SUR LES FORMULES GENERALISEES DE G. DARBOUX,
ET UN THEOREME SUR LES QUADRATURES MECANIQUES

PAR
D. V. IONESCO

PROFESSEUR A LA FACULTE DES SCIENCES DE CLUJ-TIMISOARA

1. Dans une note précédente!) nous avons généralisé la formule

(1) fl@(x)dx;‘%"[@m +-4¢(“2r“) )]

rencontrée par G. Darsoux2), qui est vérifite par un polyndome
quelconque du troisieme degré, et nous avons trouveé les formules
u

j:o(x)dx— &1—)\)2 [ (k+s”2_1;)\)+cp(u—s%)‘)]
(?(x)dx=(&»—k)ga'[ (x+ 32p+ )+°(r — pr_-k)\l)]

v

)

oit les constantes a, a,, ..., a, sont donnees par le systéme d’équations
lineaires

1
Gt 8, + 8,y + =
2 2 p?
3) G 1 +208_,+ ... +tpa =57
2p
2
a,_,+2"a,_,+ ...—|—p2"ao=2——(2‘;+1)

1) D. V. loNESCO, Généralisation d’une équation fonctionnelle rencontrée par
G. DARBOUX. Bulletin de la Section Scientifique de ’Académie Roumaine Nr. 3 1939.

2) G. DARBOUX: Sur le centre de gravité de certains volumes. Note publiée
dans le cours de Mécanique de Despeyrous, p. 383.
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et ou les constantes gy, a, ..., a, sont données par les équations
linéaires
. 1
@, +a,  +... +a="F
' ‘ 2 /. _@p+ 1)?
@ a,+3a,_;+...+@2p+t1) =" 53
. . 2p +1)*F
a + 3*%a 2p+ 12Pg = CPHD

Nous avons intégré les équations fonctionnelles (2) en supposant
la fonction ¢ (x) continue et admettant des dérivées de tout ordre.
Dans ces conditions, I'intégrale de chacune des équations (2) est un
polyndme quelconque de degré 2p + 1.

Dans notre note, nous n’avons pas cité, a regret, un important
Mémoire de M. TiBeru Poroviciu3), qui s’occupe des équations
fonctionnelles de la forme

Ya,f(x+ik)=0
i=0

ou les a, et h sont des constantes, et étudie également des équations

fonctionnelles de la forme (2). Le point de départ de M. Popoviciu est
I'équation fonctionnelle de M. D. PompEiu?).

u

ff(x)dx - x)f(”“)

dont la solution continue quelles que soient les valeurs de A et de p, est
un polyndéme du premier degré.

M. Poroviciu considére une suite croissante de nombres donnés
ky ki ..., k, compris entre O et 1, et forme le polynome de Lagrange.

E—t)(E—t). (E—t,_ )E—1, ). .(—1,)
P(1)= Z(t—to)(f—tl) —t,_)t—t,, ). (t—t)

ol

ft)

t, = Ak, (n—1)

3) TIBERIU PopoviCIU: Sur certaines équations fonctionnelles définissant des
polynéomes. Mathematica Tome X, 1934, p. 197.

1) D. POMPEIU: Sur une équation fonctionnelle qui s’introduit dans un
probléme de moyenne. C. R. de ’Académie des Sciences de Paris t. 190, p. 1107.
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et en écrivant que les valeurs moyennes des fonctions f(t) et P (¢) sont
égales, obtient ’équation fonctionnelle

©) ff(x)dx=(.u—>~)zz wf A+ k(o —2)]
A t=

ol

) =fl (t—ko) (t— kl). (= k,_l)(t— ki+l)‘ (¢ —k,) it
i o (k;— ko) (k,—k,). . ‘(ki—ki—l)(ki_k1+1)- (ke —k)
(¢=0,1, ..., n).

