Mathematica, Tome 24 (47), N° 1-2, 1982, pp. 73-78

To Professor CAIUS JACOB for his seventieth anniversary

THE ORDER OF STARLIKENESS OF THE LIBERA TRANSFORM OF THE CLASS OF STARLIKE FUNCTIONS OF ORDER 1/2

PETRU T. MOCANU and DUMITRU RIPEANU

1. Introduction. A function f is said to be starlike of order  $\alpha$  if it is regular in the unit disc  $U = \{z : |z| < 1\}$ , f(0) = 0, f'(0) = 1 and the inequality

Re 
$$\frac{zf'(z)}{f(z)} > \alpha$$

holds for  $z \in U$ . The class of starlike functions of order  $\alpha$  shall be denoted by  $S_{\alpha}^*$ . If  $0 \leq \alpha < 1$ , then  $S_{\alpha}^* \subset S_0^* \equiv S^*$ , the class of starlike functions.

The order of starlikeness of a family  $\mathcal{F}$  of starlike functions is defined by the largest number  $\alpha = \alpha[\mathcal{F}]$  such that  $\mathcal{F} \subset S_{\alpha}^*$ .

In [2] R. LIBERA showed that if  $f \in S^*$  then the function F = L(f) defined by

(1) 
$$F(z) = \int_{0}^{z} f(w)dw$$

is also in  $S^*$ , that is  $L(S^*) \subset S^*$ . The order of starlikeness of the class  $L(S^*)$  was obtained in [3].

In this paper we find the order of starlikeness of the class  $L(S_{1/2}^*)$ . We first show that a simple application of a recent result of P. EENIGENBURG S. MILLER, M. READE and the first fauthor [1] reduces our problem to a computation involving a specific function. It is this elementary computation which enables us to obtain the order of starlikeness of  $L(S_{1/2}^*)$ .

2. Preliminaries. Let g(z) and G(z) be regular in U. We say g(z) is subordinate to G(z), written  $g(z) \prec G(z)$ , if G(z) is univalent, g(0) = G(0) and  $g(U) \subset G(U)$ .

The following sharp result concerning a Briot-Bouquet differential subordination was obtained in [1]:

Lemma 1. Let p(z) be regular in U, p(0) = 1, and let it satisfy  $t_h$ differential subordination

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec \frac{1 - (1 - 2\delta)z}{1 + z} \equiv h(z),$$

with  $\beta > 0$ , Re  $\gamma \geqslant 0$  and  $-\text{Re } \gamma/\beta \leqslant \delta < 1$ . Then the differential equalion

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = h(z), \quad q(0) = 1,$$

has a univalent solution q(z) and  $q(z) \prec h(z)$ . In addition  $p(z) \prec q(z)$  and this subordination is sharp.

It is easy to check that q is given by

WELLS SILLING

$$q(z) = \frac{zK'(z)}{K(z)} = \frac{\beta + \gamma}{\beta} \left[ \frac{H(z)}{K(z)} \right]^{\beta} - \frac{\gamma}{\beta}$$

where

$$K(z) = \left(\frac{\beta + \gamma}{z} \int_{0}^{z} H^{\beta}(w) w^{\gamma - 1} dw\right)^{1/\beta}$$

and

$$H(z) = z \exp \int_0^z \frac{h(w) - 1}{w} dw.$$

Le m m a 2. If  $f \in S_{1/2}^*$  and F = L(f) is defined by (1), then

where

(2) 
$$K(z) = \frac{2}{z} \int_{0}^{z} \frac{w \, dw}{1+w} = \frac{2}{z} [z - \ln (1+z)], \text{ (ln } 1=0).$$

*Proof.* If we let p(z) = zF'(z)/F(z), from (1) we get

$$p(z) + \frac{zp'(z)}{p(z)+1} = \frac{zf'(z)}{f(z)} < \frac{1}{1+z}$$

and the conclusion of Lemma 2 follows immediately from Lemma 1 if we take  $\beta = \gamma = 1$  and  $\delta = 1/2$ .

