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0. Arising from the geomctry of Banach spaces [1], the Bishop-
Phelps-Ekcland variational principle have become in the last several years
a uscful method in solving a vide class of optimization problems for
functionals [21. In looking for new technigues for optimization in ordered
vector spaces we shall give here two extensions of this principle. Our
aim is to give real generalizations in the sense that replacing the ad-
ress space by the rcal line, to obtain as consequence the full statement
of the principal result in [2]. To this end we shall consider as adress
spaces ordered Banach spaces that are regular. We will also strive after
to be in keeping with the terminology and the notation of the last men-
tioned monography.

1. Terminology and results. Tet Y be a normed space over the reals,
ordercd by a closed (proper) cone K. The space Y (and equally, its po-
sitive come K) is said to be regular if every monotone order bounded
scquence in it is fundamental. If Y is a Banach spacc (abbreviated :
B-space), then its regularity implies that K is a ntormal cone, i.e., a cone
having the property that there exists a positive real number 4 such that
llv 4- #]] = 7, whenever u, v & K and [{u]| = ||]v]| = 1 (see [3], Theorem
1.6), and the normality of K implies that ¥ can be endowed with an
cquivalent monofone #orm, that is, with a mnorm having the property
that from 0 < 2 <v it follows that |Ju|| < ||v]l, (see [5], Proposition IL.
15). Hence without loss of the generality we can consider in all what
Jollows that the norm n the spacc Y 1s monolone.

Let ¥V be a complete metric space. The operator F from V to the
regular B-space Y will be called lower monotone semicontinuons at x, in
V. if lim x, — x, and F(x,.,) < F(x,) for each # imply lim F(x,) < F(xo)-

n— H— 0D

~ Suppose that X is a normed space. T'he operator P from X to Y
is called sublinear if it is positive homogeneous and subadditive with res-
pect to the order relation in Y.
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The operator @ from the normed space X to y will :
positive §-norm definife (where 8 is a positive reg] numb be sajg to 1},
and 'Q(x)] > 8][x]| for any x in X. er),if Q(X)CIS'

provosiTION L. Let Y be @ B-space ordered by a clos y
K. Suppose that I is a lower monotone semicontinuouns cd regula, Cong
complecte metric space (V, @) to Y. If for some z < 1 the szfralor Jrom i,

FV)N (F(z) — K)
kas a lower bound, then for each positive real numpey

. : ¢ and cach }, 4,
KNAO} there cxists an element w in V such that

(i) F(u) < F(2) and
(1) (F(u) — ek — K) N F(V)=@.
For cvery u safisfying (1) there exists v in V such that
{in1) d(v, u) <1,
{iv}) F(v) < Flu) — ekd(u, v) and
(v} F(v) — F(w) — skd(v, w) = K for any w # yp,

For V" having a riche

o I structure thi
for instance a5 follam. 15 proposition can be strengthened

EV)N (F() — K)

has a Joy
ower bound, e 371
, ’z’ . ; - ) )'
element y iy V' such thay jor wah posstne veal amber: e there cxils

((1) F(u) < F(2) and

u

) (F(u) — e — K)YNF(V) =0,
where H g defined by g

== K _—
For ¢pe 5 B Il = 1

r f . ..
Y u Satisfying (#2) there exists a v in V such that
(i) Il — o] |< §-1,

F(o) S Flw) — cpu — v) and

b e . d
» Similar ¢ €rtion (i) in Proposition 1 can be chang®
0 (ii) in the second proposition.

N
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We shall begin with the proof of the last proposition and then shall
give an outline of the proof of the first one,

2. The proof of Proposition 2. (i) and (ii). We have proved in [4],
that if NV is a su_bsetv mn the regular B-space ¥ which has a lower bound,
then for each a in N there exists an clement & in N such that

(1) b €a and
(2) (b—eH—-K)NN=0.

(See the proof of Proposition 4 in the above cited note). Putting now
N=F/V)N (F(z) — K) and a = F(z), it follows the existence of an
element # in 17 such to F(u) play the role of 4 in the above assertions.
Then (1) yields (i) and, after a straightforward verification, (2) yields (ii).

(v) We define an order relation < on the set F(V) by putting F(p) <
<F(g) if

(3) F(p) < Flg) — Plg — p).

From the positivity, the sublinearity and the 8-norm definitness of P
it follows that the relation < is reflexive, antisymmetric and transitive.

Consider now the family of decreasing <-chains having the first ele-
ment J(x). With respect to the set theorctic inclusion, cach totally ordered
subfamily of it has a maximal element: it is simply the union of the
members of this family. Hence it exists a maximal decreasing < -chain
Z starting with [7(u). We shall show that Z contains a minimal element
with respect to the relation <.

From the definition of the relation < it follows that Z is also a
decreasing <-chain. If we consider it as a decreasing net it is bounded
and hence must be convergent by the regularity of Y. Indeed, if not,
then there would c¢xist a positive 8 such that for any y, in Z there
would exist y,., in Z such that y,., <, and ||y, — ¥uull = 8. The
sequence (y,) is bounded because Z C IF(V) |J (F(z) — K) and the last
set has a lower bound by hypothesis. Hence (y,) must be fundamental,
and we get a contradiction with the above inequality. Denote by y the
limite of the decreasing net Z.