M. Popoviciu démontre que la solution continue générale de cette
équation (5) est un polynome. Comme cas particulier, M. Popoviciuy

i
donne P'équation fonctionnelle (1), et en général, dans le cas k, = "

(i=0,1, ..., n) affirme que la solution continue de I’équation (5) est
un polyndme de degré n si n est impair et un polynoéme de degré n + 1
si n est pair.
i
L’équation (5) coincide, lorsque k, = T avee les équations fonc-

tionnelles (2). M. Poroviciu ne donne pas les équations linéaires
(3) et (4).

En citant le Mémoire de M. Poroviciu, antérieur a notre travail,
nous devons toutefois ajouter que nos travaux sont distincts non
seulement par leurs point de départ, mais aussi par les méthodes
employées, comme il résulte du développement de notre note®). Nous
devons encore ajouter que notre étude sur les équations fonctionnelles
(2) est suivie de nombreuses applications.

2. Dans ce travail nous voulons démontrer que les nombres a, a,
. . ’ 4 3 . . 3
ainsi que a,, a, sont toujours positifs quel que soit p.
Ecrivons d’abord la formule

en prenant pour intervalle (A, p)

5) D. V. IoNESCO: Généralisation d’une équation fonctionnelle rencontrée par
G. DARBOUX. Bulletin Mathématique de la Société roumaine des Sciences. Tome 41,
1939, p. 77 — 100.
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et pour ¢ (x), le polynéme
p(x)=x2(x2—h2) (x2—4h?)...[x2—(p—1)2h?

de degré 2p.
La formule (6), nous donnera a cause de la symétrie

ph
™ 2phe(ph)a, = { x2(x®—h?) ... [x3--(p —1)2h?] d x.

v o

Remarquons que 2(ph) est toujours positif, d’ott résulte que le
signe de a, est donné par le signe de I'intégrale

ph
8) l=f x2(x2—h?)(x2—4h?) ... [x2—(p—1)?h?] d x.
0

Ecrivons I'intégrale I, de la fagon suivante

h 2h ph
1=f +f +...+[ |
0 h Y (p—1h

et dans la seconde intégrale faisons le changement de variable
x = h+ x,;, dans la troisieme, le changement x =2h + x,,..., dans la
derniére le changement x = (p — 1)k + x, _;; nous aurons

[

Yo

x2(x2—h2) (x2—4h?) ... [x2—(p—1)2 2]

+(x + hP(x + hP2—h2)[(x + h)2—4h?]. . .[(x + h)2—(p—1)2h?3]
+(x+2h)(x+2h)>—h2[(x +2h)2— 4h2). . .[(x+2h)2— (p—1)2h2]

+ x4+ (p—DIF(x +(p—1DhYP—h2]. . [(x+(p—1)hy*—(p—1 )zhzl}dx

ou bien

9 l=f x(x+h)(x+2h)...[x+(p—1)R]P(x)dx,

0
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ol
(10) P(x)=(x—h)(x—2h). . .[x—(p—3)h][x—(p—2)h][x — (p-—1)h]x
+(x—h)(x—2h). . .[x - (p—3)hl[x—(p—2)h][x+ph](x+h)
+(x—h)(x—2h). . .[x- (p—3)][x+ph]l[x+(p+1)h](x+2 h)
+(x— h)[x+ph]...[x+2p—4)h][x+(2p- 3)h][x+(p—2)h]
+[x+phllx+(p+1)h] . [x+(2p—3)h][x +(2p—2)h][x +(p—1)A]
Nous allons démontrer que dans I'intervalle (o, h) le polyndome
P (x) est toujours positif.
a). Supposons d’abord que p=2gq; la formule (10) a alors 2¢q
lignes et dans chaque ligne il y a 2 ¢ facteurs. Nous allons grouper
dans cette formule la premiére ligne avec la seconde, ensuite la

troisiéme avec la quatriéme, ... et enfin la (2g —1)-éme avec la
(2g)-éme; nous aurons

