqrt{\frac{3}{2}} < -1$ à $-5\sqrt{5} + 6\sqrt{3} > -1$, mais du fait que $\varphi\left(\frac{3+\sqrt{5}}{2}\right) = 3-2\sqrt{5} < -1$, il résulte que pour $\delta_0 < \frac{3+\sqrt{5}}{2}$ au tableau 54, $-5\sqrt{5} + 6\delta_0\sqrt{\frac{3}{1+\delta_0^2}} < -1$. Les tableaux 36, 40 (réduits à

s	$-\left(\delta_0+\sqrt{1+\delta_0^2}\right)$		-1
$\frac{d\rho}{ds}$		+	
ρ	-1	1	0
$\frac{db}{ds}$		-	
ь	0	*	-1
$\frac{db}{d\rho}$	$-\left(\delta_{0}+\sqrt{1+\delta_{0}^{2}}\right)$		$-\frac{1}{\delta_0}$

Tableau 56

leurs sections s>0) et 56 donnent la forme de l'arc (β_3^0) de la fig. 9 et de l'arc (β_4^0) symétrique de (β_3^0) par rapport à l'origine des axes. Selon les notations 5 et 4, la frontière de la région (Δ_3^0, \cdot) est constituée par l'arc de cercle $(K_{\Lambda_3^0, +})$, dont l'équation s'obtient en remplaçant en (29) δ par δ_0 , ce qui donne

(72)
$$(K_{\Lambda_{3,+}^2}): \rho^2 + b^2 + 2l_3^0b - 1 = 0, \ (l_3^0 = \delta_0 + \sqrt{1 + \delta_0^2}).$$

et par son symétrique $(K_{\Lambda_{\rho,-}^{0}})$ par rapport à l'axe O_{ρ} , d'équation

(73)
$$(K_{\Lambda_3^{\bullet,-}}): \rho^2 + b^2 - 2l_3^0 b - 1 = 0$$

En éliminant ρ^2 entre l'équation (73) de $(K_{\Lambda_1^0,-})$ et l'équation de (Γ_1^0) obtenue selon les notations 5 en remplaçant dans l'équation (41) de (Γ_1) , δ par δ_0 , il vient

$$\rho = -\frac{1}{\delta_0(1 + l_3^0 b)} \left[\delta_0 + 2\delta_0 l_3^0 b + (-1 + 2\delta_0^2) l_3^0 b^2 \right].$$

En portant l'expression de p obtenue dans (73), il vient

$$b^{2}[2\delta_{0}(\delta_{0}^{2}-1)+4\delta_{0}l_{3}^{0}(\delta_{0}^{2}-1)b+l_{3}^{0}(1-3\delta_{0}^{2}+4\delta_{0}^{4})b^{2}]=0$$

Le réalisant du polynome de second degré en b écrit dans les crochets est

$$-\frac{8\delta_0(\delta_0^2-1)l_3^0(1-3\delta_0^2)^2}{1-\delta_0^2+2\delta_0^4+2\delta_0(\delta_0^2-1)\sqrt{1+\delta_0^2}}<0$$

26 En éliminant ρ^2 entre l'équation (72) de l'arc $(K_{\Lambda_s^0,+})$ et l'équation de

$$\rho = -\frac{1}{\delta_0(1-l_0^2b)} \left[\delta_0 - 2\delta_0 l_0^0 b + (1+2\delta_0^2) l_0^0 b^2 \right].$$

En portant la valeur de p obtenue dans (72) il vient

156

$$b^{2}[2\delta_{0}-4\delta_{0}l_{3}^{0}b+(1+4\delta_{0}^{2})l_{3}^{0}b^{2}]=0$$

Le réalisant du polynome du second degré en b qui figure dans les cro-

$$\frac{-8\delta_0}{l_0^9} < 0.$$

Il en résulte que l'arc (β_1^0) coupe la frontière de la région (Δ_3^0, i) au seul point A_{-} . En eliminant ρ^{2} entre l'équation (73) de $(K_{\Lambda_{\bullet}^{\bullet}}, -)$ et l'équation de (Γ_3^0) obtenue, selon les notations 5, en remplaçant dans l'équation (41) de (Γ_3) , δ par δ_0 il vient:

$$\rho = -\frac{1}{1 + l_{3b}^{0}} \left(1 + 2l_{3b}^{0} + 3\delta_{0} l_{3}^{0} b^{2} \right)$$

En portant la valeur de ρ obtenue dans (73), il vient

$$b^2[4\delta_0 + 8\delta_0 l_3^0 b + l_3^0 (1 + 9\delta_0^2) b^2] = 0$$

Le réalisant du polynome du second degré en b écrit dans les crochets est

$$-16 \, \delta_0 l_3^0 \cdot \frac{(1-3\,\delta_0^2)^2}{1+5\,\delta_0^2+4\delta_0\,\sqrt{1+\delta_0^2}} < 0.$$

