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LA REPRESENTATION DE LA DIFFERENCE DIVISEE
GENERALISEE D'UNE FONCTION PAR UNE INTEGRALE
DEFINIE DANS LE CAS DES NOEUDS MULTIPLES (II)
PAR
D. V. IONESCU (Cluj)

1. Considérons une fonction fe C"[a, b] et &k + 1 noeuds
Loy Lyy. .., &, multiples d’ordres ng,7y,...,7, Ol AL T < 0, < ...
o<, Lb et ng+n +...+n, =n-+1. La différence divisée de

la fonetion f (x) sur ces noeuds peut étre représentée par une intégrale
définie

1 x, oot I ()
1y (@)’ ce (@Y (@)
(1)(%:1)'(.”0)(”0_1) ° (w3_1)(n0—1)f(no—l) (xo)
1
V (Zggeeey Toguery Lpgeeey L) [+ ¢+ 0 0 0 0 0 o o o e e =
o o 1 @, -l S (@)
1y (@)’ (@™t I'()
Q)"0 (@) "D (@)D ()
o
=5 o (2) f(2) do (1)
et on écrit aussi cette formule sous la forme
7
[y -y By By 5 11 = 6 (0) S () do (2)
g ng %o

La formule (2) a été donnée pour la premiere fois par L. TCHAKA-
1LOFF [5] et nous ’avons retrouvée dans notre travail [2]. Nous avons
fait une étude approfondie de la fonction ¢ (x) et nous avons démontré
notamment qu’elle est positive sur 'intervalle (x,, ,).
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Dans ce travail nous étendons la formule (1) au cas ou le systéme
1, ..., 2%... (3)
et remplacé par un systeme

Yo ()y Y1 (2)y. -2y Yo () (4)

sur lequel nous faisons les mémes hypothéses que dans notre travail
sur la représentation de la différence divisée généralisée d'une fonction
par une intégrale définie dans le cas des noeuds simples [3]. Cela nous
permet d’introduire les opérateurs

WYy Y1y-- s Yu-1,f]
L, = (5
) WlYosY1se o9 Yn-1] )

et de continuer la théorie déja exposée dans le cas des noeuds simples.
Dans la premiére partie de ce travail, nous démontrerons la formule

Yo (20) Y1 (%) cor Yuo1 (@) f (o)
Yo (@) Y1 (@) o Yno1 (@) f(0)

@ e e e s e e s e e e s s e

Yoo (@) Y TV (@) o . Yaes (@) f0m 1) ()

1
B L 5 N -
"o "k Yo () Y1 () o Yoo (@) f ()

Yo () Y1 (@) oo Ynoa (@) [ (a0)

...................

Yo (@) YTV (@) e Yk D (@) fOE ()

- S o L, [f] dw (6)

ou
Yo (20) Y1 (@) co Y1 (@) Ya (@)

Yo (2,) Y1 (x,) cor Yno1 (@) Y (@0)

....................

(ng—1 (nyg—1

-1 (mg—1
?/:)no (@) Y1 (@) «+« Yn21 (20) ?/v:% ) (o)

"o "k Yo (@) Y1 (@) coe Ypo1 (@) Y, (T)
Yo (@) Y1 (@) o Ynoa (@) Ya (@)

Y= (@) VT (@) -y (@) vt (@)
(7)

Dans la seconde partie de ce travail nous étudierons la fonction
o(x) et nous démontrerons qu’elle ne s’annule pas sur l'intervalle (z,, x).
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§ 1. Probléme aux limites.

2. Considérons les fonctions f et ¢ e C" [a, b], Popérateur

L [f] _W[?/o,?/n 7yn 17f] f(n) +a1 w)f(n 1) + +a (m)f (8)
W %0y Y1se+ o9 Yn-1]

et son adjoint

Li[4] = (=1)" [ — (ay )™= ...+ ( a, ¢1. (9)
Entre ces opérateurs nous avons l’identité
YL, [f1— fL7 [4] = (H [f, 41 (10)

ol
Hf, 4] =4 fo — U —(ay YT + [§" — (@, §)' +(a,4)1f*-» —
— e (P E — (ag 90 o (=1 (e 9IS (1)

Nous prenons sur lintervalle [a, b] les noeuds «,,x,..., w,,
multiples d’ordres ny,7y,..., M, OU &, < @, <...< @, et n, -+ 0y +
...+ n, =n + 1. Aux intervalles [z,, ], [a:l, Lolye ooy [®ro1y T nous
attachons les fonctions ¢,, ¢,. . .,9,, solutions des équatlons différentielles

Li[ed =0, L9l = 0,.. ., L[] = 0 (12)

Si nous remplacons dans l’identité (10) la fonction ¢ par ¢; et si
nous intégrons les deux membres de x;_; & x;, nous avons

HIf, 9] ? =Sx’ o; L, [f]dz.

-1

En faisant la somme de ces formules relativement & j =1, 2, ..., k
membre & membre, nous avons

Y HD, 01

Fja

("¢ L1140 (13)

ou la fonction ¢ coincide sur les interva.]les [@oy @11y [gy Zalye o oy [Tr—q 2]
avec les fonctions o¢,, ¢,,.
Si Pon introduit les condltlons aux limites

¢1 (@) = 0, o1 (o) = 0, ceey QT ()= 0
?2 (21) = @1 (@), @2 (@) = 1 (@), o0y QP70 () = P~ (@)  (14)

Pp (Tp-1) =Pr—1(Zp—1)y P (1) =01 (Tp=1)s- - -5 QD (@ _y) =
=Ml (@)
o (@) =0, CP;c () =0, vy ‘ch"_”k_l) () =0

3 — c. 3477



34 D. V. IONESCU 4

et si nous supposons que le systéme d’équations différentielles (12)
avec les conditions aux limites (14) admet une solution, alors la for-
mule (13) se reduit & une formule de la forme

ng—1 n,—1 ey —1 .
5, AP (@) + 5 AP @) oS AP (@) +
k=0

§,=0 72=0

+ % Age e () =" oL, [ o, (15)
oll nous avons e -
AP = — 9"V (x,), A = ¢{*~? (,),- - -, A=) = (—1)" @{*="0 (),
AP = o™ (@) — oV (@), AP = — [9f" (@) — @0 (@),

ceey A;w,—l) — (_ 1)n1—1 [(P(ln—n,) (%) — cpgb—n,) (wl)]
AR = ot (@) — ot (4mp)y ARy = — [0 7P (%—1) — 9P (@4-1) ]y - - -
ceey Ain_ki‘_“ = (—1)""1 [0 (2 —1) — @i~ 1) (2 _q) ]
AP = g1 (0, A = — gV ()., AV = (—1)% g (1)

Nous démontrerons que la formule (15) se réduit & la formule (6)
qui fait 1’objet de ce travail. Pour cela nous devons d’abord intégrer
les équations différentielles (12) avec les conditions aux limites (14).

