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 LA REPRÉSENTATION DE LA DIFFÉRENCE DIVISÉE
 GÉNÉRALISÉE D'UNE FONCTION PAR UNE INTÉGRALE
 DÉFINIE DANS LE CAS DES NOEUDS MULTIPLES (II)
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 1. Considérons une fonction / e Cn [a, b] et к + 1 noeuds
 x„ , xk multiples d'ordres n„ % où a x0 < хг < . . .
 . . . < xk <! b et w0 + %+... + %=« + 1. La différence divisée de
 la fonction /(a?) sur ces noeuds peut être représentée par une intégrale
 définie

 1 x0 ... a#"1 fixo)
 (1)' (x„y . . . (xr1)' /'(®.)

 (l)(«o-l> (Жо)!"»-1' . . . (а«-1)(я.-1)/(яо-1) (oo0)

 V (x0 y..., x„ ļ...t xk xk)

 * ' ** 1 xl -1 f(xk)
 (1)' (xk)' (ХГ1)' f'(xk)

 (l)*"*-1» (Ж»)'"*-» (aç-1)«"»-"/!"*-« (xk)

 = ' k <? {x) pn)(x) ČLX (1)
 J*,

 et on écrit aussi cette formule sous la forme

 Çxk

 [x0 ,...,x0,...,xk,...,xk-,f] = ' <p (a?)/<»> (x) da? (2)
 "о nk *x'

 La formule (2) a été donnée pour la premiere fois par L. Tchaka-
 loït [5] et nous l'avons retrouvée dans notre travail [2]. Nous avons
 fait une étude approfondie de la fonction <p (a?) et nous avons démontré
 notamment qu'elle est positive sur l'intervalle (x„, xk).
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 Dans ce travail nous étendons la formule (1) au cas où le système

 1, X,..., xu,... (3)

 et remplacé par un système

 y0(x), y1(x),..., yn{x) (4)

 sur lequel nous faisons les mêmes hypothèses que dans notre travail
 sur la représentation de la différence divisée généralisée d'une fonction
 par une intégrale définie dans le cas des noeuds simples [3]. Cela nous
 permet d'introduire les opérateurs

 jr
 ЩУо,У1,- • -,yn-ii

 et de continuer la théorie déjà exposée dans le cas des noeuds simples.
 Dans la première partie de ce travail, nous démontrerons la formule

 Уо{х0) Viioc „) . ..0„_i(®o) fine »)
 Voix o) yi(x o) • •• y»-i(®o) /'(®o)
 » . • •

 1 уа0~г) {X0 )i/i"0-1) (®0) . . . 2/ÍT-T1 (®o) /(n,_1) (®o)

 D . . ļ X^y^fX^

 ^ у 0 {хк) Ух (Хк) . . . уп_! (хк) f (хк)
 Уо (®») у'х Ш • • • У'п-1 ( хк ) /' (®*)

 (®*)уГ*_1) (ж»). . • 2/Г-Г1' {хк)}{Пк~г (хк)
 Схк

 = <р i, [/] àx (6)
 J®«

 ou

 У О (®o) 2/l (®o) • • • Уп-l (®o) y» (®o)
 yS (®o) yí («•) • • • Ž/»-l (®o) (®o)

 у?*-1!®.) y?4-1^.) ...y{:°ī4xo) y»0-1' (®o)

 D (xa f..., XQ y.., x^f^yx^ =

 Пк Уо (хк) У1 (®i) • • • У»-1 (®*) Уп (хк)
 У0(хк) У'Лхк) •••y'n-i{xk) У» (®fc)

 у{ок1) (Хк) уГ*_1) {хк) . . . уГ-Г^Лу»"*-1' (®fc)

 (7)

 Dans la seconde partie de ce travail nous étudierons la fonction
 <p(a?) et nous démontrerons qu'elle ne s'annule pas sur l'intervalle {x0 , xk).
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 § 1. Problème aux limites.