En éliminant enfin ρ^2 entre l'équation (72) de l'arc $(K_{\Lambda_{+}^{\bullet},+})$ et l'équation

$$\rho = -\frac{1}{1 - l_3^9 b} \left(1 - 2 l_3^9 b + \delta_0 l_3^9 b^2 \right).$$

En portant la valeur de ρ obtenue dans (72), il vient $b^4=0$ Il en résulte que l'arc (β_3^0) coupe la frontière de la région (Δ_3^0) au seul point A. Si $(\beta_3^0, -)$, $(\beta_3^0, +)$ désignent respectivement les sections de l'arc (β_3^0) situées au-dessous, respectivement au dessus de l'axe O_{ρ} , il résulte du tableau 40 et de (72)tableau 40 et de (72) que l'arc ($\beta_3^{0,+}$) est tangent au point A_- à l'arc ($K_{\Lambda_3^0,+}$). Ces informations donnent les figures 8 et 9. qui attestent la conservation. des figures 6 et 7 au cas du remplacement de 8 par δ_0 . La conservation, au cas de ce remplacement, des figures 2, 3, 4, 5 a été mentionnée page La proposition (44) est ainsi démontrée.

§ 9. Démonstration de la proposition (41₁).

Les dénominateurs des expressions (38) de $\overline{\alpha}_{1,r}$ et $\overline{\alpha}_{2,r}$ s'annulent respectivement le long des courbes (K_1) et (K_2) d'équation

 $(K_1): \delta \rho + b + (\delta \rho - b)(\rho^2 + b^2) = 0$ (74)

respectivement

27

(75)
$$(K_2): \rho - \delta b + (\rho + \delta b)(\rho^2 + b^2) = 0$$

Nous désignerons respectivement par (k_1) et (k_2) leurs branches comprises dans Δ . En posant $\hat{b} = \rho s$ (s paramètre), (74) donne

(76)
$$\rho = \sqrt{\frac{\delta + s}{(-\delta + s)(1 + s^2)}}, b = \rho s$$

$$\rho'(s) = -\frac{P_{1,\rho}(s)}{(-\delta + s)^2(1 + s^2)^2} \cdot \sqrt{\frac{\delta + s}{(-\delta + s)(1 + s^2)}}$$

$$b'(s) = -\frac{P_{1,b}(s)}{(-\delta + s)^2(1 + s^2)^2} \sqrt{\frac{\delta + s}{(-\delta + s)(1 + s^2)}}$$

avec

(77)
$$P_{1,b}(s) = \delta - \delta^2 s + \delta s^2 + s^3$$
, $P_{1,b}(s) = \delta^2 + \delta s - s^2 + \delta s^3$

Il s'ensuit $\rho^2 + b^2 = \varphi_{21}(s) = \frac{\delta + s}{-\delta + s}$ auquel cas selon le tableau 57 la branche (k_1) s'obtient de (76) pour les valeurs $s \leq -8$ du paramètre.

Tableau 57

Or, pour ces valeurs

$$P'_{1,\rho}(s) = (\delta + s)(-\delta + 3s) \ge 0, \quad P'_{1,b}(s) = \delta - 2s + 3\delta s^{2} > 0,$$

$$P_{1,b}(-\delta) = -\delta^{2}(1 + \delta^{2}) < 0, \quad P_{1,\rho}(-\infty) = -\infty, \quad P_{1,\rho}(-\delta) = \delta(1 + \delta^{2} > 0,$$

$$\frac{db}{d\rho} = \frac{P_{1,b}(s)}{P_{1,\rho}(s)} \quad \text{et} \quad \frac{d^{2}b}{d\rho^{2}} = \frac{1}{\rho'(s)} \frac{d}{ds} \frac{db}{d\rho} = (1 + \delta^{2}) \frac{\delta^{2} - 2\delta s(1 + s^{2}) + s^{4}}{\rho'(s) \cdot P_{1\rho}^{2}(s)}$$

$$\text{donc sg } \frac{d^{2}b}{d\rho^{2}} = \text{sg } \rho'(s).$$

Il en résulte le tableau 58, qui donne la section OP_·B_(qui sera désignée par la notation "branche (k_1^-) " de la branche (k_1)) (fig 10), où

158

s	-∞		s_1		<u> </u>
p'(s)		+	0	-	
ρ(s)	0	A	$\rho(s_1)$	Ä	0
b'(s)	+		+		+
b(s)	-1	7	$b(s_1)$	7	0
$\frac{db}{d\rho}$	δ		∞		- 8
$\frac{d^2b}{d\rho^2}$		+	1	_	