3. Considérons la fonction de CAvucHY

G () 8) = Yo () 20 (8) 4 9 (@) 2, (8) oo Yooy (@) 20y (8) (A7)
ol

zo___(_l)n—l W[y17 Y29+ yn—l] , z1=(_1)n—.2 W[?/O? Yoy oy yn—l] g oo
WiYos Y1y« Yn-al WiYor Y15+ -3 Yn-l
cey By = (_1)0 W[?/C" Yiy- -+ yn—2]
WilYoy Y153 Yn-]
On sait que si nous considérons les dérivées partielles

P+ @ : , .
—— (@, 8) = yP (@) 20 (8) + ¥y (@) 20 (s) +...+ yi (@) 22, (8),

oxt dsi
nous avons
onti @ 0 sih+ji<n—1
e =l (18)
dxt ost (1) sih+j=n—1
11 résulte alors que la fonction de s

h
0 (2,0 =2 (0, ) (19)
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est une solution de ’équation différentielle L} [2] = 0 et satisfait aux
conditions

09 on—h-29 o"-h-19
Oh(.’L‘, .’D):O,-a—sh (w, .'L‘)=O,. —677‘—2»( y )‘— ET"——IZ‘ (.’;U’ $)-——-( 1)”~h-1
(20)
En remplacant x par z;_, et s par , nous déduisons que la fonction
B () = (—1)"""1 0, (@1, @), (21)

qu’on peut encore écrire sous la forme

Y& (wi_1) Y9 (2iq) - - - Yy (2-1)
(—1)*-r-1 Yo (@) Y1 (®) o Yuo1 (@)

O () = WiYosY1s- s Yn-1] Yo (@) vi (@) o Yam

...............

Y (@) 907 (@) . g ()

est une solution de I’équation différentielle L} [z] = 0 et vérifie les
conditions

04 (@,_1) =0, 0j(2;;) =0,...,00" "2 (2,_) =0, 63"V (z;_;) =1 (23)

Les fonctions 0, (x) sont utiles & l’intégration des équations diffé-
rentielles (12) avec les conditions aux limites (14).

4. Les fontions

no—1

o1(2) = 3, (=1)"7771 GFY Oy, ()
i1=0
Ng—1
<P2(93) Z ( l)n Ji—1 0(71) el?; x) + Z ( l)n Ja—1 0(12) e)’( )
7,=0 Ja=0
.......................... (24)
no—1 ny—1
= § (—1)h100 0y, (2) + Y, (—1) it 64 0 (@) 4+
7;=0 T9=0
4 'g‘;_l( 1)»=3k-1 CF0, Oy, ()
Jp=0

vérifient les équations différentielles (12) et les conditions aux limites
(14) relativement aux points xz,, ,. ]
Il reste & déterminer les consta.ntes O’“-’ Ci,. .., O¢® de maniere

4 satisfaire aussi les conditions aux limites (14) du pomt T, .
Remarquons qu’on peut écrire la fonction ¢, aussi sous la forme

¢ (2) = U (2) T (2) (25)
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ou
U (x) = 1 (26)
WiYos¥1s-- s Yu-1l
(044 (04 . 00y
T o () Y1 () cos Yuoy (@)
@ =ly(@ yi@ ..g.@ (27)
¥~ (@) 91" (@) . . . g5 (@)
avec
Co= 2 Of? ygi» (w,) + 2 CEyio (o) +. ..+ 12 C"k’ Y (w4-q)
7= j2=0 k=
Z Cyn v (@) + Z Oy yid (@) ...+ 2",— Cf® y® (m,_,)  (28)
7,=0 ja=0 Ip=0
ny—1 X n,—1 . ) Np_,—1
1= X,o Ci yid () + .2‘,0 Oyl () +...+ on OfR, Y% (2,_,)
= Ja= k=

En procédant comme dans notre travail [3], on peut montrer qu’on peut
écrire les conditions aux limites (14) du point x,, sous la forme

T(x) =0, T () =0,..., T %V (x,) =0 (29)
et en faisant les calculs, on est conduit aux équations

Yo (@) Y (@) oo Ynog (@)
Yo (@) Y1 (@) o Ynor (@)

.................

U (@) 9 (@) Y (@) | (30)
CO 01 eee Upg
YD (@) YD (@) ... yORED (@)

YoV (m) YV (@) . gD (m)

Yol®y) Y:() oo Y1)

Yo(@z) y1(x) oo Yna(2y)

.............. Yo(®r)  Yau(®) o Yuoa(y)

Y5 (@) y{”"’(“’k) C o YR () yo(@e)  yum) . .ynoi(m)

06 Ci . ;}_1 - ’...z 0(”;2)- . 0( .2) ....... -
?/{)"’”2(%) yg"k+2’(wk) . y("k+2)(wk) Yo (a7k) ?/1"" (xk) .. °y£»”_12)(wk)
e e L Co &t iy

Y&V (my) yPV(2y) - .. YD (@)
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Considérons le déterminat

Yo (@) ?/} (%) ... ?/?—1 (@)
WiosYrse - s Yn-1ly, = Yo(w)  yi(@e) oo Ynoa (@) (31)

..............

Yo (@) Y1tV (@) - - - Y (@)

et désignons par B;, le complément algébrique de 1’élément situé sur la
ligne de rang ¢ et sur la colonne de rang k. Alors on peut écrire les équa-
tions (30) sous la forme

B"k+1.1 C(') + B"k+1.2 0{ + .ot B”k+1.n ,',_1 =0
Bnk+2,1 Cs + B"k+2.2 0{ +...+ Bnk+2,» 0;;-1 =0

.....................

Bnloo"l‘anGl‘l“ +Bnn ho1 =
On vérifie facilement que les équations (30) ou (32) ont les solutions
Co = Yo (1), O = y1 (m), covy Opy = Yooy (%)
C(; == ?/6 (wk)7 0{ = ?/i (wlc)i ey 07'0—1 = y;s—l (wk) (33)

Co = Y=V (x), C1 = y(lnk.'” () 3+« ey Coy = Y%V ()

et plus généralement

(32)

ny,—1 fg—1 .
Co=— ¥ Ofsdydend(m), Ol =— Y, Ofetyfen(a,),...
d4r=0 I +1=0 (34)
-1 . .
y Oy = — 2 C;c’kirl)y;fﬁ')(%c)
Ik 41=0

ou CY, CY,..., OV sont n, constantes quelconques.

En remplacant dans les équations (28), les constantes C;, Ci,...,
O, _, par les seconds membres des formules (34) nous avons le systéme
de » équations linéaires et homogénes

2 O(J, J“l) (x ) -+ E C(Ig) y“z’ (w) 4. + z O(Jk) yuk) (xk_l) -1

71 =0 ja=0
n ‘1 . .
+ 2 Oy (a,) = 0
I 41=0
ny—1 "k_x—l A ;
S 0995 (0 + 5 OP2 g (@) 4ok S 0P (@)
i,=0 j9=0 Ip=0

nk 1
+ 2 O(th) y(fk+1) () =0
g 11=0

.............................
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Pe—1 ) =1 ng_y—1 .
E C(()“) ygl—)l(wo) + 2 Ci’ﬁ’ ygz-)l(wl) +eet E C;ij)l ;ZE)I (wlc-l) +

7,=0 j2=0 ip=0
nk-l ; .
J J—
+ S oyl (@) = 0
Ik+21=0

(35)

pour déterminer les n, constantes C@», les n, constantes C!»,..., les n,
constantes CUk+,

Le rang de la matrice des coeficients du systéme (35) est », parce-
qu’on peut former avec les éléments de cette matrice, au moins le déter-
minant

D (Tgyeooy@oy BryeoeyBryeney@pyenoy i)

ng 7, g

qui est différent de zéro, quels que soient les noeuds x,, 2,..., & sur
Pintervalle [a, b], cela étant une propriété importante des fonctions
de la suite (4), qui résulte des hypothéses faites dans notre travail [3].
11 résulte alors qu’en désignant par M{”, M{",..., M1 les déterminants
qu’on obtient de la matrice des coeficients du systéme (35) en suppri-
mant la premiére, la seconde,..., la derniére colonne de la matrice,
nous aurons :

C},o’ _ C’{)” L Cg‘o—l) _
MY —MP (=1t MY
C{O) Oil) Ci’h—l)
(_l)no Mio) (_1)no+1 M(ll) (__1)no+n1—1 ]n'i”‘;—l (36)
Cfco) O;cl)

(_1)”o+"'+"k_1 M}co) = (_1)”0+...+nk__1+1 -M;cl)

("g—1)
Ok

- (—-1)"°+"'+”k_1M§¢nk_l) =

M

ou M est une constante que nous préciserons plus loin.
Les constantes O, C{,..., O~V sont ainsi déterminées et par

suite les fonctions ¢;, @,,..., ¢, Sont aussi déterminées. La formule (15)
est donc valable et nous pouvons l'utiliser.