 2. Considérons les fonctions / et ф eCn [a, b], l'opérateur

 Ln [/] = = /<«> + ^ (X) /(»-« (x)f (8)
 W[y0,y!,. . .,Уп- 1]

 et son adjoint

 i:№ = (-l)nr-Kr" + ...+ (- 1)» a. ф]. (9)

 Entre ces opérateurs nous avons l'identité

 Ф^л/]-д:[ф] = (Я[/,ф])' ao)
 où

 -HT/, ф] = ф/'™-1' -[ф'-К Ф)]/<"-2> +[ф"-(«1ф)' + (а2ф)]/(м-3> -

 1)-1 [ф(-1) - (Й1 ф )<"-» + ...+ (- I)-1 («„_! ф)] /. (И)

 Nous prenons sur l'intervalle [a, ò] les noeuds x0, xlf. . iek
 multiples d'ordres où x„ < хг < . . . < xk et n0 + % -f ...
 . . . + % = » + 1. Aux intervalles [>„, жх], [ж1; ж2], . . [%_!, жй] nous;
 attachons les fonctions <pv <p2,. . .,9,., solutions des équations différentielles

 [?J = o, i? [ф2] = о, . . . , l: [9ь] = о ( i2)

 Si nous remplaçons dans l'identité (10) la fonction ф par <р,- et si
 nous intégrons les deux membres de жг_х à x.¡, nous avons

 = P <p,Ln[f]ãx.
 xj-t J*i-i

 En faisant la somme de ces formules relativement à j = 1,2, к
 membre à membre, nous avons

 Pi)]*' ='*'Ln[fl àx (13)
 )=i ж,--, . '

 où la fonction <p coïncide sur les intervalles '_ха, жх], [a?x, ®2], . . [ж4_! xk]
 avec les fonctions <px , <pa , . . . , .

 Si l'on introduit les conditions aux limites

 <Pi (®o) = 0, (pi (x0) -0, . . (®„)= 0

 <P2 («î) = 9i (xi)> 92 («1) = <pi («1), • • -, (Xj) = (a^) (14)

 9k(Xk-l) -9k-l(Xk-l)ì (Pk(Xk-l) = 9k-l{Xk-l)l • • •) (Pk>~"k~1~1> (Xìc-l) ~

 = 9?-"*-,_1,(®*-1)

 9k (®k) = °> 9 к ( xk ) = °> • • - , <ï(£-nk~X) (xk) = 0

 3-е. 3477
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 et si nous supposons que le système d'équations différentielles (12)
 avec les conditions aux limites (14) admet une solution, alors la for-
 mule (13) se réduit à une formule de la forme

 Y (*•) + (%)+••• + +
 = 0 J2=0 3]c=0

 + s (xk) = y <ļLn [/] di», (15)
 Эк+1 • xo

 où nous avons

 ¿<°> = - ^»-"(a?,), Aļ» = <pļn-2) (x0),. . ., J.'»."1' =(-1)"» 9ļ»-"*i(®„),

 ¿<o> _ 9(»-i (a?i) _ ÇÍ.-1» ¿<i> = _ [фГ2> (Ж1) _ q4-í (ą)],. . .

 . . = ( - l)"«-1 (0?i) - (pf~n¿ " (í^)]

 ■^■k-1 - f<k-l) {xk-ì) фЛГ 1>(a?4-l)> = [TíT-i"' (Xk-l) Ф*Г 2> (%-l)]> • • •

 = (-l)"^-1 [фГ-Т^Ч^-х) - ФГ^'Ч^-Х)]

 = фГ1^), 4L" = - фГ2) • •> ¿¡Г*-" = (-1)"*-1 ФГ~и&) (**)•
 А

 Nous démontrerons que la formule (15) se réduit à la formule (6)
 qui fait l'objet de ce travail. Pour cela nous devons d'abord intégrer
 les équations différentielles (12) avec les conditions aux limites (14).