29

28

Tableau 58

le point P_ est fourni par la valeur s1 (du tableau 58) du paramètre et l'angle δ_1 par la fig. 6. La branche (k_2) est constituée par la branche (k_1) et par sa symétrique (designée par la notation "branche (k+)") par rapport — l'origine des axes. De plus, le point Q_- où la branche (k_1) coupe l'arc de cercle $K_{\Lambda_0,-}$) est situé sur l'arc \widehat{OP}_- de cette branche. En effect, en portant les expressions (76) de ρ et b dans l'équation (27) de (K_{Λ_p}) il vient $\frac{\delta}{\delta - s} + l_1 s \sqrt{\frac{\delta + s}{(-\delta + s)(1 + s^2)}} = 0$, ce qui, pour $s \leq -\delta$ équivant à $\frac{\delta^2}{(\delta - s)^2} = \frac{l_1^2 s^2 (\delta + s)}{(-\delta + s)(1 + s^2)},$

$$\frac{V(-\delta+s)(1+s^2)}{\frac{\delta^2}{(\delta-s)^2}} = \frac{l_1^2 s^2 (\delta+s)}{(-\delta+s)(1+s^2)},$$

C'est-à-dire à $l_1^2s^4-(1+l_1^2)\delta^2s^2-\delta^2=0$. Le point Q_- est donc fourni par (76) pour $s = \sigma_1 = -\sqrt{(-1 + \sqrt{1 + \delta^2})(\sqrt{1 + \delta^2} + \sqrt{2 + \delta^2})}$ (avec la valeur (27) de l_1). Or, (77) donne $P_{1,o}(\sigma_1) = (-1 + \sqrt{1 + \delta^2}) \times \sqrt{\sqrt{1 + \delta^2} + \sqrt{2 + \delta^2}} \cdot (\delta \sqrt{\sqrt{1 + \delta^2} + \sqrt{2 + \delta^2}} - (-1 + \sqrt{1 + \delta^2}) \times \sqrt{1 + \delta^2})$ $\times \sqrt{-1+\sqrt{1+\delta^2}}$ donc $s_1 < \sigma_1$, auquel cas (76) et le tableau 58 placent le point Q_- sur l'arc \widehat{OP}_- de (k_1^-) . Dans la région $(\Delta_{1,r,+})$ de $(\Delta_{1,r})$ (marquée sur la fig. 10 par les signes +), $\overline{\alpha}_{1,r} > 0$ en (38) et dans la région $(\Delta_{1,r})$ (marquée par les signes –), en (38) $\bar{\alpha}_{1,r} < 0$. Nous désignerons par M_+