En écrivant que le premier membre de la formule (15) est nul lorsque
la fonction f est remplacée par vy,, ¥,,..., ¥,-1 NOUS avons un systéme
de n» équations linéaires et homogénes identique au systéme (35). On
peut résoudre ce systéme par des formules analogues aux formules (36).
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En prenant pour les deux suites de rapports égaux la méme constante
M, nous aurons les égalités

AP = 030)7 AP = 0(()1)’. . e Aéﬂo—l) — 0(()7».,-1)
AP = 0(10), AP =¢p,. .., A(ln,—n — 0<1n,-1) (37)
AP = 0P, AP = 0OP,..., A% = Oy
et par suite
AP = MM A, = (=1 MMP,..., AL = (1)t -+ Y YO
-At()l) - MM(‘,” A{l)___ (_,1)”0“ MM&”,. e A;cl) — (_1)no+~-+"k—.+1 MM;CI)

A((,n.,—n: (—1)m=t M Mm-1, All(n,_l)= (—1)ro+tm=t M MY, .. ’A;cnk—l)=
= (—1)mo+ "1 MM;c”k—l) (38)

Si nous remplacons maintenant dans la formule (15) les coefficients
AP, A, .., A=Y par les formules (38) nous aurons

&

| ¢Lulflas = (-1 mA

ou A est le déterminant de la formule (6).
En choisissant

M= (=1) (39)
A
ou
Ay =D (®yy..uy Bogeory Tpyeory Ty) (40)
ny ny
nous aurons
A &
2 =S o L, [f]dz (41)
A]. xo

et par suite nous avons démontré la formule (6).

Nous avons donc le

Théoréme 1. La différence divisée généralisée de la fonction
felC"[a,b] sur les moeuds =,, x,..., x € [a, d], multiples d’ordres
Ny Nygeo-y My O Mg + Ny + ... +m, =n + 1, est représentée par une
intégrale définie, ce qui veut dire que nous avons la formule (41), ow la fon-
ction ¢ est donnée par les formules (24) avec les constantes C, COf,. .., Cy* ™"
données par les formules (37), (38), (39), (40).
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Nous étudierons dans la seconde partie de ce travail la fontion
¢ et nous démontrerons qu’elle ne s’annule pas sur l'intervalle (z,, x,).

§ 2. L’étude de la fonction ¢

5. La fonction ¢ coincide sur les intervalles [x,, ], [%y, %,], ...,
[®,—qy @] avec les fonction o,, @y ..., ¢, données par les formules

no—

(@) =5 (=1)p-h-1 A 6, (o)

fi=0

ny—1 . n,—1
p2 (@) = Y (1)t AFY Oy, (@) + ), (=1)*77t AP0 6y,
71=0 j3=0

-1 -1
P (w) — MZ (__1)7;—7';—1 A‘()h) 01_ i (@) + 2 (__1)n—7'.—1A:(lfa)62. ,',(-'L‘)-l‘ e

i1=0 jg=0
np_y—1 .
8 (1)t AR, 6 (2) (42)
Te=0

ou les fonctions 6, , (x) sont données par les formules (22).

Ces fonctions vérifient les équations différentielles (12) et les con-
ditions aux limites (14), que nous écrivons & l’aide des opérateurs L [z],
de notre travail [3], sous la forme

L [e:],, =0, Y2 [(Pl]zo =0,..., Ly 1 [‘Pl]% =0
L [CPz]:cl=L; [<P1]a:17L: [‘Pz]z1=L; [(Pl]ml’ ooy Lnopa [@2],,1:1;;—",—1 [CP]ch

Lo*[cPk]zk_,= 3[%—1]%_1, L:[‘Pk]wk_,’—“L; [Pe-1]pp,rv s La-m -1 leel, =
=Lp_n_,—1 [(Pk—l]mk_l7 Lg [‘Pk].rk =0, Lj [‘Pk]zk =0,..., I:—”k—l[cpk]xk =0

Dans notre travail il est trés important le
Théoréme 2. Les opérateurs différentiels

Ln_y [o1ds Ln_y [92]se ey Ly [ox] (44)

ne s'annulent pas sur les intervalles [x,, x;], [®1, T2]y. .-y [Tpo1s Tl
Pour démontrer ce théoréme, nous donnerons d’abord quelques
théorémes sur les coefficients de la formule fondamentale (15).
En général D’équation différentielle adjointe L} [¢] =0 admet
Vintégrale premiére
c

Yo (@)

Il nous reste & démontrer que si 'on remplace la fonction 2z par ¢,,
ou ¢@,,..., ou ¢, la constante C est différente de zéro.

L .[#]= (45)
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6. La formule (22) montre que
0s, 1 () = (—1)* [y (2,-1) 20 (@) +YP (®1-1) 21(@) + - o o + Y221 (@1-1) Zp-1(@)]
de sorte que
L 1[0, 4] = (—1)* {yi" (@—1) Lj—1 [20] + 9P (21-0) Ly [&] + ..o +
+ Yy (#-q) Ly [20-1]}
Mais
1W [219 gy- -y Zn-1y 2]

Ly (2] = (—1)-
' W2, 225- 5 2u-al

et par suite
Ly [5] =0, Ly_1 [2] = 0,..., Ly_; [2,4]=0.
D’autre part, nous avons [3]

n-1[Ro] =

Yo ()
et il résulte que
(h)
L34 [0, = (—1p B &) (46)
Yo ()
En utilisant les formules (42) et (46), nous aurons
* —1 "1 /
Loaled =S8 (47)
Yo ()
pour 1 =1, 2,..., k, ou
-1 . X n—1 i . ny_,—1 . 3
8, = Y AGY yiv () + v APy (@) + ...+ y AU, g0 (2,_1). (48)
i,=0 ia=0 i1=0

Il nous reste 4 démontrer que les nombres §;, 8,,..., S, ne sont
pas nuls.
7. Désignons par h (x) le polynéme généralisé d’interpolation

h(#) = oo Yo (#) + a1 ¥1 (@) + -+ + oty Yu (%) (49)
déterminé par les conditions suivantes
b (o) = Yo (@) b (2,-1)= Yo (®-1) h (z;) =0
B’ (®0) = Yo (@) W (2,-1)= Yo (®1-1) W (@) =0
RO ()= g 23) . R0 ) = (@) B (@) =0 (50)
b (w,-,) =0 h () =0
B (@-4) =0 K (@) =0

.................................

Rk~ (g, 1) = 0 hE=2) (z,) = 0.
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Ce polynéme est bien déterminé, parce que le déterminant du sys-
téme d’équations linéaires en o, oy,..., o, ; €st

D (Tgyeney Loy Byyevny Byy ouny Tpyeney L) F0 (51)
— \-—-—\/-——_-/

Ny n, ng—1

En remplacant dans la formule (15) la fonction f par le polynéme
généralisé h, nous aurons d’aprés les conditions (50)

8, + APE-D pok=1 (g) = 0. (52)

D’aprés les formules (38), nous avons A"~ = 0. Il nous reste
a4 démontrer que h"x-1 (x,) 5~ 0.