 3. Considérons la fonction de Catjchy

 G (x, s) = y, (x) z0 (s) + уг (ж) (s) + . . . + уп_г (x) zn_x (s) (17)
 OÙ

 Z = ( _1)»-1 z 1 , _1)B-2 %!Уг)-чУ»-1]
 Wíy0,y1,...,yn-ď 1 Wfoo, !h,

 / ио^ТУо» &»•••» У.-«]
 . . . , zn_ i - {-±) - -

 On sait que si nous considérons les dérivées partielles

 f . (X, s) = yi" (ж) zf (s) + y[h) (x) zf (s) + . . . + y<*h (x) zlih (s), dxh . ds>

 nous avons

 dh+i G Í0 sih+j<n J - l
 dař ds] l(- 1)' si h + j = n - 1

 Il résulte alors que la fonction de s
 dAG

 eh(x,s) =ļ^(x, dAG dxh s) (19) dxh
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 est une solution de l'équation différentielle L* [ z ] =0 et satisfait aux
 conditions

 f)C' fln-h-2Ç) Лп-Л-10
 Qň(x, ЛУ ' X) ' =0, - " (X, X) =0, ... , ЛУ ' ' as ... , dsn~h~2 ds n~h~1

 (20)

 En remplaçant x par xt et s par x, nous déduisons que la fonction

 9aW = (-ir-19»(^-1,4 (21)

 qu'on peut encore écrire sous la forme

 ylh) (®ł- 1) y™ • • • y»-i

 ( y» (®) 2/1 (®) • • • Уп-i (®)
 = . .■ y . ' (22)

 i/o'"-2 (œ) ž/ín_2) (®) ... у{Г? (®)

 est une solution de l'équation différentielle X* [г] = 0 et vérifie les
 conditions

 e,»(®,-i)=o, 0« (»,_!) = o,. . ., 0|rÂ_2,(^-i) = o, er "-11 = i (23)

 Les fonctions 6t7t (ж) sont utiles à l'intégration des équations diffé-
 rentielles (12) avec les conditions aux limites (14).

 4. Les fontions

 <h(®) = 0»,(®)
 h=0

 Wq - 1 Wļ 1

 ф.(®)= ъ (-1 01#Л®) + s (-l)"-'*-1^» 0«,(®)
 3*1 = 0 3*2 = 0

 Ф* («) = s' ( - l)"!-il-ł 01,, (ж) + "g1 ( -1)«->W 0а;г(ж) + . . .
 3*1 = 0 ¿2 = 0

 • • • + (-l)*-'*-1^ 0wt(*)
 *k=0

 vérifient les équations différentielles (12) et les conditions aux limites
 (14) relativement aux points x0, x17. . xk^.

 Il reste à déterminer les constantes O*/1', G^-], . . ., C)¡k' de manière
 à satisfaire aussi les conditions aux limites (14) du point xk .

 Remarquons qu'on peut écrire la fonction ç;. aussi sous la forme

 9k (x) - U {x) T (x) (25)



 36 D. V. IONESCU 6

 OÙ

 u (X) = -

 ^'.Уо,У1,---,Уп-г'

 0¿ 01 ...CU

 У о (®) ух (а?) ... ул.г (х)
 Т{Х)= у'Л<с) у'Лх) ...у'п-Лх) (27)

 у{0п~2) (X) y[n~2ì {х) ... ž/ÍT"!21 ( X )
 avec

 Có = S1 °о1> (Xo) + S1 Cp y^ (x1)+... + n"ļ 1 Ct' у™ (Хк-г)
 ?! - 0 j2= О jjc=Q

 w0-l Vļ - 1 nk-i-l

 Cļ= Y, C{oh)y^(Xo)+ S C^y^(x1)+...+ Y, ОДуЛ» (xk-i) (28)
 5*! = 0 î'2 = 0 ¿fc = 0

 «0-1 Wl-1 Wfc-1-1

 S co'l) (®») + S °i'v 2/Ä (®|) + • • • + S ад ге' (®*-i)
 ?i=0 ?2 = 0 Ôk= о

 En procédant comme dans notre travail [3], on peut montrer qu'on peut
 écrire les conditions aux limites (14) du point xk , sous la forme

 T (xk) = 0, T' (xk) = 0, . . . , T"*-»*-1' (xk) = 0 (29)

 et en faisant les calculs, on est conduit aux équations

 Уо Ю У! ( xk ) . . . уп_г {xk)
 yó (xk) y'i ( xk ) . . . y;_i (xk)

 y(0nk-v(xk) <*_1)(®*) • • • îC-Г" (®*) _n - u' /om r / /i» /i/ _n - u' r O0 Oļ ... Ow_!