We define now the sequence (x,) in V' having the property that
Yy =u, F(x,) «Z and for each n 2 1,

(4) IF (2a) — 2l < 27",
We have for an arbitrary natural number
(5) F(%u1m) < F(x,) — eP(x, — B

and since (4), the §-norm positive definitness of P and the monotonity
of the norm in Y, it follows that

8¢|%, — Zyymll < €|lP(Xs — Znam)l| < [1F (%) — F(2agm)l| < 277F1
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Henee (x,) is fundamental in 7. I

ey .\ by 1 et 1 i i
notone semicontinuity of F we ha(re > B it fimit. Fron 4

€ low,
F(v) < lim Fla) = .
=00

¥.
Passing to limit for
we get

(6)

M —o in (35 .
(5) and Wilng the o ti
Minyjt
0

F(v) <y < e — el

that is, F(v) < F(x,) for ecach #. S

for each 1 with the property the.LtSIITH(SS F(;,,)_tc—nds Ry it
F(x,) < F(x). But then I(v) < F(x) for anE iTthem 4
’_£'1er <-chain Z being maximal. The :
IL doesn't exist w < \ {v}
this assertion is quite (v).L

fp
Xy — 'U),

follow
.- CXists ap 4 st L
e/ (x) n Z and hence I,?h that
i mality of z implics g sz,
1 the property that Flw) < F(?’;) that
» and

The point (iv) follows from (6)

(i)). Assume that |ju — vl = §-1,
_— : : = - Then we hav . ’
and hence Py — v) > I1P(w — v)[|=1P (s — 6 o B ’lI\te f(j){lllj)(‘t:;ﬁt:)a!ll 21

) F(u) —_ gp(u — 2)) — K CF(H) ~ gl — K

According (iv) we have

if we put % = @

.

F(v) e F(u) — eP(u —v) — K,
znd this together (7) contradict (ii). Q.E.D.

:’- _lﬂ Oulliu" Ol. th(‘ " 3 b 4 Faty . . .
e L o hie prool of Proposition 1. The points (i) and (ii)
::’_{_ rbe ;ﬁb?amed.by using Proposition 2. To prove (v) we introduce the
FOAr relation <in the set F(V) by putting F(p) < F(g) if

F(p) < Flg) — <kd(p, q)

t?.:;f:n_ proceed as in the proof of (v) of the preceding paragraph. The
¢ ceanmique gives also the proof of (iv), and finally, (iii) canbe veri-
36 by contradiction. Q.E.D.

L % Srm::-, consequences and eomments. If we put ¥ = R and const
“7 in K the usnal ordering, we obtain as a direct cosequence of Propos
whm 3 the Theorem 1] in [2]. The condition to F(I") ) (FG) g
77 winomized. reduces Lo the existence of a lower bound for F (1) ,a"d Raen
cEs e ohviously realized for A = 1 and for some # in V. lated
Ve obmerve that the conditions (ii) in our propositions are e fde
Wy e existnce of some [ near to minimuam points” of the lower bou'lthiS
jar’*f-*,. i ordesed vecor spaces, I'o prove the existence of pom’tsl (‘Jre\-is-
Py “a% the first thing that we had to done. It appears that tlm- cor-
s o stich pnints in faet characterizes in some usual terms e
BG ndirid  yecton spaces |4,
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Consider now an example of a sublinear operator defined on the B-space
X with values in the regular B-space Y. Put

(8) P(x) = P(x) = |||k,

where % is an element of K \_{0}. If % is of norm 8, then Pisa § — norm
positive definite continuous sublinear operator. For this P the Proposition
2 becomes Proposition 1 for the special case of V being a closed subset of
a B-space.

Suppose that the positive cone K in the regular B-space Y has a no-
nempty interior. (A wide class of regular B-spaces having this property
can be defined according the results in [6].) Assume that P is a $-norm
positive definite sublinear operator from the B-space X to Y with the
property that P(x) < int K whenever x %« 0. If we consider k# < int K
and ||k = 8, then P defined by (8) furnishes a sublinear operator having
this property.

In order to give an application, assume for the sake of simplicity, that
the operator I in Proposition 2 is defined on all the space X. We define
a dircctional derivative F'(v; z) of I at the point » and the direction z
in X by putting

(9) Fifp;2) = liliu i [F(v 4+ Xz) — F(v)],
2o oA

if this imit exists. Because the ordered space Y is regular, it is complete by
chains and because K has a nonempty interior, the order convergence and
the topological convergence coincide in it [7]. Hence if F is a convex
operator, I''(v; z) exists for cach » and z in X.

We have listed the above examples to illustrate the consistence of the
conditions in the following ;

Corollary. Let Y be a B-space ordered by a closed regular cone
K having a nonempty interior. Consider the B-space X and the 8-norm-
positive definite continuous sublinear operator P from X loY having the pro-
perlty that P(x) « int K whenever x # 0. Suppose thal F: X —Y 1is a
continuos operator having the property that F(X) is bounded from below, and
having directional derivatives in - any point and any directions. Then for an
arbilrary positive number e there exists v in X such thal

—F'(v;2) — eP(—2) & K
Jor any z # 0 in X.
Proof. According Proposition 2, there exists a v in X such that
(10) F(v) — F(w) — (¢/2) P (v — w) = K

for any w # v. We shall prove that this v satisflics the condition in the
corollary. Assume the contrary. Then there exists z # 0 such that

(11) F'(v;z) + eP(—z2) e — K.
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Let A > 0 and put w = o + 2. By (10) we have :
F(v) — F(v 4 »2) — (</2) P(

—N) = K
and hence

(I/NEF @) — F(v 4 a2)) — (e/2) P(—,
Adding this relation to (11) we obtain
Fo;2) + (UNF@) — Fo + M) + (/2

Now, (¢/2)P(—2) is in int K and because the s
this relation tends to 0 when 3

) = K.

)P(—2) &« k.

um of the first ¢ .
1 0, we get a contradiction Q.F‘,‘_J% terms j,
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