8. Théoréme 3. Si h(x) est le polynéme généralisé d’inter-
polation, qui satisfait aux conditions (50), nous avons

hire=1 (@) % 0, (53)

powr 1 =1, 2, ..., k.
Remarquons d’abord que le polynéme & (x) n’est pas identiquement
nul, parceque d’aprés les conditions (50) nous avons h(®,) =¥, (2,) 5~ 0.
Posons

h (@) =y, () by (2) (54)

ce qui est possible, parceque nous avons ¥, (x) % 0, sur lintervalle
[®y, x,]. Nous aurons

By (2) = o+ 249D L g, Yo () (55)
Yo (@) Yo ()
et
hi(2) = a3 1,1 (@) + o5 Y. 2(@) + oo+ A1 Y101 (2) (56)
ou
(Y ()Y — yz_(“"_) ' _[Yn ()Y
Y11 (@) = (y_., (w)) Cra@ =20 @ (——-yo v ) (Ty).

La formule (56) montre que h; () est un polynéme généralisé
construit avec les fonetions (7,;) qui forment un systéme TCHEBYCHEFF [3].
Le polyndéme généralisé h, (x) vérifient les conditions

hy (20) =1 by (2) =1 by (1) =1 hy (2) =0
hy (@) = 0 hi (%) =0 hi (#,-1) =0 hi (2) =0

.............................

By b (@) = 0 BV (2) =0 A (zy) =0 BV (z) =0

hy (2,4) =0 by () = 0 (57)

......................

BE D (@) = 0 B (@) = 0
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et nous avons
RO () = g, (@) RO (), (58)
Supposons d’abord n, > 1 et désignons par p l’ordre le plus grand
des dérivées qui figurent dans les formules (57). Considérons I’ensemble
des points x,, #,,..., ®, et désignons par m,, m.,..., m, les nombres
des points de cet ensemble qui sont les zéros de h, (x), by’ (2),..., b{® ().
Il est evident que d’apres les conditions (57) nous avons

1+k4+m4+me+ ... +my=n,+n0+ ... +n,—1=mn,
de sorte que
E+m+my+ ... +m, =n—1. (59)

II est facile de démontrer & ’aide du théoréme de ROLLE que la dé-
rivée hy (x) a k 4+ m; —1 zéros distincts sur l’intervalle [x,, x,], que la
dérivée ;' (x) & k + my + m, —2 zéros distincts sur Vintervalle [2,,2,],. . .,
et que la dérivée h{® (x) a

N=k+m+m—+ ... 4+m —p=n—p—1

zéros distincts sur Pintervalle [x,, z;].
On peut écrire les fonctions de la suite (7)) sous la forme

w w
Y1.1 (x) = ——[?;oz, Yl » Y1, 2(@) = —————[?;oz’ Y] -
0 W[ ]0 ()
s Yrn (@) = Y0 e,
Yo
En posant
p w
B (@) = 1.1 (@) by (@) = —“—’y—ﬂ e (@),
0
nous avons
hy () = oy + o ?/1,2(-”7)+ o Y1, 3 () 4o oy, Y1, n-1 ()
Y1,1 (@) Y11 (@) Y1,1 ()

et
by (2) = g4y, 5 (@) + o5 Yo, 3(X) + oo + ayo1 You-1 (@)

ce qui veut dire que h; (x) est un polynéme généralisé construit avec
les fonctions

%ungﬁ@y_olﬁﬁuﬂ

Y1,1 () W2[yo, ¥1] )
%um=ﬁuﬁg=%lﬁﬂg@ :
' Y11 () W2[yo, 1]

....................

yl n—1 ((L') ! W [yoy 2/17 yn—l]
Vo, ecr (@) = (P22 ) =y
e Y1,1 (@) ©owe (Yo 4]
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On remarque que la fonction %, (x) vérifie sur les noeuds x,, z;,. .., =,
des conditions qu’on obtient du tableau (57) en supprimant la pre-
miére ligne et en diminuant les ordres de dérivées d’une unité. Il
résulte que le nombre des zéros de h)(x) sur l’intervalle [z,, x,] est
k + m; + my, — 2, il est égal au nombre des zéros de h;'(x) sur le méme
intervalle.

On peut continuer ce procédé régulier et nous poserons finale-
ment

w _
2[?/07 yl’ ) yp l] h,, (w)
W2[Yoy Y1y- - 3 Yp-2l

by 1(®) =Yp-1,0-1(2) by (©) =W [Yoy Y1s-- - Yp-3]
et nous aurons

hy (%) = apy + Yp-1,» (2) + oy Yp-1,p+1 (%) ety Yp-1.n-1(7)
Yp-1,p-1(Z) Yp-1,v -1 () Yp-1,p-1(®)
et
\hz,»(w) = 0y Yp,p (L) + i1 Ypp1 (&) + -+ + A1 Yp a1 ()

ce qui veut dire que %, (x) est un polyndme généralisé construit avec les
fonctions

?/p—l,p(w) ' W[?/M :‘/1""7 yp-h yz)]
¥ (w>=(———)=W[y Yare o Y]
7 Yp-1,0-1(2) oy W2[Yos Y15- -3 Yp-1]
- )Y’ w R T .
Yo pi1 (@) 2(% 1.0+ ( )) — WYoy¥sye - s Yys] [Zoyyu 1Yp-15Yp1l
yp—l.p—l(w) W [y07 yl""’ yp—l]
............................ .. (T
Yp1.n-1(2)Y w vy Yoo ne
Yy oy (2) = [Yoztnma )) = WlYorUare s Uos] [?/20’ Y1s- - os Yo-1) Yn-al
Yp-1,p-1(®) W2 [Yoy Y15---5 Yp-1]

On remarque que la fonction h, (x) vérifie sur les noeuds z,, ,,..., @,
des conditions qu’on obtient du tableau (57) en supprimant les p — 1
premiéres lignes et en diminuant les ordres des dérivées de p — 1. Il résulte
que le nombre des zéros de h,(x) sur l'intervalle [z,, x,] est

E+m4+my~+ ... +my —p=N=n—p—1 (60)
ce qui veut dire qu’il est égal au nombre des zéros de h{” (z) sur 'intervalle
[0, @]

Les fonctions des suites (71,), (T5), ..., (T,) forment des systémes
TcHEBYCHEFF. Il résulte alors que le nombre maximum des zéros de la
dérivée h, () est justement égal au nombre N donné par la formule (60).

Une fois connu le nombre maximum des zéros de h, () il est facile
de démontrer que A"~V (x,) == 0. D’aprés la formule (58) il suffira de
démontrer que A"~V (z,) = 0.

Nous allons considérer trois cas selon que n,—2 < p—2, n,—2=p—1
fn, — 2 =p, cest dire n, <p, n, =p + 1, n, =p + 2.
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1°. n, < p. En supposant h{"-V (z,)=0, on est conduit a h,, (x,)=0.

En appliquant le théoréeme de ROLLE, il résulte que les dérivées
b (%) Bags1(2)y. .+, by (x) doivent avoir encore un zéro & droite des zéros
déja mis en évidence précédemment, ce qui est impossible parceque le
nombre maximum des zéros de h,(x) est N =n —p — 1. Il y a donc
une contradiction et par suite nous avons A{":-V (z,) 5= 0.

2°. my=p-+1. En supposant h{"*-V (x,)=h{ (x,)=0, on est conduit
& h, (x,)=0, ce qui est impossible, parce qu’on a démontré que le nombre
maximum des zéros de h, est N = n — p — 1 et que ces zéros sont tous a
gauche de z,. Il y a donc une contradiction et par suite A"V (z,) =~ 0.