 <4+1) (®») yfŁ+1) (ж*) . . . y'n%+1) (хк)

 Уо~1] i®») 2/ìn_1> (®t) • • • Уп- ił) (®»)

 Уо(®*) ^i(®) • • • У»- i(®t)
 yí(®*) yí(a») • • • У'п-Ахк) . .

 У(0Пк)(хк) У[Пк)(хк) ■ . - У{"к[{хк) _ yó(^) 2/í(%) • • -Уп-Ач)
 Q! Q> (JI _

 У'ок+Чяк) У[Ч+2)М • ■ ■ y^ť^k) Vļ 2>(x^y'£~2)(xkï • • -Уп-12>(хк)
 ko (jl ... Сп^

 Уо'1}(хк) у[п~1]{хк) . . . у%1?{хк)
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 Considérons le déterminât

 Уо(®*) У' (®*) -'-Уп-ЛХк)

 ^ •••*-<'"*> (31)
 2/ón-1) i®*) ž/in-1) (®t) • • • Уп-1} (Ą)

 et désignons par le complément algébrique de l'élément situé sur la
 ligne de rang i et sur la colonne de rang 1c. Alors on peut écrire les équa-
 tions (30) sous la forme

 Bnk+ i.i Ci + Bnk+i,2 OÍ + . . . + Bnk+ i,B c;_i = о
 -ß"fc + 2.1 C'o + Впк + 2,2 C'l + • . . + Впк + 2,п C'n_ j = 0

 •®n.i có + Bn 2 oj + • • • 4* Вп п о;_1 = о.

 On vérifie facilement que les équations (30) ou (32) ont les solutions

 C¡> = Уо (aok), C[ = уг ( xk ), . . . , <?;_! = yn-i {xk)

 C'a = y¿ (®*), Ci = 2/Í (a?*), . . o;.! = y;_! (a?ft) ^33)

 o¿ = ^*-1' (®4), oí - (®É) , o;_x = jer" Ю
 et plus généralement

 nk~ 1 nJfc-l

 0¿= - £ c^y^(xk), C[ = - S 0<f*+"y<'**>(®t),...
 4+1=0 4fi = 0

 (34)

 o;_x = - s' objevte)
 4+i=0

 où Oļ0), Oļ.11, . . . , Oļ."*-11 sont % constantes quelconques.
 En remplaçant dans les équations (28), les constantes OÓ, Oí,...,

 0»-i par les seconds membres des formules (34) nous avons le système
 de n équations linéaires et homogènes

 Yj coh1 yť (xo) + s c"'2) y'o2) ю + . . . + k~t, °k- 1 y'ok ' c^-i) +
 ?i = 0 ?2=0 4 = 0

 nÄ_i

 + s C'*^y^(xt) =0
 *'*+1=0

 «0-1 Wj - 1 nÃ-i~l

 £ 0*> 2/W (a0) + X 01« г/«-» Ю + . . . + £ Ct' yfk) K-i) +
 9 1=0 j2 = 0 4 = 0

 + C^y1,*+1»(Ą) = 0
 4 i i=o
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 ^o-l *»i-l Ч-i-l

 E WviïMo) + S c^y^1(x1)+...+ £ с^у^Лъ-!) +
 ?1= о 22 = 0 Jfc = 0

 Wfc-1

 + S ^'2/?_+i>(%)=0
 4+1=0

 (35)

 pour déterminer les n0 constantes C;'1', les % constantes . . . , les %
 constantes C{¿k+l).