un point de $(\Delta_{1,r,+})$ de coordonnées (ρ_+, b_+) , assez proche de l'origine un point de $(\beta_1,r,+)$ > 1. Pour fixer les idées, nous supposerons $\rho_+ \leq 0$, pour avoir $\alpha_1,r(\rho_+,b_+)$ > 1. Pour fixer les idées, nous supposerons $\rho_+ \leq 0$, pour avon $a_1, a_2, \dots, a_n \in \mathcal{O}$, de la notation (2), $b_+ \neq 0$). Si M_0 est $b_+ < 0$ (scion $a_0 + b_0 = 0$). Si M_0 est un point quelconque de $(\Delta_{1,r,+})$, de coordonnées (ρ_0, b_0) , il est facile d'indiquer un point M_+ et une ligne brisée (L) qui relie les points M_+ et M_0 , est un point M_{+} et ne coupe pas la branche (k_1) . En effet, si le point M_{0} située dans $(\Delta_{1,r,+})$ et ne coupe pas la branche (k_1) . En effet, si le point M_{0} situee dans la quadrilatère curviligne $OA_-N_+N_1$, O (la droite N_-N_+ étant la tangente en O à (k_1)), les points M_+ et M_0 — et par conséquent le segment $\overline{M_+M_0}$ sont situés au-dessous du (ou sur le) segment $\overline{N_-N_+}$ et à gauche du (ou sur le) segment $\overline{N_{1,r,-}N_{1,r,+}}$ tandis que (k_1^+) est audessus du segment $\overline{N_-N_+}$ et (k_1^-) est à droite du segment $\overline{N_{1,r,-}N_{1,r,+}}$. La ligne (L) est en ce cas le segment $\overline{M_+M_0}$. Si le point M_0 est dans le triangle curviligne $ON_{1,r,-}Q_{-}O$, la ligne (L) est constituée par $\overline{M_{+}M_{1}}$ et $\overline{M_{1}M_{0}}$ où M_1 est le point de coordonnées (ρ_+, b_0) , à la condition de choisir le point M_{+} assez près de l'origine pour que le segment $\overline{M_{0}M_{1}}$ reste compris dans $(\Delta_{1,r,+})$ et que $b_+>b_0$. En effet, le segment $\overline{M_+M_1}$ ne coupe pas la branche (k_1) , le point M_1 étant dans le triangle curviligne $OA_N_{1,r,-}O$, compris dans le quadrilatère curviligne $OA_{-}N_{+}N_{1,r,-}O$ (comme il a été prouvé ci-dessus) et le segment $\overline{M_1M_0}$ ne coupe pas (k_1^-) , les points M_+ et M_0 étant situés à gauche de (k_1^-) , ni (k_1^+) ces points étant situés sous le diamètre $\overline{A_-A_+}$. Enfin si le point M_0 est dans le triangle curviligne OQ_+N_+O , alors la ligne (L) est constituées des segments $\overline{M_+M_2}$ et $\overline{M_2M_0}$, le point M_2 ayant les coordonnées (ρ_0, b_+) , toujours à la condition de prendre le point M_+ assez près de l'origine pour que le point M_2 soit situé dans $(\Delta_{1,r,+})$ et que $\rho_+ > \rho_0$. En effet, le segment $\overline{M_0M_2}$ ne coupe pas (k_1^+) , parce que si ρ_0 < abscisse de Q_+ , alors M_0 et M_2 sont à gauche de (k_1^+) et si ρ_0 > abscisse de Q_+ alors M_0 et M_2 sont au-dessous de (k_1^+) (ceci du fait que Q_+ est situé sur l'arc \widehat{OP}_+ de (k_1^+) ; M_0 et M_2 sont à gauche du segment $\overline{N_{1,r,-}N_{1,r,+}}$, tandis que (k_1^-) est à droite de ce segment, donc $\overline{M_0M_2}$ ne coupe pas (k_1^-) . Quant au segment $\overline{M_0M}_+$, il ne coupe pas (k_1) , parce que M_+ et M_2 sont situés à gauche du segment $\overline{N_{1,r,-}N_{1,r,+}}$, ni (k_1^+) parce que M_+ et M_2 sont situés au-dessous du diamètre $\overline{A_-A_+}$. Supposons donc que pour un point M_0 de $(\Delta_{1,r,+})$, de coordonnées (ρ_0, b_0) nous ayons $\bar{\alpha}_{1,r}(\rho_0, b_0) < 1$ en (38). Nous supposerons d'abord que la ligne (L) se réduit au segment $\overline{M_+M_0}$ et que celui-ci n'est pas parallèle à l'axe Ob. En désignant par $b = p\rho + q$ l'équation de la droite M_+M_0 et par $\phi_{22}(\rho)$ la fonction rationnelle $\bar{\alpha}_{1,r}(\rho, p\rho + q)$ et si, pour fixer les idées, $\rho_0 < \rho_+$, alors $\varphi_{22}(\rho)$ est une fonction continue dans l'intervalle $[\rho_0, \rho_+]$ de la variable p, parce que lorsque p parcourt cet intervalle, le point de coordonnées $(\rho, p_{\rho} + \rho)$ parcourt le segment $\overline{M_0M_+}$, qui ne coupe pas la branche (k_1) et par conséquent le polynome en p au dénominateur de l'expression (38) de $\bar{\alpha}_{1,r}$ ne s'annule pas dans cet intervalle. Or, $\phi_{22}(\rho_0) = \bar{\alpha}_{1,r}(\rho_0, p\rho_0 +$

 $+q_0$) = $\bar{\alpha}_{1,r}(\rho_0, b_0) < 1$ et $\phi_{22}(\rho_+) = \bar{\alpha}_{1,r}(\rho_+, b_+) > 1$. Par suite, il existe une valeur $\bar{\rho}$ de ρ , avec $\rho_0 < \bar{\rho} < \rho_+$, pour laquelle $\phi_{22}(\bar{\rho}) = \bar{\alpha}_{1,r}(\bar{\rho}, \bar{b}) = 1$, le point $(\bar{\rho}, \bar{b})$ étant situé sur le segment $\overline{M_0M_+}$. Or, ce segment étant re point (β, δ) étant de la branche (β_1) , définie par (41), a compris dans (Δ_1, δ) , il s'ensuit que la branche (β_1) , définie par (41), a des points dans $(\Delta_{1,r})$, ce que est infirmé par la fig. 6. La relation $\overline{\alpha}_{1,r}(\rho_0,b_0)$ < 1 est donc, dans l'hypothèse faite, exclue. Si le segment $\overline{M_+M_0}$ est paralièle à l'axe Ob, donc $\rho_0 = \rho_+ = r$, la relation $\overline{\alpha}_1$, $(\rho_0, b_0) < 1$ s'exclut neile a lake of, dont properties $\varphi_{23}(b) = \overline{\alpha}_{1,r}(\rho, b)$ qui est continue en la variable b pour $b \in [b_0, b_+]$ (si, pour fixer les idées, $b_0 < b_+$). Cette relation est donc exclue au cas où la ligne (L) se réduit au segment $\overline{M_+M_0}$. D'autre part $\overline{\alpha}_{1,r}(\rho_0, b_0) \neq 1$, la branche (β_1) de (41) n'ayant aucun point en $(\triangle_{1,r})$.