3°. m, = p + 2. La dérivée h,(x)a N =n — p — 1 zéros sur lin-
tervalle [z,, ®,], x, étant un de ces zéros. En supposant a{":~1 (x,) =
h{?+V (z,) = 0, nous pouvons passer encore de h,(x) & h,;, () en posant

w
4 [Yos Y1y y Ynl hp+1 ()
W2 Yoy Yyyevvs Yp-1]

Ry (@) = W [Yos Yr9--+y Yp 2]

et nous aurons

By () = 041 Ypr1,041 (X) + pio Ypi1,pie () 4o 01 Ypia, n1 (¥)
ou les fonctions
Yoi1 p41 () 5 Yps1,p42(D)ye oy Ypi1,n-1(2)

forment un systéeme TCHEBYCHEFF sur l'intervalle [a, b].

Le polynéme généralisé h,.,(z) ayant N =n — p — 1 zéros dis-
tincts, sa dérivée h, ., (r) aura n — p — 2 zéros distincts & gauche de .
Mais en supposant A{»*? (x,)=0, nous avons h,,, (2,) =0 et par suite
la dérivée h,., (x) a n — p — 1 zéros sur lintervalle [x,, x,]. Mais cela
est impossible puisqu’un polynéme généralisé formé avec les fonctions
Yp+1.; (%) & au plus » — p — 2 zéros. On est arrivé a une contradiction
d’ou, il résulte que h{"-V () % 0.

Ainsi nous avons démontré dans les trois cas que A":~1V (x,) 5= 0.

Supposqgons maintenant que n, = 1, ce qui veut dire que

No + Ny + oo F 0y =M.

Dans ce cas considérons le polynéme généralisé d’interpolation h (x)
déterminé par les conditions (50) relativement aux points x,, 2y,..., -1,
X;,..., %;_, seulement. En remplacant dans la formule (15) la fonction
f par le polynéme généralisé h, nous avons

S+ AP b (2) =0

ou AQ = 0. Pour démontrer que 8,0 pour ! =1, 2,..., k, il nous
reste & démontrer que h (x,) == 0.

En faisant le changement (54), le polynéme b, (z) vérifie les condi-
tions (57) relativement aux points x,, #;, ..., @,_; seulement.

En procédant comme dans le cas n, > 1, désignons par p l'ordre
le plus grand des dérivées qui figurent dans les formules (57) relativement
aux points x,, @y,..., T4_q.
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Désignons aussi par m,, m,, ..., m, le nombre des points de
Pensemble x,, @;,..., ®,_, qui sont des zéros de h; (x), h;' (),. .., h{® (x).
Nous avons

k-l—ml—l-mz—[-...+mp=n0+nl+...+nkf1=n (61)

On démontre & ’aide du théoréme de ROLLE que la dérivée h;(x) a
kE + m; — 2 zéros distincts sur Dintervalle [z,, x,_,], que la dérivée
h(x) & k + m; + m, — 3 zéros sur l'intervalle [x,, ®..,],..., et que
la dérivée h{P () a

N=k+m+my+ ... +m—(p+1)=n—p—1

zéros sur lintervalle [z,, x,_;].
On démontre comme dans le cas n, > 1 , que

hi(2) = o3 91,1 (@) + 2 Y12 (@) + o0 + g1 Y1 01 (@)
et en posant
(o) = WL Bl g (g

Yo
nous avons

B (0) = g Ys,2 (®) + a3 Ya, 3 (%) + « oo + 01 Y2 41 (@)
On continue de la méme maniére jusqu’a

W Yoy Y15---3 Yp-1] h, (@)
W2Yoy Y1y- -5 Yp-2]

by 1 () = WYoy Y19- -y Yp-3l
et nous avons

by () = &y Yp,p (X) + Opi1 Yppaa (X) + oo o+ @1 Yp a1 () (62)

On remarque que lafonction k, (x) vérifie sur les noeuds xy, ;,. . .,&,_1
des conditions, qu’on obtient du tableau (57), en suprimant la premiére
ligne et en diminuant les ordres des dérivées d’une unite. Il résulte
que le nombre des zéros de h;(x) sur lintervalle [x,, x,_,] est
k 4+ m; +my, —3 et on remarque que ce nombre est égal au nombre
des zéros de h;’ (x) sur lintervalle [z,, x,-,].

La fonction h,(x) vérifie sur les noeuds x,, @,,..., @ ., des condi-
tions qu’on obtient du tableau (57) en supprimant les p — 1 premiéres
lignes et en diminuant les ordres des dérivées de p — 1. Il résulte que le
nombre des zéros de h,(x) sur intervalle [x,, x,_,] est

k+my+my+ .. +m—(p+1)=N,=n—p—1 (63)

ce qui veut dire qu’il est égal au nombre des zéros de h{» (x) sur
Yintervalle [a,, ®,_;].

Les fonctions ¥, , (%), ¥y pt1(®)y -+ .y Yp o1 (x) forment un systéme
TCHEBYCHEFF sur l'intervalle [a, b] et par suite le nombre maximum des
zéros de h, (x), d’aprés la formule (62), est » —p — 1 ¢’est qui veut dire,
qu’il est égal au nombre N,.
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Cela étant, nous pouvons démontrer facilement que & (x,) 5= 0. Pour
cela supposons le contraire c’est-a-dire h(x,) = 0. Nous avons aussi
hy (z;) = 0 et en appliquant successivement le théoréme de ROLLE, on
démontre que chaque dérivée h{(x), h;(x), ..., h,(x) @ encore un zéro
situé & droite des zéros déja mis en évidence plus haut.

On est ainsi conduit a affirmer que b, (¢) a n—p —1+1=n—p
zéros, ce qui est impossible puisqu’on a démontré que le nombre maxi-
mum des zéros de h, ., este n —p — 1. Il y a donc une contradiction et par
suite h(x,) == 0.

Le théoréme 3 est ainsi complétement démontré et nous avons
h"e=D (g,) 5= 0, pour n, > 1.

I1 résulte alors, d’aprés les formules (52) que S, %0, pour
l=1, 2,..., k et d’aprés les formules (47) il résulte que les opérateurs

L:z—l[CPl]a L;—l[%]’ ERY) L;n—l[(\ok]

ne s’annulent pas sur les intervalles (y, ), (X1, Ta)y - - .y (Ty_ys ;) CE qUI
démontre le théoréme 2.
9. Désignons par n — n; — 1 le plus petit nombre de la suite

n—m —1,n—n,—1,..., n —n_, — 1. (64)

La fonction ¢ est continue sur intervalle [z,, x,] ainsi que ses
dérivées successives jusqu’a I’ordre n — n, — 1. Ses dérivées d’ordre plus
grand que n —n; — 1 sont encore continues sur certains sous intervalles
de [z,, ]

En particulier la fonction ¢ est continue avec ses dérivées jusqu’au
nime  ordre sur chaque intervalle [x,, x;], [#, @3], ...y [®Xp_1, Xx]

I1 est trés important pour la suite, de préciser le nombre des zéros
de L, , _.[¢], sur lintervalle (z,, «,). Il est donné par le

Théoréme 4. Le nombre N des zéros de L;_ni_l Le] sur Dinter-
valle (x,, x;)est
N=n+n—my—m+1sin—n,—letn—mn—1<n—mn—1
N =n—mn, sim—mn,—1l<n—n—-1<n—n, —1
N =n—mny sinm—n,—1l<n—n—1Ln—n,—1 (65)
N=n—n—1s8in—n—1>n—n—1len—n—1>n—n,—1.