 Le rang de la matrice des coeficiente du système (35) est n, parce-
 qu'on peut former avec les éléments de cette matrice, au moins le déter-
 minant

 D (x0 ļ , x01 Xļ , . . . , oCļ , . . . , xk , . . . , xk)
 n о n, "fc

 qui est différent de zéro, quels que soient les noeuds x0, хг,...,хк sur
 l'intervalle [a, ft], cela étant une propriété importante des fonctions
 de la suite (4), qui résulte des hypothèses faites dans notre travail [3].
 Il résulte alors qu'en désignant par JĄ0', M^k~x les déterminants
 qu'on obtient de la matrice des coeficiente du système (35) en suppri-
 mant la première, la seconde, . . . , la dernière colonne de la matrice,
 nous aurons :

 Cb0) Œ C[," = " . " . . ' = су1"-1' =
 Jff Œ - M i1» " = " . . . ' = (-1)"»-1 Л£Г-1)

 cļ0) _ oļ11 _ ' _ cr1"1' _ . . .
 ~~ (-i)«» жг _ ~ (- i)"»+i _ ' ~ (-1)««+в.-1 жг--1 . . . (36^

 . . . _= <?Г = ci" =
 (_1)Яо+--- + к*-1 JfļO) (_l)»o+--- + ní:-i+l Jfļ.1*

 рлпк- 1)
 = . . . =

 (_1)».+ •••+»*-! Мкк~1}

 où M est une constante que nous préciserons plus loin.
 Les constantes Ctf}, Cl,1',..., 0ļ"4_1) sont ainsi déterminées et par
 suite les fonctions <p1} cp2 , . . . , <pfc sont aussi déterminées. La formule (15)
 est donc valable et nous pouvons l'utiliser.
 En écrivant que le premier membre de la formule (15) est nul lorsque
 la fonction / est remplaçée par y„, yXi. . ., у„-г nous avons un système
 de n équations linéaires et homogènes identique au système (35). On
 peut résoudre ce système par des formules analogues aux formules (36).
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 En prenant pour les deux suites de rapports égaux la même constante
 M, nous aurons les égalités

 Ag» = or, ¿4" =

 Aļ0) = Cf , ¿11' = Cļ1',. . ., j.«"«-» = О«"'-1» (37)

 ¿g» = Cg», = Ci1»,. . = C<"*-1)

 et par suite

 ¿г = ЖЖ1,0' At = (-lfoiOff,. . ., ¿g» = (_l)»o+---+M*-. MM^
 A& = - MM™ (-l^MM^,. . ., A^ = (-1)«.+ -+"*-. + 1 JOfJ"

 Ap- D= (- 1)«»-1 ЖЖ^-1',

 = (_i)m+-+»t-i MM%k-v (38)

 Si nous remplaçons maintenant dans la formule (15) les coefficients
 J.ļ>0), -á^11,..., A<£k-u par les formules (38) nous aurons

 <pLn[ßäx = (-l)n Mb
 x0

 où Д est le déterminant de la formule (6).
 En choisissant

 M = (~1)W (39)
 Ai

 OÙ

 Ai = D (x0 , . . . , х0,ш.ш) хк9шш.) xk) (40)
 n0 njc

 nous aurons

 A = (%£„[/] da; (41)
 Ax J«o

 et par suite nous avons démontré la formule (6).
 Nous avons donc le

 Théorème 1. La différence divisée généralisée de la fonction
 feCn[a,b ] sur les noeuds oc0 , xx,..., xk e [a, 6], multiples d'ordres
 n0, %,..., nk ой n0 + щ + ... + nk = n + 1, est représentée par une
 intégrale définie, ce qui veut dire que nous avons la formule (41), où la fon-
 ction <p est donnée par les formules (24) avec les constantes C¡,°' 0¿x>, . . . , C'kk "
 données par les formules (37), (38), (39), (40).
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 Nous étudierons dans la seconde partie de ce travail la fontion
 9 et nous démontrerons qu'elle ne s'annule pas sur l'intervalle (x0, xk).