Par conséquent $\bar{\alpha}_{1,r}(\rho_0, b_0) > 1$. Nous retiendrons de la démonstration de ce résultat la proposition suivante, obtenue en remplaçant les points M_+ et M_0 respectivement par les points M_3 et M_4 de coordonnées respectives (ρ_3, b_3) et (ρ_4, b_4) :

(78)
$$\begin{vmatrix} Si \ \overline{\alpha}_{1,r}(\rho_3, b_3) > 1 & et \ si \ le \ segment \ \overline{M}_3 \overline{M}_4 \ cst \ situ\'e \\ dans \ (\Delta_{1,r,+}) \ et \ ne \ coupe \ pas \ la \ branche \ (k_1), \ alors \\ \overline{\alpha}_{1,r}(\rho_4, b_4) > 1.$$

Au cas où la ligne (L) est constituée des segments $\overline{M_+M_1}$ et $\overline{M_1M_0}$ respectivement $\overline{M_+M_2}$ et $\overline{M_2M_0}$, la relation $\overline{\alpha}_{1,r}(\rho_0, b_0) < 1$, s'exclut en appliquant la proposition (78) à chacun des segments qui la constituent. Par conséquent

Si le point M_0 est dans $(\Delta_{1,r-})$, alors en tenant compte que les régions $(\triangle_{1,r-})$ et $(\triangle_{1,r,+})$ sont symétriques par rapport à l'origine, (38) et (79) donnent $\overline{\alpha}_{1,r}(\rho_0, b_0) = -\overline{\alpha}_{1,r}(-\rho_0, -b_0) < -1.$

En posant $b = \rho s$ (75) donne

$$\rho = \sqrt{\frac{-1 + \delta s}{(1 + \delta s)(1 + s^2)}}, \ b = \rho s$$

$$\rho'(s) = \frac{P_{2,\rho}(s)}{(1 + \delta s)^2(1 + s^2)^2} \sqrt{\frac{-1 + \delta s}{(1 + \delta s)(1 + s^2)}}, \ b'(s) = \frac{P_{2,b}(s)}{(1 + \delta s)^2(1 + s^2)^2} \sqrt{\frac{-1 + \delta s}{(1 + \delta s)(1 + s^2)}}$$

avec

(81)
$$P_{2,p}(s) = \delta + s + \delta s^2 - \delta^2 s^3$$
, $P_{2,b}(s) = -1 + \delta s + \delta^2 s^2 + \delta s^3$

31

30

$s - \infty - \delta$		δ	-	+∞
φ ₂₄ (s) 1 / ±∞	1	0	1	1

Tableau 59

Il s'ensuit $\rho^2 + b^2 = \varphi_{24}(s) = \frac{-1 + \delta s}{1 + \delta s}$, auquel cas, selon le tableau 59, la branche (k_2^+) s'obtient pour le valeurs $s \geqslant \frac{1}{s}$ du paramètre. Or, pour ces valeurs, en (81)

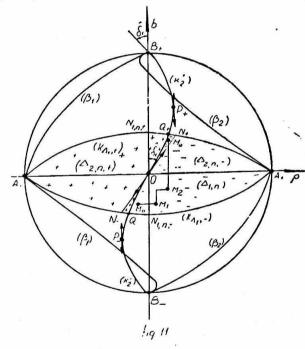
Tableau 39
$$P'_{2,\rho}(s) = (1 - \delta s)(1 + 3\delta s) \leq 0 \quad \text{et} \quad P'_{2,b}(s) = \delta + 2\delta^2 s + 3\delta s^2 > 0,$$

$$P_{2,\rho}\left(\frac{1}{\delta}\right) = \frac{1 + \delta^2}{\delta} > 0, \quad P_{2,b}(\infty) = -\infty, \quad P_{2,b}\left(\frac{1}{\delta}\right) = \frac{1 + \delta^2}{\delta} > 0,$$

$$\frac{db}{d\rho} = \frac{P_{2,b}(s)}{P_{2,\rho}(s)}, \quad \frac{d^2b}{d\rho^2} = \frac{1}{\rho'(s)} \frac{d}{ds} \cdot \frac{db}{d\rho} = \frac{(1 + \delta^2)[1 + 2\delta s(1 + s^2) + \delta^2 s^4]}{\rho'(s)P_{2,\rho}^2(\rho)}$$

s	$\frac{1}{\delta}$		82		∞
p's()		+	0	_	5,55
p(s)	0	×	ρ(s ₂)	×	0
b'(s)			+		
b(s)	0	1	b(s2)	1	1
$\frac{db}{d\rho}$	$\frac{1}{\delta}$		80		$-\frac{1}{8}$
$\frac{d \rho^2}{d^2 b}$	+		1	_	