]

La démonstration de ce théoréme résultera de plusieurs proposi-
tions auxiliaires.

1°. Considérons un intervalle [x,, x,,;), avec j 5= 0 et attachons
2 ses extrémités les nombres » —n; — 1 et » — n;.; — 1. Nous avons la
Premiére proposition: Le nombre des zéros de L:,_,,j_l (o]

et L;""f+1—1 L] sur Dintervalle [x;, x;1,]est m =n;, et m' = n,,,.
En effet, soit m le nombre des zéros de L;_nj_l[cp] sur ’intervalle

[#;, ®;+;). En appliquant successivement le théoréme généralisé de
ROLLE, nous déduisons que L, , [¢] & m — n; zéros sur Dintervalle
(®;, ®;1,). Mais d’aprés le théoréme 2, L;_, [¢] ne s’annule pas sur l’in-
tervalle (x,, x;,,). Nous avons donc m = n,.
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On démontre de la méme maniére que le nombre des zéros de
» > ’
1),,_,,],+‘_1 [¢] sur lintervalle [x;, x;,;) est m' = m;4,.
2°, Considérons un groupe de noeuds z;, x;, ... , x, consécutives de
’ensemble #;, 2,, ..., o, avec leurs ordres de multiplicite n;, ny, ..., n,.
Désignons par » — n’ — 1 le plus petit des nombres

n—mny,—1, n—ng—1, ..., n —n_,— 1.

Nous avons la
Seconde proposition. Le nombre des zérosde L, .. (o]
1

sur Uintervalle [x;, x,) est
m=n;+ny+ ... +n_;8 n—n—-1Ln—n"—-1let n—m—1Ln—n"—1
(66)

De méme le nombre des zéros de L+ [o] sur DVintervalle (xy, x,;) est
r

m=ny+ns+ ... +n 88 n—n—1Ln—n"—1 et n—n/—1Ln—n'—1
(67)

Nous démontrerons cette proposition par la méthode de I'induction
compléte et nous commengons par I’établir pour r = 3.

Supposons que n» —n; —1 < n —n; —1 et désignons par m le
nombre des zéros de L;_”i_l [¢] sur 'intervalle [x;, «;). Nous pouvons

appliquer le théoréme de ROLLE généralisé & I’opérateur L‘;_”{_l [¢] et nous
déduisons que L:-”I [¢] & m — 1 zéros sur l'intervalle [x;, x3), ..., et
que L;—né—l [9]a m — nj + ny zéros sur lintervalle [x], ;). Mais d’apreés
la premiére proposition L '  [¢] an, zéros sur Pintervalle [, z;) et n;

1)—”2—
zéros sur Dintervalle [«;, ;). Nous avons donc m — n; 4+ ny = 2n,,
d’ou il résulte que m = n; + n;. La formule (66) est donc démontrée
pour r = 3.

On démontre de 1a méme maniére que si # —n; —1 < v — 0y — 1,
le nombre m’ des zéros de L;_"é_l [@] sur lintervalle [x;, ;) est m' =
=n,; 4+ n; et par suite la formule (67) est démontrée pour r = 3.

Supposons que la seconde proposition est vraie pour r = 3, 4, ..
.o.y I — 1 et démontrons la pour r = 1[.

Désignons pour cela par » — n; — 1 le plus petit des nombres

n—mnyg—1,n —n;—1, ..., n—n;_; —1

et par z; 'un des points xj, @, ..., 2;_; qui correspond a n — n; — 1.
Nous pouvons appliquer la seconde proposition aux groupes de points
(ay ..., @) et (zf, ..., x) dont le nombre des points est plus petit
que 1.

Soit m le nombre des zéros de L;-n1-1 [¢] sur Pintervalle [«], ;).

En appliquant le théoréme de ROLLE généralisé, il résultera que L; .  [¢]
7
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aura m — n] +n; zéros sur lintervalle [z, ;). Mais en appliquant
la seconde proposition & Dlopérateur L} ..  [¢]et & Pintervalle [z, x;)
)

et ensuite 3 lintervalle [}, x;), nous déduisons que le nombre des zéros
de L, . [¢] sur lintervalle [x;, ;) est
J

(g 4+ ..o +nf) + (0] + ... +n-y)
Nous avons donc
m—n +nf = (i + ... 0 F ()
d’ou il résulte que
m=mni +n,+ ... + 0,

Ainsi nous avons démontré la formule (66).
On démontre de la méme maniére que le nombre des zéros de
L;_n;_l[cp] sur lintervalle [z], x;) est

m =ny +n;+ ... +n

et par suite la formule (67) est démontrée.
3° Désignons par x, le noeud qui correspond & n» — n;, — 1 et suppo-
sons que les nombres

n—m—1,n—m,—1, ..., n—my_y —1

sont plus grands que n -— n, — 1. Nous avons la
Troisieme proposition. Lenombre des zéros deL;-.,.h_l[cp]
sur Vintervalle (xz,, x,) est

m=mn+n+... Fnp8tn—n—-—1<n—n,—1 (68)
m=n,—1+n+n+ ... +0-, 80 —n,—1>n—n,—1. (69)

Nous démontrerons cette proposition par la méthode de l’induction
complete et nous commencons par établir les formules (68) et (69) pour
h=1.

Supposons que » —n, — 1 < n —m,; —1 et désignons par m le nombr.:
des zéros de L:_nl_l[cp] sur lintervalle («,, ;). On peut appliquer succes-
sivement le théoréme de ROLLE généralisé et nous déduisons que L} _, [¢]
a n —n, zéros sur intervalle (x,, x;). Mais d’aprés le théoréme 2, L;_,[¢]
ne s’annule pas sur l'intervalle (z,, ;). Il résulte’ que m = n, et la
formule (68) est démontrée.

Il en est autrement si n — n, —1 > n — n; — 1. Il faudra tenir
compte dans les raisonnements précédents que d’apreés les conditions aux
limites (43) du point g, L;_,, - [@]y Li_,, [@])y - -+ y Lj_po—1 [¢] s’annulent
en z,. En appliquant successivement le théoréme de ROLLE généralisé nous
déduisons que L}_, [¢] s’annule en x, et en m points de lintervalle
(2o, ;). On continue de le méme maniére et on arrive & la conclusion
que L, , ,[¢]s’annule en , et en m points de l'intervalle (z,, ), que
L;_,, [¢] s’annule en m points de 'intervalle (z,, x,), que Ly_,,.: [¢] s’an-
nule en m — 1 points de ’intervalle (z,, 2,),..., et que L,_, [¢] s’annule

4 — c. 3477
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en m — m, -+ 1 points de P’intervalle (x,, x,). Mais d’aprés le théoréme 2,
L;_,[¢] ne s’annule pas sur lintervalle (z,, ,). Donc m =n, — 1 et
la formule (69) est démontrée.

Supposons maintenant que la troisiéme proposition a été démontrée
pour h < j et démontrons la encore pour h = j.

Le nombre » — n; — 1 étant plus petit que n —n; —1, n —my, —1, ...
ey m—m;_y— 1, désignons par » — n, — 1 le plus petit des nombres
n—mn —1,...,m —n;_; — 1 et par x, le noeud le plus approché de z,
qui correspond a n» — n;, — 1.

D’aprés les conditions aux limites (14), la fonetion ¢ (x) est conti-
nue sur lintervalle [x,, x;], ainsi que ses dérivées successives jusqu’a
Pordre n — n, — 1. Désignons par m le nombre des zéros de L;_,. i[¢]
sur lintervalle (xz,, ;).