 § 2. L'étude de la fonction 9

 5. La fonction 9 coïncide sur les intervalles [x0, жх], [ж15 а?2], . ..,
 [жл_х, хк] avec les fonction <pŁ, <p2, . . . , <pfc données par les formules

 9i(®) = Ví-r1'1"1 ¿¡>h) «иЛ»)
 Л=°

 9, (e) = "g' (-l)-'i-i 0i, (a?) + "g' (-l)-fc-i Ap 02.
 ?1=0 J2=0

 Ф* (®) = s' ( -l)»-''«"1 ^ 01. #l (a) + S 1 ( h (x) + . • •
 ?i=0 ¿2=0

 + 0Mł(®) (42)
 tk-0

 où les fonctions 0ť, h ( x ) sont données par les formules (22).
 Ces fonctions vérifient les équations différentielles (12) et les con-

 ditions aux limites (14), que nous écrivons à l'aide des opérateurs Lļ [¡s],
 de notre travail [3], sous la forme

 Ц = 0, Ц. [9il0 = 0 L :_no_i [9^ = 0
 Ц [9ł], =L* ШХ=Ц [9х]Ж1,- • ;Ll- n,-i Шх=Ъ1-п>-1 [ф]в1

 •^0 [?*]«¡^=-^o [Tfc-lļ^,» [?i]xfc.1==-^l [<Pft-l3xfc_1' • • • i ■^'»-nk-i-l[(?k'ixk_í -

 = L n-nj;_,-l [9i- = ^1 [ф*Х* = 0, . . . , -i»-l'J:-l[91t]a.Jļ. = 0
 Dans notre travail il est très important le
 Théorème 2. Les opérateurs différentiels

 K-x [?i] , Ll-i Ы К. i [ф»1 (44)

 ne s'annulent pas sur les intervalles [x0, x{', [хг, ®2] , . . . , '_xl,^1, хк].
 Pour démontrer ce théorème, nous donnerons d'abord quelques

 théorèmes sur les coefficients de la formule fondamentale (15).
 En général l'équation différentielle adjointe L* [г] = 0 admet

 l'intégrale première

 LUiW = -^-- (45)
 Уо (®)

 П nous reste à démontrer que si l'on remplaçe la fonction z par Oļ ,
 ou 92,..., ou 9fc la constante С est différente de zéro.
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 6. La formule (22) montre que

 01.Ä(®) = (- : !)* W(®i-l)«o(») +У1ЧХ1-1) Z1(X)+ ... +y™ i^-iK-li»)]
 de sorte que

 = (-1)A « (Ą-i)-Łi-i [«.] + yiw (®«-i) Ą-i [%]+••• +
 + 2/n-i ixi- 1) -^*-1 [^«-î]}-

 Mais

 Щ*1, ^2 > • • • » Än-l]

 et par suite

 in*-! Ы = 0, LU |>2] = 0,. . ., LU [*„_,] = 0.

 D'autre part, nous avons [3]

 LU[z0-] = -^--
 У 0 (®)

 et il résulte que

 ¿:-i[e,.»] = (-!)" y°Ā> (46)
 2/0 (®)

 En utilisant les formules (42) et (46), nous aurons

 1 ( - IV-1 -bî-1 [<Pi3 - 1 ( - - IV-1 (47)
 У 0 («)

 pour Z = 1, 2, . . . , 1c, où
 n0-l īiļ - 1 Щ-1~ 1

 8t ■= Y, л01) Уо1) (®.) + s ^'2) y°ih) (®i) + • • • + S A¡!L'y^(a>,-i)' (48)
 ?i=o 32=o ?г==о

 Il nous reste à démontrer que les nombres 8г, S2 , . . . , ne sont
 pas nuls.