P(x)=(x—h)...[x - (29 —=2)h]{x[x — (2 —1) k] + (x + h)(x+ 2q h)}
+(x—h)...[x—(2q--4)h][x + 2qh][x + (2p + 1) h]
X {(x+2h)[x — (2 —3)h]+ (x+ 3 h)[x + (29 + 2) h]}

+(x— h)(x——2h)(x +2qh) [x+(4g—5)h]
X {[x +2g—4)hl(x—3h)+ [x + (29 —3) hl[x + (49 — 4) h]}
+ (x +2¢ h)[x + (29 + 1) h]. . .[x + (49 —3) ]
X {[x + (2¢—2)h](x —h) + [x + (2¢ —1)h][x + (49 — Z)h]}
Si nous posons
Q(x)=x[x — (29 — 1) h] + (x + h)(x + 2q h),
c’est-a-dire
Q(x)=2(x2+hx+ qh?
nous pouvons ecrire
(1) P)=@x—"h.. .[x—(2g-2)"Q(x)
+(x—=h). . .[x-(2g—4)hl[x+2qh][x+(2q+ 1) Q(x+2h)
+(x—h)(x-—2h)x+2qh]. . .[x+(49—5)h]Q[x + (29— 4)h]
+(x+2gh)[x+(2g+1)A]. . .[x+(49—3)hQ[x +(29—2)h].

Le polynéme Q (x) est positif dans l'intervalle (o, #) ainsi que les
polynoémes

Q(x+2h), Q(x+4h), ..., Qx+(29—2)A].
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Les polyndmes
(x—h)(x—2h)...[x—(29—2)h],
(x—h)(x—2h)...[x—(29—4)h).

(x—h)(x—2h)

dont le nombre de facteurs est pair, sont positifs dans I'intervalle (o, h).
Nous voyons donc sur la formule (11) que le polynome P (x) est
positif dans l'intervalle (o, h).

b). Supposons maintenant que p=2qg +1; la formule (10) a
alors 2¢g+1 lignes et chaque lignes a 2¢q + 1 facteurs. Nous allons
grouper dans la formule (10) la seconde ligne avec la troisieme, la
quatrieme avec la cinquiéme, . . ., la (29)-¢me avec la (29 +1)-eme; nous
aurons

P(x)=(x—h)(x—2h)...[x—2qh]x

+(x—h)(x—2h)...[x—2q—2)h[x+(2q + 1) k]
X {(x+m)x-—-2q—1)h+(x+2h)[x+(2q+2)h]}

+(x—h). . .[x—(2q—4)h][x+(2g+ DA][x+(2g+2)h][x+(2g+3)h
X {(x-+3)x—(2q—3)h] + (x-+4h) [x+(2g +4)h1}

+((x—h)((x—2h)[x+2qg+1)h]...[x+(4q9—3)h)
X {[x + (29 —3) Al (x —3 h)+[x+ (29 —2)h][x + (49 —2) h]}

+[x +(2¢ + DAI[x +(2¢ +2)h] ... [x + (49 —1)A]
X {lx+(2q— l)h](x—h) + [x +2qh][x + 4qh]}.

En posant
Q(x)=(x+h[x—(2qg—1)h+(x+2h)[x+(2q+2)h]
c’est a dire
Q(x)=2x24+6hx+(2q+5)h?
nous avons
P(x)=(x—h)(x—2h).. (x—2qh).x
+(x—h)(x—2h) ... [x—Qqg—2)h)[x +(2qg+ 1) K] Q,(x)

+(x—h)(x-2h)...[x —2q—4h[x+2q+ 1)h]
X[x+@2qg+2)h[x+2qg+ 3)hQ,(x +2h)

+(x—h)Yx—2h)x+(2q+1)A]. . .[x+(4q—3)nIQ,(x+(29—4)h]
+[x+(2q+Dhllx+(29+2)h]. . .[x+(4g—1)h]Q,[x+ (2¢g—2)A]
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Sur cette expression nous voyons comme plus haut que le
polyndme P (x) est positif dans l'intervalle (o, k).