Tableau 60



Il s'ensuit le tableau 60, qui donne la branche $\widehat{OP_+B_+}$ (designée par la notation "branche (k_1^+) " de la branche (k_2)) (fig. 11). Sur la fig. 11, le point P₊ est fourni par la valeur s₂ (du tableau 60) du paramètre et l'angle δ_3 par la fig. 7. La branche (k_2) est constituée par la branche (k_{\bullet}^{+}) et par sa symétrique \widehat{OP}_{B} (désignée par le terme "branche (k_{\bullet}^{-}) ") par rapport à l'origine. Dans la région (Δ2,,,+) de (Δ1,,) (marquée sur la fig. 11 par des signes +), en (38) $\overline{\alpha}_{2,r}(\rho, b) > 0$ et dans la région $(\Delta_{2,r}-)$ (marquée par des signes –), en (38) $\bar{\alpha}_{2}$, $(\rho, b) < 0$. De plus, le point Q_+

11 — Mathematica, vol. 22 (45) — fascicola 1/1980

où la branche (k_2^+) coupe l'arc de cercle $(K_{\Lambda_1,+})$ est situé sur l'arc \widehat{OP}_+ de cette branche. En effet, en portant les expressions (80) de ρ et de b dans l'équation (71) de $(K_{\Lambda_1,+})$, il vient $\frac{1}{1+\delta s}=l_1s\sqrt{\frac{-1+\delta s}{(1+\delta s)(1+s^2)}}$ ce qui, pour $s\geqslant \frac{1}{\delta}$ équivaut à $\frac{1}{(1+\delta s)^2}=l_1^2s^2\frac{-1+\delta s}{(1+\delta s)(1+s^2)}$, c'est-à-dire à $\delta^2l_1^2s^4-(1+l_1^2)s^2-1=0$. Le point Q_+ est donc donné par (80) pour

$$s = \sigma_2 = \frac{1}{\delta} \sqrt{\frac{\sqrt{1+\delta^2} + \sqrt{1+\delta^2+\delta^4}}{1+\sqrt{1+\delta^2}}}$$

(avec la valeur (27) de l_1). Or, (81) donne

(82)
$$P_{2,\rho}(\sigma_2) = \frac{1}{\delta (1 + \sqrt{1 + \delta^2})} \left[\delta^2 + (1 + \delta^2) \sqrt{1 + \delta^2} + \sqrt{1 + \delta^2 + \delta^4} - (-1 + \sqrt{1 + \delta^2 + \delta^4}) \cdot \sqrt{\frac{\sqrt{1 + \delta^2} + \sqrt{1 + \delta^2 + \delta^4}}{1 + \sqrt{1 + \delta^2}}} \right] > 0.$$

En effet,

$$\delta^{2} + (1 + \delta^{2})\sqrt{1 + \delta^{2}} + \sqrt{1 + \delta^{2} + \delta^{4}} > \delta + \delta^{3} =$$

$$= \frac{1}{\delta} (-1 + \sqrt{1 + \delta^{2} + \delta})(1 + \sqrt{1 + \delta^{2} + \delta^{4}})$$

du fait que $(1+\delta^2)\sqrt{1+\delta^2}>\delta^3$ et $\sqrt{1+\delta^2+\delta^4}>\delta-\delta^2$ Il en résulte en (82)

$$\delta(1+\sqrt{1+\delta^{2}})P_{2,\rho}(\sigma_{2}) > (-1+\sqrt{1+\delta^{2}+\delta^{4}}) \times \\ \times \left[\frac{1}{\delta}\left(1+\sqrt{1+\delta^{2}+\delta^{4}}\right) - \sqrt{\frac{\sqrt{1+\delta^{2}}+\sqrt{1+\delta^{2}}+\delta^{4}}{1+\sqrt{1+\delta^{2}}}}\right] = \\ = \frac{(-1+\sqrt{1+\delta^{2}+\delta^{4}})\left[2+(2+\delta^{4})\sqrt{1+\delta^{2}}+2\left(1+\sqrt{1+\delta^{2}}\right)\sqrt{1+\delta^{2}+\delta^{4}}+\delta^{2}\left(1+\delta^{2}-\sqrt{1+\delta^{2}+\delta^{4}}\right)\right]}{\left[\frac{1}{\delta}\left(1+\sqrt{1+\delta^{2}+\delta^{4}}\right) + \sqrt{\frac{\sqrt{1+\delta^{2}}+\sqrt{1+\delta^{2}}+\delta^{4}}{1+\sqrt{1+\delta^{2}}}}\right]\delta^{2}\left(1+\sqrt{1+\delta^{2}}\right)} > 0$$