 7. Désignons par h (x) le polynôme généralisé d'interpolation

 h (x) = a„ y0 (a?) + a 1y1(x) + ... + a„_x уп_г (x), (49)

 déterminé par les conditions suivantes
 ~h (®o) = Уо (®o) Ti (®¡-l) = ž/o (®I-l) A (®ł) = 0
 Tl' (Же) = yó{x0) А' (®{-1)= yó (®1- 1) Tv' (xt) = 0

 Ä««.-^®,) = ylT'^o) • ' ■ ^-"(»i-i) = • • • ^-"(íCí) = о (50)
 A (íCb_i) = 0 Ji (хк) = 0
 А' (äw) = 0 А' ( хк ) = 0

 fco*. i-i) (íCj.j) = О (®fc) = 0.
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 Ce polynôme est bien déterminé, parce que le déterminant du sys-
 tème d'équations linéaires en a0, ax , . . . , an _г est

 D(X9,...) X0, ūDļ, •••> xk,..., ®ł) ® (51)
 w0 % rtfc--l

 En remplaçant dans la formule (15) la fonction / par le polynôme
 généralisé A, nous aurons d'après les conditions (50)

 S( + Alnb-i) fc(n-i) (яд = 0. (52)

 D'après les formules (38), nous avons Ap*-1) =f= 0. Il nous reste
 à démontrer que A'"*-1' (xk) ф 0.

 8. T h é о r è m e 3. Si h (x) est le polynôme généralisé d'inter-
 polation , qui satisfait aux conditions (50), nous avons

 A"1*-1' (xk) ф 0, (53)

 pour l = 1, 2, k.
 Remarquons d'abord que le polynôme A {x) n'est pas identiquement

 nul, parceque d'après les conditions (50) nous avons h(x0) =y0 (х0)фО.
 Posons

 Ä (x) = y0 (x) Ax (ж) (54)

 ce qui est possible, parceque nous avons y 0 (x) ф 0, sur l'intervalle
 0„, xk]. Nous aurons

 Ax (x) = «„ + + . . . + (55)
 У о (®) У о {x)

 et

 h[(x) = a 1y1,1(x) + «2 Vi. 2 (x) + ... + (x) (56)
 OÙ

 2/1дИ = (|Ц^У. ly„(®)J = h» (x)l 2/i.n-i(^) = íIíLz7íf-í l o(») ; №)• ly„(®)J h» (x)l l y o(») ;
 La formule (56) montre que Ai (x) est un polynôme généralisé

 construit avec les fonctions ( 2') qui forment un système Tchebycheff [3].
 Le polynôme généralisé Ax (x) vérifient les conditions

 Ih. {x<¡) =1 Aļ (я^) = 1 hļ ( Xļ..ļ ) =1 Aļ (я>|) = 0

 AJ (а>„) =0 Aí (xj = 0 Aí (а?(_х) = 0 Aí (xt) = 0

 A1(n«~1> (®o) = 0 A i'"»-1» Ю = 0 Aļ"'--1» (®,_x) = 0 Ai"!-1» (a?,) = 0
 (®t-l) = ® (Xk) - ®

 *í (®*-i) =0 Aí (®t) = 0

 A<"*-.-d (^) = o (xk) = 0
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 et nous avons

 hink~1) (xk) = г h (®t) Л"»-1' (®t). (58)
 Supposons d'abord nk > 1 et désignons par p l'ordre le plus grand

 des dérivées qui figurent dans les formules (57). Considérons l'ensemble
 des points x0, x± , . . . , xk et désignons par mv m2 , . . . , mP les nombres
 des points de cet ensemble qui sont les zéros de h[ (x), h" (x),. . Ъ[р) (x).
 Il est evident que d'après les conditions (67) nous avons

 I -1- le -f- TOļ -ļ- ш2 -ļ- . . . -ļ- me - n0 -ļ- tīļ -ļ- ... -ļ- nk - 1 == n,

 de sorte que
 h + mx + »2 + • • • + mp - n-'. (59)

 II est facile de démontrer à l'aide du théorème de Eolle que la dé-
 rivée h[ (x) a Тс + тг -1 zéros distincts sur l'intervalle [>„, xk], que la
 dérivée h" (x) a Тс + тг + m2 -2 zéros distincts sur l'intervalle , . . . ,
 et que la dérivée h{p> (x) a