Il résulte alors que dans la formule (9), I'élement de Pintégrale est
positif lorsque x se trouve entre o et h, et par suite I'intégrale I est
positive.

Nous avons ainsi démontré que dans la formule (6), le
coefficient a, est toujours positif.

3. Reprenons maintenant la formule (6), 'intervalle (}, 1) étant

A=—ph, pn=ph

et le polynome ¢ (x) étant
9(x) = — x2(x2— h3)(x*—4h?). . [x*—(p— 2P K [x*— p2 K]

de degré 2p.

Ce polynéme s’annulle pour x =0, x==h,..., x==x=(p—2)h,
x = =+ ph; il est positif entre &= (p—2)h et+=ph.

La formule (6), nous donnera a cause de la symétrie

ph
(12) 2ph9[(p—1)hl a;=— f x3(x2—h?). . .[x®—(p—2)*h?][x2—p2h?]dx.
0

Comme nous avons remarqué que ¢[(p —1)h]>0, le signe de
a; est le méme que le signe de l'integrale

ph
(13) J= —f x2(x2—h?). . .[x2—(p —2)?h?][x% — p? h?] dx.
0

Nous sommes ainsi amené a étudier le signe de I'intégrale J.
Nous pouvons écrire:

ph
J= —f x%3(x2—h?). . .[x2 —(p — 22 h?][x2— (p — 1) h?]dx

0
(p—1h

+Q@p-1h| x2(x2—h%)(x2— 4h?).. .[x*—(p — 2)*h?] dx

—

ph
+(2p——l)hff x2(x2— h2)(x2—4h2. . .[x2 —(p —2)%h?]dx.
(p—1)h
L’intégrale écrite sur la premiére ligne est I'intégrale I que nous
avons rencontré au No. 2; l'intégrale écrite sur la seconde ligne est la
méme que I ott 'on échange p en p—1; pour la troisiéme intégrale
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nous faisons le changement de variable x = (p — 1) & + x,. En utilisant
la formule (9), nous pouvons écrire:

(14) ] = —f x(x+h)(x+2h)...[x+(p— 1)h]P(x)dx

h

+(2p—1)h2{ x(x + h)(x+2h). . .[x+(p—2)h]P,(x)dx

“ 0

+(2P—1)h{ (x+hm)(x+2h)...[x +(p—2)h[x + (p— 1) A
0

X [x+ph]...[x+ (2p—3)hldx,
ot P (x) est le polynome (10) et o P, (x) est le polyndme
(15) P, (x)=(x—h)(x—2h)...[x—(p—3)h][x—(p—2)h]x
+(x = h)(x-—2h). . .[x—(p—3)h][x+(p—1)h](x+h)

+(x—m[x+@E—-1)h...[x+Q2p—6)h)
X [x+@2p—5)hl[x+(p —3)h]

+[x+(@—1hlx+phl...[x +(2p—3)h]
X [x+2p—4)hl[x+ (p—2)h)].

a). Supposons d’abord que p =2g.

Nous allons laisser de coté le terme de la premiere intégrale de la
formule (14) qui provient du dernier terme de P (x), que nous allons
combiner avec la troisieme intégrale de la formule (14), et nous écrirons:

h
(16) J=——f x(x+h)(x+2h)...[x+(2g—1)h]P,y(x)dx
0
h
+-(4q—1)hzj‘ x(x+h)...[x+(29—2hP(x)dx
0

h
+ [ (x+h).. . [x+(29—2)h][x+ (29— 1h]2[x+:2qh]. . [x+(4q—3)A[
P 0

X{(4g—1)h?—x[x+ (49—2)h]}dx,
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oll

Py(x)=(x—h)(x—2h). . .[x—(2¢—3)h]l[x—(29—2)h][x — (29— 1)h]x
+(x—h)(x—2h). .[x—(29—3)h][x—(29—2)h][x+2 q h}(x+h)
+(x—h)(x—2h). . .[x—(2¢—3)h][x+2qh][x+(2q+1)h}(x +2h)

+(x—h)[x+2qh]. . .[x+(4g—4)h][x+(4g—3)h][x+ (29 —2)h].