Par conséquent (80) donne au tableau $60\sigma_2 < s_2$, par suite le soint Q_+ est situé sur l'arc \widehat{OP}_+ de la fig. 11. La démonstration de l'inégalité $|\overline{\alpha}_{2,r}(\rho, b)| > 1$ pour tout point M de coordonnées (ρ, b) situé dans $(\Delta_{1,r})$ se fait donc en remplaçant, dans celle de l'inégalité $|\overline{\alpha}_{1,r}(\rho, b)| > 1$ le point N_+ par un point M_- de coordonnées (ρ_-, b_-) avec $\rho_- \ge 0$, $b_- < 0$ et assez proche de l'origine pour avoir $|\overline{\alpha}_{2,r}(\rho_-, b_-)| > 1$, la position à droite même segment $\overline{N}_{1,r,-}N_{1,r,+}$ de la branche (k_1^-) par la position à gauche de même segment de la branche (k_2^-) , le quadrilatère curviligne $OA_-N_+N_{1,r,-}O$

par le quadrilatère curviligne $OA_+N_{1,r,-}N_+O$ la position à droite du segment $\overline{N_{1,r,-}N_{1,r,+}}$ de la branche (k_1^-) par la position à gauche du même segment de la branche (k_2^-) et la position à gauche des branches (k_1^-) et (k_1^+) et du segment $\overline{N_{1,r,-}N_{1,r,+}}$, des points M_+ , M_1 et M_2 par la position à droite des branches (k_2^-) et (k_2^+) et du segment $\overline{N_{1,r,-}N_{1,r,+}}$ des points M_- , M_1 et M_2 .

SUR LA FONCTIONNELLE $\frac{f(z_i)}{f'(z_i)}$

§ 9. Démonstration pe la propositoin (441)

(82₁) Les courbes (K_1) et (K_2) données par (74) et (75) se remplacent par les courbes (K_1^0) et (K_2^0) , obtenues en y remplacant δ par δ_0 .

Ces courbes ont la forme des courbes (K_1) et (K_2) , le fait que $\delta < 1$ n'intervient pas dans la construction de ces dernières. Le point Q_0^- où la branche $(K_1^0, -)$ coupe l'arc de cercle $(K_{\Lambda_1^0, -})$ de la fig. 8 est situé sur l'arc $\overline{P_0O}$ de cette branche. P_0^- est le point obtenu en remplaçant dans les coordonnées du point \overline{P}_- de la fig. 10, δ par δ_0 . En effet, en portant les expressions (76) (où δ est remplacé par δ_0) de ρ et de δ dans l'équation

(83)
$$\rho^{2} + b^{2} - 2l_{3}^{0}b - 1 = 0,$$

$$(l_{3}^{0} = \delta_{0} + \sqrt{1 + \delta_{0}^{2}}, \qquad \Lambda_{3}^{0} = -l_{3}^{0} + \sqrt{1 + (l_{3}^{0})^{2}})$$

de $(K_{\Lambda_{\bullet}^{\bullet},-})$ déduite de (29) et des notations 5, il vient

$$\frac{\delta_0}{\delta_0 - s} + l_3^0 s \sqrt{\frac{\delta_0 + s}{(-\delta_0 + s)(1 + s^3)}} = 0$$

ce qui pour $s \le -\delta_0$ équivaut à $(l_3^0)^2 s^4 - (1 + (l_3^0)^2) \delta_0^2 s^2 - \delta_0^2 = 0$. Le point Q_-^0 est donc donné par (76) (où δ est remplacé par δ_0) pour

$$s = \sigma_1^0 = -\sqrt{\delta_0 \frac{\delta_0 \sqrt{1 + \delta_0^2 + \sqrt{1 + \delta_0^3 + \delta_0^4}}}{\delta_0 + \sqrt{1 + \delta_0^2}}}$$

(avec la valeur (83) de l₃0). Or, (77) doonne

$$\begin{split} P_{1,\rho}(\sigma_1^0) &= \frac{\delta_0}{\delta_0 + \sqrt{1 + \delta_0^2}} \left[\delta_0 + (1 + \delta_0^2) \sqrt{1 + \delta_0^2} + \delta_0 \sqrt{1 + \delta_0^2 + \delta_0^4} - \right. \\ &- \left. \left. \left(-\delta_0^2 + \sqrt{1 + \delta_0^2 + \delta_0^4} \right) \sqrt{\delta_0 \frac{\delta_0 \sqrt{1 + \delta_0^2} + \sqrt{1 + \delta_0^2 + \delta_0^4}}{\delta_0 + \sqrt{1 + \delta_0^2}} \right]. \end{split}$$

$$\text{Or} \qquad \delta_0 + (1 + \delta_0^2) \sqrt{1 + \delta_0^2} + \delta_0 \sqrt{1 + \delta_0^2 + \delta_0^4} > \\ &> (1 + \delta_0^2) = \left(-\delta_0^2 + \sqrt{1 + \delta_0^2 + \delta_0^4} \right) (\delta_0^2 + \sqrt{1 + \delta_0^2 + \delta_0^4}), \end{split}$$