## 3. Main result.

THEOREM The order of starlikeness of the class  $L(S_{1/2}^*)$  where L is the craim integral observed. Libera integral operator defined by (1) is given by

$$\alpha[L(S_{1/2}^*)] = \min_{|z|=1} \text{Re } q(z) = q(1) = \frac{2 \ln 2 - 1}{2(1 - \ln 2)} = 0.629 \dots$$

where

(3) 
$$q(z) = \frac{z^2}{(1+z)[z-\ln{(1+z)}]} - 1.$$

*Proof.* If we let q(z) = zK'(z)/K(z), where K(z) is given by (2), from Lemma 2 we obtain

$$\alpha[L(S_{1/2}^*)] = \inf_{|z| < 1} \operatorname{Re} \ q(z) = \min_{|z| = 1} \operatorname{Re} \ q(z),$$

where q(z) is given by (3). Let

$$R(t) = \operatorname{Re} q(e^{it}), \quad t \in (-\pi, \pi).$$

We shall prove that

$$\min_{-\pi < t < \pi} R(t) = R(0) = q(1)$$

by showing that

(5) 
$$R(t) > R(0)$$
, for all  $t \in (-\pi, \pi)$ ,  $t \neq 0$ .

Since R(-t) = R(t), it is sufficient to suppose  $t \in (0, \pi)$ . From (3) we get

$$R(t) = \frac{1}{N(t)} \left[ 2 - t \operatorname{tg} \frac{t}{2} \left( 1 + 2 \cos t \right) + \left( 1 - 2 \cos t \right) \ln 2 (1 + \cos t) \right] - 1,$$

where

$$N(t) = (2 \sin t - t)^2 + [-2 \cos t + \ln 2(1 + \cos t)]^2.$$

The equation  $2 \sin t - t = 0$  has a unique root  $t_0$  in the interval  $(0, \pi)$ and  $t_0 > \pi/2$ . Hence  $N(t_0) = u^2(\sqrt{4-t_0^2})$ , where  $u(s) = s + \ln(2-s)$ ,  $s \in (0, 2)$ . Since u(s) = 0 has a unique root  $s_0 > 3/2$  and  $\sqrt{4 - t_0^2} < 3/2$ , we deduce  $N(t_0) > 0$ . Therefore N(t) > 0 for all  $t \in (0, \pi)$ . It follows lows that

$$sign [R(t) - R(0)] = sign H(t),$$

where

(6) 
$$H(t) = (2 - a)N(t)[R(t) - R(0)] =$$

$$= -2a + t[4 \sin t - (2 - a) \operatorname{tg} \frac{t}{2} (1 + 2 \cos t)] - t^{2} +$$

$$+ (2 - a + 2a \cos t) \ln [2(1 + \cos t)] - \ln^{2}[2(1 + \cos t)],$$

with  $a = 2 \ln 2 = 1.386294 \dots$ 

We shall write successively

(7) 
$$H_{1}(t) = \frac{H'(t)}{2\left(\operatorname{tg}\frac{t}{2} - a\sin t\right)} = \ln\left[2(1 + \cos t)\right] + \frac{2a\sin t + t[a - 2(a - 1)\cos t - 2a\cos^{2}t]}{2(a - 1 + a\cos t)\sin t}$$

$$H_{2}(t) = \frac{2(a - 1 + a\cos t)^{2}\sin^{2}t}{2 - 4a + 3a^{2} + 3a(a - 1)\cos t} H'_{1}(t) = t + \frac{-2 + 3a - 3a^{2} + a(4 - 3a)\cos t}{2 - 4a + 3a^{2} + 3a(a - 1)\cos t}\sin t$$

$$H_2'(t) = -\frac{(1-\cos t)(a-1+a\cos t)[4-14a+21a^2-9a^3-3a(a-1)(3a-4)\cos t]}{[2-4a+3a^2+3a(a-1)\cos t]^2}$$

We have 
$$2-4a+3a^2+3a(a-1)\cos t \ge 2-a>0$$
 and  $4-14\ a+21a^2-9a^3-3a(a-1)(3a-4)\cos t \ge 2P_1(a)$ .

with  $P_1(s) = 2 - 13s + 21s^2 - 9s^3$ . It is easy to show that  $P_1(s) > 0$ , for  $s \in (1, 1.4)$ , which implies  $P_1(a) > 0$ . We conclude that  $H'_2(t)$  vanishes only at the point  $t_1 = \pi - \arccos[(a-1)/a]$ ,  $\pi/2 < t_1 < \pi$ .