Dans le premier terme de P, (x) il y a 2¢--1 facteurs négatifs.
Dans P, (x) nous allons grouper le second terme avec le troisieme,
ensuite le quatriéme avec le cinquéme, ... et enfin ’avant dernier avec
Je dernier. En posant

R(x)=(x+hn[x—2g—2)h+(x+2h)[x+(2q+ 1)A],
C’est-a-dire
R(x)=2x2+6hx+(2q +4)R?
nous pouvons écrire
P,(x)=(x—h)(x—2h)...[x—(2q9—1)h]x
+(x—h)...[x— (29— 3)h][x +2qh]R(x)

+(x—h)...[x —(2q9—5)hllx +2qh][x + (29 + 1) A]
X [x+(2q+2)hR(x+2h)

L (x—h)[x+2gh]...[x+@Aqg—4)hR[x + (2q—4)h).

Comme le polynéme R (x) est positif dans I'intervalle (o, &) ainsi
que les polynomes R (x +2h), ..., R[x + (29 —4)h), il résulte que
dans l'intervalle (o, /), le polyndome P, (x) est négatif; le premier terme
de la formule (16) est donc positif.

D’autre part nous avons vu au No. 2 que dans Pintervalle (o, /)
le polyndome P, (x) est positif, de sorte que le second terme de la
formule (16) est encore positif.

Dans le troisieme terme de la formule (16), nous pouvons écrire

(4g—Dh—x[x+(4q—2)h=(h—x)[x+(4g—1)h]

et nous voyons que ce trindme est positif dans Iintervalle (o, h); le
troisiéme terme de la formule (16) est donc aussi positif.

Il résulte finalement que I'intégrale ] est positive et la formule (12)
montre que le coefficient a, est positif.

b). Supposons maintenant que p =2q + 1.

Dans la premiére intégrale de la formule (14) nous laisserons de
coté le terme qui provient du dernier terme de P (x), que nous allons
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grouper avec la troisiéme intégrale de la formule (14); nous aurons
alors

h
a7 ]=—f x(x+ h)(x+2h)...[x+2qh]P3(x)dx
0
h
+(4q+1)h:“[ x(x+h)(x+2h)...[x+(2g9g—1)A]P,(x)dx
0

h
+f (x+h)...[x+2g—1)h[x+2qhP[x+ (2q9 + 1)A]...
0

X[x+(4qg—1)hl[(4g+ 1)h2—x(x + 4qh)ldx
ol
Ps(x) = (x—h)(x—2h). . .[x—(29—2)h][x—(2q—1)h][x—2qh] x
+(x—h)(x—2h). . .[x—(2¢—2)hl[x—(2g—1)h][x+(2q+ 1)h)(x + h)

+(x—h)[x+@Q2g+1)A]...[x+(4g—1)hl[x +(2g—1)A].
Dans P3 (x), nous allons grouper le premier terme avec le second,

le troisiéme avec le quatriéme,... 'avant dernier avec le dernier. En
posant

Ri(x)=x(x—2qh) +(x+h)[x+(2g+1)h]
c’est a dire
Ri(x)=2x24+2hx+(2q+ 1)
nous pouvons écrire
Ps(x)=(x—h)(x—2h)...[x—(2qg—1)h]R,(x)

+(x—h)(x—2h)...[x—(29—3)h][x+2q+1)h]
X[x+(2q+2)h][R,(x+2h)

+(x—=h)x+2g+1)h]. . .[x+(49—2)hIR,[x+(2g—2)h].