Supposons n — n, —1 < n —n, — 1. En appliquant successive-
ment le théoréme de ROLLE généralisé, on déduit que L; ,_,[¢] a
m — n; + n, zéros sur l'intervalle (wz,, ;).

Mais nous avons » — n,—1 < n — n; —1<n—mn, —1 et le nombre
des points x,, @, ..., x, étant plus petit que j, nous pouvons appliquer
a Dintervalle (x,, x;) la troisiéme proposition; le nombre ses zéros de
L, _n,-1[@] sur Pintervalle (zo, ;) est n, +ny + ... + n;. D’autre part
le nombre des zéros de L;_, _,[¢] sur Iintervalle [,, «,) est donné par la
seconde proposition ; il est égal a n, + ... + n;_;.

Nous avons donc

m—ny;+n =M+ .. +m)+ 0+ ..+ 0y,

d’ou il résulte que
m=mn; +ny+ ... +n
ce qui démontre la formule (68) en général.

Supposons n — ny —1 =n — n; — 1, c’est-a-dire n, = n,. Le
nombre des zéros de L‘,",__,,i_l[cp] sur lintervalle [x,, «,) est m + 1, parce
quenous avons L, _,,_[¢], =0. En appliquant successivement le théoreme
de ROLLE généralisé nous déduisons que L}_, [¢] a m zéros sur l'intervalle
(@oy @;), L:_,,i_,_l[cp] a m — 1 zéros sur lintervalle (z,, @;),..., L} _n -1 [¢]
a m + 1 — n; + n, zéros sur lintervalle (z,, x,).

D’autre part, ayant » —n, — 1 < n — n, — 1 nous pouvons appli-
quer la formule (68) relativement & l'intervalle (xz,, x,) et ensuite nous
pouvons appliquer la seconde proposition & Dintervalle [z, x;). Le
nombre des zéros de L;_, ,[¢] sur Dintervalle (w,, ;) sera égal &

(ny +mg + ... +m) +(n +nyy + ... + n;;). Nous aurons done
mA+1—n+n=0m 4 ...n)+m+ ...+ 0
et par suite
m=mn,—14+n 4+ ... +n,,

parceque n; = n,. La formule (69) est donc démontrée pour n — n,— 1 =
=n—mn; — 1.
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Supposons m — my —1 >mn — n; — 1 Nous avons trois cas & exa-
miner selonque » —n, —1<n —n —loun —ny,—1>n—m — 1.

Dans le premier cas, nous avons L. w1 [9],= 0, L;‘,_,lj [el, =
=0, ...y Lnn,-1[9], =0.

En appliquant successivement le théoréme de ROLLE généralisé, nous
déduisons que L;_, [¢]a m + 1 zéros sur Pintervalle [z, x;), L,‘:_,,j+1[<p]
a m + 1 zéros sur lintervalle [x,, x,),..., L s-ilelam+1 Z6éros
sur lintervalle [z,, x;). Ensuite L, , [¢] a m zéros sur Dintervalle
(®oy @)y «+vy Ly al@] @ m 4+ 1 — n, + m, zéros surlintervalle (x,, ;).

Mais nous pouvons appliquer & Dintervalle (x,, #) la formule
(68) et ensuite la seconde proposition & l'intervalle [#,, x;). Il résultera
que le nombre des zéros de L;_,,J,_l [¢] sur Yintervalle (z, ;) est

(ny +n, 4+ ... +m) 4+ (n, + ... 4+ n;_;). Nous aurons donec

m4+1—n+m=m+ ... 4+n)+m+ ... +n_y)
et par suite
m=mn,—1+n 4+ ... +n;_,.

La formule (69) est donc démontrée dans ce cas.

Dans les autres cas, nous avons n —n, —1<n —mn, —1 et
n—"n,—1>n—mn —1.

NOIIS avons L:—n,-—l [q’];o = 0’ L:—n,-[CP]% = O’ cty L;—nl—l[q’]xo =0.
Le nombre m des zéros de L;_,,],_l [¢] sur Dintervalle (x,, x;) coincide
avec le nombre des zéros de L;_, _, [¢] sur Vintervalle (z,, a;).

D’autre part, pour déterminer le nombre des zéros de Ly n-1l9]
sur Pintervalle (x,, ;), nous pouvons appliquer & l’intervalle (z,, x,) la
formule (69), parceque n — n, —1 > n — n, — 1 et nous avons supposé
que cette formule est vraie pour ! < j. Ensuite nous pouvons appliquer
4 Dlintervalle [z, x;), la seconde proposition. Nous aurons

m=mn,—1+mn4+ ... +ny+n4+ ... +n,_,.

La formule (69) est ainsi démontrée en général.
Remarque. Le nombre n — n», — 1 étant le plus petit des nombres

n_nl—l’n'—nz_l’ ...,n—%k_l-—l

désignons par x;,, i,, ..., %, les points qui correspondent &4 n — n;, —1,
le point x; étant le plus rapproché de x,.
Le nombre des zéros de Ly, -1l @] sur Vintervalle (x,, x;,) est donné

par
My =N +ng+n3+ ... Fn, 80 —n—1<n—mn—1 (70)
ou
m=n—1+n+ ... + 0,980 —n,—1>n—n—1. (71)
En effet si n—mn,—1 <n —mn,—1, le nombre des zéros de I’;-”e—l Lo,
sur lintervalle (z,, ;) est égal 4 la somme des zéros de Ly 1 [] sur
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les intervalles (2o, @i,), [®i,, %i,)y +++y [®iy—1, @i,) qui sont donnés par la
formule (68) et la seconde proposition. Nous aurons donc
my =M +...+n)+ M+ F )+ F R+ )
ce qui démontre la formule (70).
Sin—mny—1>n—mn, —1, nous aurons
My=(No—1+ny 4. + N, 1) + (M1t oo+ 03,)+ oo (B 11+ 04,)
et nous pouvons écrire cette formule sous la forme
m,=n,—1+mn 4+ ... + ni,_y,
puisque n;, = n;,. La formule (71) est donc démontrée.
4°, Désignons par z, le noeud qui correspond & » — n, —1 et sup-
posons que les nombres
’nz'—’nh+1 _‘1’ ')’b—')’bh_l.z—l, LIEE] ”—nk_l—'l
sont plus grands que n — n, — 1. Nous avons la
Quatriéme proposition. Le nombre m’ des zérosdeL:_nh_l[cp]
sur Uintervalle [x,, x;) est donné par la formule
m =n, + N + oo F Mg st m—mp—1<n—mn—1 (72)
m =n, +Nygs + ... +—1 8 n—mp —1>n—n,—1 (73)
La démonstration est analogue & la démonstration de la troisiéme
proposition.
On peut ajouter une remarque analogue & celle faite & propos de la
troisiéme proposition.
La demonstration du théoréme 4 résulte immédiatement. Désignons
comme plus haut par » — n, —1 le plus petit des nombres

n—n—1,n—n,—1, ..., —n; —1

et par x; vn des points qui correspond & m — m; — 1. D’aprés les
troisiéme et quatriéme propositions, le nombre N des zéros de L7 , _.[¢]
est la somme m - m' des zéros de Lj , i[¢]sur les intervalles (,, ;)
et [x;, x;). Ilrésulte que

N=(n+...+n)+n;4+...4+n_) sin—n,—letn—n—-1<n—n—1
ou bien
N=@ng+...+m)+®u+...+my—1)sin—n,—1<n—n—-1Ln—n—1
ou bien

N=(-14n 4+ ... + 7))+ ®m+ ... +ny)
sin—m—1<n—m—1Ln—ny—1
ou bien
N=(-14+n+ ... +n_) + @0+ ... +m—1)

sin—m—1>n—m—1etn—n—1>n—mn—1.
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Tenant compte de la relation

n+1="mn 40 + ... + Ny+ My,

les formules précédentes se réduisent aux formule (65) et le quatrieme
théoréme est par suite démontré.