Since  $(7 - \sqrt{17})/8 < 1 < a < (7 + \sqrt{17})/8 = 1.39 \dots$ , we deduce

$$H_1(0) = \frac{2 - 7a + 4a^2}{2(2a - 1)} < 0.$$

Therefore we have the following table

| t           | 0               | $\pi/2$    |     | $t_1$      |       |   | t,   |             | π   |
|-------------|-----------------|------------|-----|------------|-------|---|------|-------------|-----|
| $H_2'(t)$   | 4 · · · · · · · | _          | :   | 0          | +     |   | +    |             | _   |
| $H_2(t)$    | 0               | X          | 7.5 | $H_2(t_1)$ | ) < 0 | 7 | 0    | 7           | + ∞ |
| $H_{1}'(t)$ | <del>-</del> -  | -          | _   | ∞          |       |   | 0    | <del></del> | + ∞ |
| $H_1(t)$    | $H_1(0)$        | <i>y</i> 0 | -~  | 0   +      | <br>∞ |   | H.(/ | (2) 1       | + ∞ |

From Table 1 we deduce that  $H_2(t)$  has a unique root  $t_2$ , in the interval  $(0, \pi)$  and  $t_1 < t_2$ . We shall show that  $H_1(t_2) > 0$ . Since  $H_2(t_2) = 0$ , from (8) we get

(9) 
$$t_2 = -\frac{-2 + 3a - 3a^2 + a(4 - 3a)\cos t_2}{2 - 4a + 3a^2 + 3a(a - 1)\cos t_2}\sin t_2.$$
 From (7) and (9)

From (7) and (9) we deduce

(10) with 
$$H_1(t_2) = H_3(\cos t_2)$$

(11) 
$$H_3(s) = \frac{a(2-3a)-2(2-3a+3a^2)s+2a(3a-4)s^2}{2[2-4a+3a^2+3a(a-1)s]} - \ln [2(1+s)].$$

Hence

5

$$H_3'(s) = \frac{P_2(s)}{2(1+s) [2-4a+3a^2+3a(a-1)s]^2}$$

with

$$P_2(s) = a(-4 + 14a - 21a^2 + 9a^3) + (a - 1)(2 - a)(2 - 3a)^2s + 2a(16 - 47a + 51a^2 - 18a^3)s^2 - 6a^2(a - 1)(3a - 4)s^3.$$

We have  $P_2(-1)=2(2-a)^2<0$  and  $P_2(0)=-aP_3(a)$ , with  $P_3(s)=4-14s+21s^2-9s^3$ . It is easy to show that  $P_3(s)>0$ , for  $s\in (1,1\cdot 4)$ , which implies  $P_2(0)<0$ . Since

$$P_2'(s) = (a-1)(2-a)(2-3a)^2 + 4a(16-47a+51a^2-18a^3)s - 18a^2(a-1)(3a-4)s^2.$$

we deduce  $P_2'(0) > 0$  and  $P_2'(-1) = P_4(a)$ , with  $P_4(s) = -8 - 28s + 58s^2 - 39s^3 + 9s^4$ . Further we have  $P_4'(s) = -28 + 116s - 117 s^2 + 36s^3$  and  $P_4''(s) = 2(58 - 117s + 54s^2)$ . We easily deduce that  $P_4'(s)$  has a minimum in the interval (1,1.4) at the point  $s_0 = 1.398...$ , where  $P_4''(s_0) = 0$ , and  $P_4'(s_0) = (250 - 129 s_0)/18 > (250 - 129 \times 1.4)/18 > 0$ . Hence  $P_4'(s) > 0$ , for  $s \in (1,1.4)$ . Since  $P_4(1) = -8$  and  $P_4(1.4) = -5.9616$ , we deduce  $P_2'(-1) = P_4(a) < 0$ . Therefore we have the following table

| s         | -1        |        | s <sub>3</sub> |   | S <sub>2</sub> |   | s <sub>1</sub> | 0               |
|-----------|-----------|--------|----------------|---|----------------|---|----------------|-----------------|
| $P_2'(s)$ | $P_2'(-)$ | 1) < 0 | _              |   |                |   | 0 -            | $+ P_2'(0) > 0$ |
| $P_2(s)$  | $P_2(-$   | 1)>0   | ×              |   | 0              | × | $P_2(s_1)$     | $P_2(0) < 0$    |
| $H_3'(s)$ | +         | +      | +              |   | 0              |   |                | _               |
| $H_3(s)$  |           | 7      | 0              | 7 | $H_3(s_2)$     |   | ×              | $H_3(0) > 0$    |