Le polyndme R, (x) est positif dans l'intervalle (o, /), ainsi que
les polyndomes Ry (x +2#h), ..., Ry [x +(2g—2)h]. Il résulte que le
polyndome P; (x) est négatif dans lintervalle (o, /), et par suite le
premier terme de la formule (17) est positif dans le méme intervalle.

Le second terme de la formule (17) est également positif dans
Iintervalle (o, h).

Dans le troisiéme terme de la formule (17), remarquons que le
trinome

@Ag+1)R2—x(x+4qgh)=(h—x)[x + (4g+ 1)A]
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est positif dans lintérvalle (o, /), et par suite ce troisiéme terme est
positif dans le méme intervalle.

Il résulte finalement que lintégrale ] est positive, et par suite,
d’apres la formule (12), le coéfficient a, est positif.

Nous avons ainsi démontré que le coefficient a, des formules (2)
est positif quel que soit p.

4. Démontrons maintenant que le coefficient a; de la seconde

formule de DarBoux (2), est positif. Partageons lintervalle (), 1) en
2p + 1 parties égales et désignons par A, le point ayant pour abscisse

p—A
2p+1
Considérons le polynome 2(x) de degré 2p + 1, qui s’annule pour
x=x,[i=0,1, ..., 2p]et qui est positif pour x = + o . Il est évident

que pour x> X, , ce polyndome est positif. En appliquant la seconde
formule (2), nous aurons

X, =A+1i (=0,1,..,2p+1; x,=0X%,,,  =p).

(18) (- —2) a;?(e»)=f g (x)dx,
A

¢ () étant positif, le signe de a; est donné par le signe de I'intégrale

“n
I, = f e(x)dx.
2
Nous pouvons écrire

X2 p ]
I,=f cp(x)dx+f p(x)d x.
A X2p

L’intervale (3, xzp) etant partagé en 2p parties egales par les

points A, A,, ..., A,,_, et ¢(x) étant un polyndome de degré 2p + 1,

nous pouvons appliquer la premiére formule de Darsoux (2), et nous

déduisons que

pr
f ¢(x)dx =0,
[

puisque le polyndme ¢ (x) s’annule pour x=1x, (i=0, 1, ..., 2p)

Il reste
“
X2p
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Mais dans I'intervalle (x5, 1) le polynome ¢ (x) étant positif, il
résulte que I, est positive et par suite le coefficient a; est positif,
quel que soit p.

5. Prenons maintenant pour ¢ (x), le polynéme qui s’annule pour

x=x;,(i=0,1,...,2p—1) ainsi que pour X=X, =1 et qui est
négatif pour x = co. Il est évidént que ce polynome est positif lorsque
x est compris entre x,, , et x,,,,=up. En appliquant la seconde

formule (2), nous aurons

(19) (—1)d] 9(x,,) = f ?(x) dx.

4

¢(x,,) étant positif, le signe de a, est le signe de intégrale

“ pr “
J1=f (P(x)dX=f (p(X)dx+f o(x) dx.
A A X2p B

D’autre part, Pintervalle (A, x,,) étant partagé en 2p parties
égales par les points A, A,, ..., A,,_,, et 9 (x) étant un polynéme de
degré 2p + 1, en appliquant la premiére formule (2), nous avons

X2p
f (P(x)dx = (x2p_)\)ao?(x2p)
A

de sorte que
“
Jl ='(x2p - )‘)aoq?(xzp) +f ¢ (x) dx.
X2p
On a démontré au No. 2, que a, est positif quel que soit p;
9 (x,,) est positif; l'intégrale

f ¢ (x)dx,

2p
est positive puisque le polyndme ¢ (x) est positif dans Pintervalle
(x5, ). II résulte que Iintégrale ], est positive, et par suite le
coefficient a; est positif quelque soit p.