164

par suite

$$\begin{split} P_{1,\rho}(\sigma_1^0) > & \frac{\delta_0(-\delta_0^2 + \sqrt{1+\delta_0^2} + \delta_0^4)}{\delta_0 + \sqrt{1+\delta_0^2}} \bigg(\delta_0^2 + \sqrt{1+\delta_0^2 + \delta_0^4} - \\ & - \sqrt{\delta_0 \frac{\delta_0 \sqrt{1+\delta_0^2} + \sqrt{1+\delta_0^2} + \delta_0^4}{\delta_0 + \sqrt{1+\delta_0^2}} \bigg) = \\ \delta_0(-\delta_0^2 + \sqrt{1+\delta_0^2 + \delta_0^4}) \big[\delta_0(1+\delta_0^2 + 2\delta_0^4) + (1+2\delta_0^4) \sqrt{1+\delta_0^2} + \\ & = \frac{+\delta_0(-1+2\delta_0 \sqrt{1+\delta_0^2} + 2\delta_0^2) \sqrt{1+\delta_0^2 + \delta_0^4}}{(\delta_0 + \sqrt{1+\delta_0^2})^2 \bigg((\delta_0^2 + \sqrt{1+\delta_0^2 + \delta_0^4} + \sqrt{\delta_0 - 2\delta_0^2}) \sqrt{1+\delta_0^2 + \delta_0^4} + \sqrt{\delta_0 - 2\delta_0^2} \bigg) \end{split}$$

expression évidemment positive pour $\delta_0 > 1$. En ce cas (76) et le tableau 58 placent le point Q_{-}^{0} sur l'arc $\widehat{OP_{-}^{0}}$ de la branche $(k_{1}^{0,-})$. Le point Q_{+}^{0} où la branche $(k_1^{0,+})$ (située au – dessus du diamètre $\overline{A_-A_+}$) de (k_2^{0}) coupe l'arc de cercle $(k_{\Lambda_0^0,+})$ de la fig. 8 est situé sur l'arc OP_+^0 de cette branche, P_+^0 est le point obtenu en remplaçant dans les coordonneées du point P_+ de la fig. 11, δ par δ_0 . En effet, en portant dans l'équation de $(K_{\Lambda_0^0,+})$

(84)
$$\rho^{2} + b^{2} + 2l_{3}^{0} b - 1 = 0,$$

$$(l_{3}^{0} = \delta_{0} + \sqrt{1 + \delta_{0}^{2}}, \ \Lambda_{3}^{0} = -l_{3}^{0} + \sqrt{1 + (l_{3}^{0})^{2}})$$

déduite de (29) et des notations 5, les expressions (80) de ρ et b (où δ est remplacé par δ_0), il vient $\frac{1}{1+\delta_0 s}=l_3^0 s \sqrt{\frac{-1+\delta_0 s}{(1+\delta_0 s)(1+s^2)}}$, ce qui pour $s \ge \frac{1}{\delta_0}$ équivaut à $\delta_0^2(l_3^0)^2 s^4 - (1 + (l_3^0)^2) s^2 - 1 = 0$. Le point Q_+^0 est donc donné par (80) avec

$$s = \sigma_2^0 = \frac{1}{\delta_0} \sqrt{(-\delta_0 + \sqrt{1 + \delta_0^2})(\sqrt{1 + \delta_0^2} + \sqrt{1 + 2\delta_0^2})}$$

(avec la valeur (84) de l₃0). Or, (81) donne

$$\begin{split} P_{2,\rho}(\sigma_2^0) &= \frac{1}{\delta_0} \left(-\delta_0 + \sqrt{1 + 2\delta_0^2} \right) \sqrt{\sqrt{1 + \delta_0^2} + \sqrt{1 + 2\delta_0^2}} \times \\ &\times \left[\sqrt{\sqrt{1 + \delta_0^2} + \sqrt{1 + 2\delta_0^2}} - \left(-\delta_0 + \sqrt{1 + \delta_0^2} \right) \sqrt{-\delta_0 + \sqrt{1 + \delta_0^2}} \right] > 0 \end{split}$$

auquel cas (80) et le tableau 60 placent le point Q_{+}^{0} sur l'arc $\widehat{OP_{+}^{0}}$ de la auquei cas ($k_2^{0,+}$). La démonstration de la proposition (44_1) se fait donc en pranche (12) dans la démonstration de la proposition (411) δ par δ_0 et le remplaçant dans la démonstration de la proposition (411) δ par δ_0 et le domaine $(\Delta_{1,r})$ par le domaine $(\Delta_{3,i}^{\circ})$.

SUR LA FONCTIONNELLE $\frac{f(z_1)}{f'(z_2)}$

Reçu le, 20. III. 1977.