From (8) we deduce  $H_2(3\pi/4) = H_4(a)$ , with

$$H_4(s) = \frac{3\pi}{4} - \frac{1}{\sqrt{2}} \frac{2(2+\sqrt{2}) - (2-\sqrt{2})s + 3s^2}{2(2+\sqrt{2}) - (5+\sqrt{2})s + 3s^2}$$

Since

$$H_4'(s) = -\frac{3+2\sqrt{2}}{2} \frac{2(2+\sqrt{2})-3s^2}{[2(2+\sqrt{2})-(5+\sqrt{2})s+3s^2]^2} < 0,$$

for  $s \in (1, 1.4)$ , we have

$$H_{4}(a) > H_{4}(1.4) = \frac{1}{2} \left( \frac{3\pi}{2} - \frac{1155 + 1699\sqrt{2}}{789} \right) >$$

$$> \frac{1}{2} \left( 3.14 \times \frac{3}{2} - \frac{1155 + 1700 \times 1.42}{789} \right) = .092... > 0.$$

Hence  $H_2(3\pi/4) > 0$  and by using Table 1 we deduce  $t_2 < 3\pi/4$ , which implies  $\cos t_2 > -1/\sqrt{2}$ . From (11) we get  $H_3(-1/\sqrt{2}) = H_5(a)$ , with

$$H_5(s) = \ln 2 - \ln \left(2 + \sqrt{2}\right) + \frac{2(1 + \sqrt{2}) + 3s - 3s^2}{2(2 + \sqrt{2}) - (5 + \sqrt{2})s + 3s^2}.$$

$$H_5'(s) = \frac{(2+\sqrt{2})P_5(s)}{[2(2+\sqrt{2})-(5+\sqrt{2})s+3s^2]^2},$$

with  $P_5(s) = 8 + 5\sqrt{2} - 6(2 + \sqrt{2})s + 3s^2$ .

Since  $P_5(1) < 0$  and  $P_5(1.4) = -(73 + 85\sqrt{2})/25 < 0$ , we deduce  $P_5(s) < 0$ , for  $s \in (1, 1.4)$ , which implies  $H_5'(s) < 0$ , for  $s \in (1, 1.4)$ .

$$H_5(a) > H_5(1.4) = \ln 2 - \ln (2 + \sqrt{2}) + 2(-77 + 290\sqrt{2})/789 >$$
  
>  $-\frac{3}{5} + 2(-77 + 290 \times 1.41)/789 = .241... > 0,$ 

which shows that  $H_3(-1/\sqrt{2}) > 0$ . From Table 1 we deduce  $s_3 < -1/\sqrt{2}$ , which implies  $\cos t_2 > s_3$ . Using (10) and Table 2, we get  $H_1(t_2) > 0$ . Hence from (7) and Table 1 we deduce H'(t) > 0, for  $t \in (0, \pi)$ , which shows that H(t) given by (6) is increasing for  $t \in (0, \pi)$ . Since H(0) = 0. we deduce H(t) > 0, for all  $t \in (0, \pi)$ , which implies (5). Since  $\lim_{t \to 0} R(t) = 0$  $=\infty$ , from (5) we deduce that min Re q(z) occurs if and only if z=1. This completes the proof of the Theorem.

Remark. The order of starlikeness of the class  $L(S_{\alpha}^*)$ ; for all  $\alpha \in [-1/2,$ 1) was recently found in [4]. By the elementary method used in the present paper, as well as in [3] and [5], we have shown a little more, namely that z=1 is the only point of the involved minimum.

## BIBLIOGRAPHY

[1] Eenigenburg, P., Miller, S., Mocanu, P., Reade, M., On a Briot-Bouquet differential subordination, (to appear).

[2] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. **16** (1965), 755-758.

[3] Mocanu, P. T., Reade, M. O., Ripeanu, D. The order of starlikeness of a Libera

integral operator, Mathematica, 19 (42), 1, (1977), 67-73.

[4] Mocanu, P. T., Ripeanu, D., Şerb., I., The order of starlikeness of certain inkgral operators, Mathematica, 23 (46), 2, (1981), 225-230.

[5] Mocanu, P. T., Ripeanu, D., Serb, I., On the order of starlikeness of converfunctions of order a, L'Analyse numérique et la théorie de l'approximation. 10, 2, (1981), 195-199.

Received, 15.VII. 1980

Department of Mathematics Babeș-Bolyai University 3400 Cluj-Napoca, Romania