6. En ce qui concerne le signe des coéfficients a, ou a, on trouve
que pour p=1, 2, 3 a, est positif, tandis que pour p =4 il est négatif
ona

464
14.175

a,= —
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De méme pour p =1, 2, 3, 4 le coefficient a; est positif, tandis que
pour p =5 il est négatif, on a

. 3.237.113 1)

a, =
2 87.091.200

" 7. Nous allons faire maintenant quelques applications des théo-
rémes établis plus haut.
Considérons la courbe (c) représentée par 1’équation

Yy = cAo(x)’

ot p (x) est un polyndme quelconque de degré 2p+1 au plus.
Prenons un intervalle quelconque (A, p) de 'axe Ox, que nous allons
partager en 2p parties égales, et désignons par A, les points de la

courbe (¢) qui ont pour abscisses
x=r+iBE=  (i=0,1,...,2p)
2p

a) Par les points A, A, ..., A2p—l nous allons faire passer une

courbe (c,) réprésentée par une équation de la forme

y=9 (x)»

ot ¢, (x) est un polyndéme de degré 2p + 1; ce polyndme a 2p + 2
coéfficients, dont deux peuvent étre pris arbitrairement.

Désignons par S, l'aire comprise entre les courbes (c), (c,) et les
droites x = A, x =p. L’aire S, est positive, nulle ou négative, suivant
que la différence Y, = ¢ (n) — 9, (1) est positive, nulle ou négative.

En effet, 'aire S, est donnée par la formule

”

S, =j [ (x) — ¢ (x)]dx.

i

En appliquant la premiére formule de Darsoux (2), nous
déduisons que

S;=@—2)a,[?()—¢, ()]

parce que le polynéme ¢(x)—9,(x) s’annule aux points A, A,,...,

Ayt Mais nous avons démontré que le coefficient a,, est positif;

1) Voir aussi.
B. P. Moors Valeur approximative d’une intégrale définie GAUTHIER-
VILLARS. Paris 1905. '
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d’ou résulte que le signe de l'aire S, est le méme que le signe de la
différence Y = ¢ () — @, () des ordonnées qui correspondent au
point A, . '

b) De méme, nous pouvons considérer une courbe (c,) qui passe
par les points A, A,, .. ., A,,_» Ay, et dont I'equation est

y=29 (x)’
ol ¢,(x) est un polyndome de degré 2p + 1; deux des coefficients de ce
polyndme peuvent étre pris arbitrairement.
L’aire S, comprise entre les courbes (c), (c,) et les droites
X =\, X = est positive, nulle ou négative suivant que la différence

Y, =19 (p_. "2;13)‘) — ¢, (p.— Hz—p')\) est positive, nulle ou négative.

En effet I'aire S, est donnée par la formule

S, = f [ (x) — P, (x)] dx
A

et le polyndme 9(x)—¢,(x) étant de degré 2p -+ 1, nous pouvons
appliquer la premiére formule de DarBoux (2), et nous déduisons que

Sz=(u—l)a1[¢(u—ﬁg_f)—?z(u—"2—7)]-

Nous avons démontré que le coefficient a; est positif, d’ott résulte
que le signe de S, est le méme que le signe de la différence

— —
=t =15 )

des ordonnées qui correspondent au point A, 1
8. Partageons maintenant Iintervalle quelconque (A, &) en 2p + 1
parties égales, et prenons sur la courbe (¢’) représenté par '’équation
y=¥(x)
ot *'(x) est un polynome de degré 2p + 1 au plus, les points B, ayant
pour abscisses

—A
x,=Ait—l i=0,1,...,2p+1)
i 2p+ 1 ( p )
a) Par les points By By, ..., B, , nous pouvons faire passer une
courbe (c;) représentée par 1’équation
y=W¥(x)

ol 'y (x) est un polyndme de degré 2p + 1; un seul de ses coefficients
peut étre pris arbitrairement.
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L'aire S'l comprise entre les courbes (c'), (cf) et les droites
X =\, X = p. est positive, nulle ou négative, suivant que la différence
Y, =¥ () — ' (n) est positive, nulle ou négative.