10. Théoréme 5. La fonction ¢ de la formule (15) ne s’annule pas
sur Uintervalle (x,, ;).

Pour démontrer ce théoréme reprenons le nombre » — n; — 1, qui est
le plus petit des nombres de la suite

n—n —1,n—n,—1, ..., % — Ny — 1.

La fonction ¢ est continue sur ’intervalle [z, x,] avec ses dérivées
successives jusqu’a lordre n — »; — 1. Elle satisfait aux conditions
aux limites (14), que nous avons écrit aussi sous la forme (43).

Si la fonction s’annulerait au moins une fois sur I'intervalle (z,, x;),
on pourrait calculer le nombre N’ des zéros de L;_, _,[¢] sur P'intervalle

(%o, x,) en appliquant successivement le théoréme de ROLLE généralisé &
Ly [el, Li[9), ...y Li-n,-1[e]. En comparant ce nombre avec le
nombre N donné par le théoréme 4, nous verrons qu’il y a une contradiction,
d’ou résultera que la fonction ¢ ne s’annule pas sur intervalle (z,, x).

Pour calculer le nombre N’ nous devons tenir compte des condi-
tions aux limites (43) relativement aux points z, et x, et aussi des relations
qui existent entre les nombres » —n, —1, n —n;, —1 et n — n, — 1.

1°. Supposons que n — ne—1<<n—mn,—1, n —m—1<n—mn;, —1
et, pour préciser, que » —n, — 1 <<n — n, — 1.

Le théoréme de ROLLE généralisé montre que si la fonction ¢ s’annule
en un point de I'intervalle (x,, ), alors L] [¢] s’annule en deux points
de Y’intervalle (x,, ), ..., Ly n-10¢] s’annule en » — m, points de
Vintervalle (z,, ).

Ensuite en appliquant toujours le méme théoréme nous déduisons
que L;_no[cp] s’anulle en n — n, 4+ 1 points de l’intervalle (xz,, x,), ...
ooy Ly p —1[@] s’annule en n —mn, +1 points de lintervale (x,, @)-

Nous continuons par le méme raisonnement et nous déduisons que

L, _, [¢] s’annule en n — n, + 1 points de l'intervalle (wx,, @), ..., et
que L,,_,,’,_1 [¢], s’annule en
N =n—n,+n —n +2 (74)

points de l'intervalle (a:o, ;).

On arrive & la méme conclusion si n — e —1>n —m — 1.

2°. Supposons que n —ny, —1 < n —n, —1 L n—mn, — 1, On
démontre de la méme maniére que

N =n—mn, + 1. (747)

3°. Supposons que n —n, —1<n —n;—1Ln —n,— 1. On dé-
montre de la méme maniére que

N =n —mn + 1. (74")
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4°, Supposons que m —n,—1>n—n;—1 et n —n,—1>n —n;—1.
On démontre de la méme maniére que

N =n —n, (74")

Le nombre N’ des zéros de L;_,. _, [¢] sur I'intervalle (z,, ;) calculé
en supposant que la fonetion ¢ s’annule au moins une fois sur Pintervalle
(2o, ;) €t qui est donné par les formules (74), (74'), (74"), (74""") dé-
passe d’une unité le nombre N donné par le théoréme 4.

Il y a donc une contradiction, d’oi il résulte que la fonction
¢ ne s’annule pas sur ’intervalle (x,, ;) et par suite le théoréme 5 est
demontré.

11. Désignons par R le second membre de la formule (15) c¢’est-a-
-dire

E={"¢L,f1ds. (75)

%o

D’aprés le théoréme 5, la fonction ¢ ne s’annule pas sur l'intervalle
(@4, x,). Nous pouvons alors appliquer le théoréme de la moyenne et
nous aurons

E=Lf] (" odo (76)

%o

ol £e(wy, o).

Pour calculer ’intégrale du second membre de la formule (76), trai-
tons le probléme suivant.

Trowver la solution 0 de Uéquation différentiellle

L [0]=1 (77)
qui satisfait aux conditions
0(x,) =0 0(®)=0... O6(m)=0  6(z)=0
0'(z,) = 0 0'(r;) =0... 0(xy) =0 0'(x,) =0 (78)

oooooooooooooooooooooooooo

0D () =0 O™V () =0... OaD (@, ;) =0 67 () =0.
Cette solution est de la forme

N@=Kwd@+&%ww+n-+wawdw+Y G(z,8)ds  (79)
Xk

ou G (x, 8) est la fonction de CAucHY donnée par la formule (17) et ol
k,, K,,..., K,_; sont des constantes & déterminer par les conditions
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(78). On trouve sans difficulté que la fonction 0 est donnée par
1’équation

Yo (@) ce Yu-1 (20) ka G (2, 8) ds

, , %k 0G
Yo (@) cee Yn-1 (%) ) — (@, 8) ds
k. gre—1 @
YD (o) Yo (@) S Py (o, s) ds
ak =0 (80
Yo (24-1) Yn-1 (0,-1) S G (w1, 8) ds 0
Tk-1
o _— 2k grka—1 @
YD (@) .. YSRY (2 _q) S%d Py (®_,, 8) ds
Yo (@) cer Ynen (@) 0
yoe (z) ... YUY (@) 0
ek
Yo () TR )] S G (w,s) ds + 6 (x)

En remplacant dans la formule (15) la fonction f par 6, nous aurons

ka ¢ (@) dw = Ajpe=1 g1 (a) (81)

ou
D(@gy- -y @oy Bryevoy Trgevny Bpogye v vy Tem1y Tpye oy T)

2's

n nk_ o —1
445:;1‘;—1) — (J Ty k1 nk (82)
D (@gyeevy Loy Byyevey Bygesey Tpogyeeoy Tp—1y Liyeo oy Tp)

—

Ny ny Nf—r ng

La dérivée 6"-1 ge déduit de la formule (80). Nous aurons finalement

S”'“ o () do = P, (83)

0
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ou
— Po=D71 (@gye ey Bogeeey Lpgeoey &) »
: —_—

——
no nk

Yo (@) oer Yuy (@) S G (@, 5) ds

, , % 0@
Y4 () cee Yy (@) Sgg(wo,s)ds_

.......................

Zk G-l G
YD () ye® (@) (o, 8) ds
2 600”0 1
.......... (84)
2k
Yo (@ _1) Yn-1 (Le-1) S G (@1, 8) ds
Tk_1
73 0""-‘_1G
YD (@ g) o YR (Do) S ———— (%1, 8)ds
_— O xgtk-—1
Yo (wk) Yu-1 (mk) 0
YD (@) ... YD (@) 0

Tenant compte du théoréme 5 et de la formule (83) il résulte que
le signe de la fonction ¢ sur Dintervalle (x,, x,) est le signe du nombre
P, donné par la formule (84).

En revenant & la formule (76) nous pouvons écrire

R = P, L,[f), (85)

ot P, est donné par le formule (84) et £e(x,, x;).
I1 résulte alors que

|B| < Py M,, M,= sup |L,[f]| (86)

(%o, 2k

Prochainement nous donnerons des applications importantes de la
représentation de la différence divisée généralisée par une intégrale définie.

Recu le 2 mai 19565
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