En effet, en appliquant la seconde formule (2), cette aire est
donnée par

S =@ —Na,[¥ () — ¥, ()]
et comme nous avons démontré que le coefficient a; est positif, il résulte

que le signe de S, est le signe de W' (x) — ¥, ().
b) Nous pouvons aussi faire passer par les points

ByB, ....B,, ,B,,.,

une courbe (c;) représentée par une équation

y =W, (x),
olt W,(x), est un polynéme de degré 2p + 1, dont un seul coefficient
peut étre arbitraire
Laire S, comprise entre les courbes (c'), (c;) et les droites
X = A, X = est positive, nulle ou négative suivant que la différence

des ordonnées au point d’abscisse p.— b1 ,
2p+1
’ —A —A
Y, = w(p— L 0, [p—
§ (“’ 2p+1) 2(‘” 2p+1)

est positive, nulle ou négative.
En effet on établit facilement que

’ ’ —)\ » w— )\
S, =@ —MNa [‘P PR e [ — ]
» =@ —Na (u 2p+l) z(u 2p+1)
et comme a; est positif, le signe de S, est le méme que le signe de Y,
9. Lorsqu’on calcule aproximativement I'intégrale définie

2

on emploie quelquefois la méthode de Newfon-Cdtes qui consiste a
partager l'intervalle (&, A) en un nombre quelconque de parties égales,
et a prendre pour valeur approchée de I'intégrale, la somme :

(u—x){ko 7Y+ ) |+ kl[f(x+ "%‘)Jrf(u—*—‘?)]—. N
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)
e
e e

G

Lorsque n=2p, on a ky=a, k;=a, et lorsque n=2p+ 1. on
ak,=ayetk, =a,.

Le théoréme que nous avons démontré dans ce travail est que
les nombres k, et k, sont positifs quelque soit n.

L’interprétation géomeétrique du fait que les intégrales (20) sont

positives, est comprise dans les applications que nous avons fait aux
Nos. 7 et 8.



	Contents
	p. 8
	p. 9
	p. 10
	p. 11
	p. 12
	p. 13
	p. 14
	p. 15
	p. 16
	p. 17
	p. 18
	p. 19
	p. 20
	p. 21
	p. 22

	Issue Table of Contents
	Bulletin mathématique de la Société Roumaine des Sciences, Vol. 43, No. 1/2 (1941) pp. 1-161
	Front Matter
	LE PROBLÈME PLAN DE LAGRANGE ET LES CHOCS TRIPLES IMAGINAIRES [pp. 3-6]
	SUR LES FORMULES GÉNÉRALISÉES DE G. DARBOUX, ET UN THÉORÈME SUR LES QUADRATURES MÉCANIQUES [pp. 7-22]
	SUR LES TISSUS PLANS DE PREMIÈRE ESPÈCE [pp. 23-26]
	QUELQUES REMARQUES SUR UN THÉORÈME DE M. POMPEIU [pp. 27-43]
	TRANSFORMATIONS DE BACKLUND DES COURBES A TORSION CONSTANTE DANS L'ESPACE ELLIPTIQUE [pp. 45-57]
	LA GÉOMÉTRIE DE' L'ÉQUATION DES ONDES (III) [pp. 59-68]
	SUR L'INTERPRÉTATION GÉOMÉTRIQUE DES INVARIANTS DIFFÉRENTIELS FONDAMENTAUX EN GÉOMÉTRIE AFFINE ET PROJECTIVE DES COURBES PLANES [pp. 69-83]
	NOTES SUR LES FONCTIONS CONVEXES D'ORDRE SUPÉRIEUR (IX) [pp. 85-141]
	LES OEUVRES DE GEORGES TZITZÉICA [pp. 143, 145, 147-156]
	LISTE DES TRAVAUX DU PREMIER VOLUME [pp. 157-161]
	Back Matter