 Ж = к -'- тх m2 -'- ••• + WP - P - n-p-1

 zéros distincts sur l'intervalle [x0, xk].
 On peut écrire les fonctions de la suite (Тг) sous la forme

 ft.lW = ylMxi _ ÎLESllM, . . .
 * yî m

 yl
 En posant

 К ( ®) = У1.1 («) К (®) = ж Ey V Vli (®)>
 yl

 nous avons

 ъ n2 (r)-r 'x) - ! nr ъ n2 (r)-r 'x) - ai ~r ! nr a2

 Vi, iix) Vi, i (®)
 et

 К (ж) = <x2 y2t 2 (x) + a3 yit 3 (x) + ... + a„_i у2_п_г (x).

 ce qui veut dire que h'2 (x) est un polynôme généralisé construit avec
 les fonctions

 y, , ,*) = I *■.<"> Y _ y, ^»..У,,*]

 «"'['i,,!/,]

 J ,,._,<*) = ( y-.- W Y J = ,, ^to-y-y-J V y.., W J = ,, W>[y.,y,]
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 On remarque que la fonction h2 (x) vérifie sur les noeuds x0, хг , . . . , xk
 des conditions qu'on obtient du tableau (57) en supprimant la pre-
 mière ligne et en diminuant les ordres de dérivées d'une unité. Il
 résulte que le nombre des zéros de ~h'¿ (x) sur l'intervalle [x0 , xk] est
 Je + тг + m2 - 2, il est égal au nombre des zéros de h" (x) sur le même
 intervalle .

 On peut continuer ce procédé régulier et nous poserons finale-
 ment

 K-i(x) =y»-x.,-i(*) К (x)=W[y0, zìZ}jf0,yiì'",yi"1] W2[yo,yi,---,yP~2Ì
 et nous aurons

 т. % /г' x) т. % /г' ' x)

 yp-i.p-i(oo) yP-i,P-i(x) Ур-
 et

 'hp(x) = otp Ур^ p (л?) -|- ûtp+1 Уръ jí-f-i {x) -ļ- ... -ļ- ž^ī>. ft- 1 (^)

 ce qui veut dire que h'p(x) est un polynôme généralisé construit avec les
 fonctions

 »,.<*) = ( - wiy., Vtt. .
 'yp-i.p-i(®)) Т^2[Уо, Vi,- ■ -, yv-il

 'yp-i,p-i(x)! W2 [y0, t/i,. . y»-i]

 =ļfc^y 'Уг~1,р-Лх)) = %,,, 'Уг~1,р-Лх)) w2 [у о, Ух,.--, Ур-iì
 On remarque que la fonction hv (x) vérifie sur les noeuds x0 , œ19. . œk
 des conditions qu'on obtient du tableau (57) en supprimant les p - 1
 premières lignes et en diminuant les ordres des dérivées d ер - 1. Il résulte
 que le nombre des zéros de hfp(x) sur l'intervalle [x0J xk ] est

 /v + m1 + m2+ ... Ą- mv - p = Ж = n - p - 1 (60)

 ce qui veut dire qu'il est égal au nombre des zéros de h[p) (x) sur l'intervalle
 Oo, ^fc] •

 Les fonctions des suites (TJ, (T2), ( Tp ) forment des systèmes
 Tchebycheff. Il résulte alors que le nombre maximum des zéros de la
 dérivée h'p(x) est justement égal au nombre N donné par la formule (60).

 Une fois connu le nombre maximum des zéros de lï0{x) il est facile
 de démontrer que ¥nk~1] (xk) =/= 0. D'après la formule (58) il suffira de
 démontrer que h^-1) (xk) =f= 0.

 Nous allons considérer trois cas selon que nk-2^p-2, nk-2=p-l
 % - 2 = P, c'est dire щ < p, nk = p + 1, % = p + 2.
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 1°. щ <C P- En supposant h[nk~1) (xk) = 0, on est conduit a hVk {xk)~ 0.
 En appliquant le théorème de Eolle, il résulte que les dérivées

 Ji'nk(x), h'nk+i{x),. . h'P(x) doivent avoir encore un zéro à droite des zéros
 déjà mis en évidence précédemment, ce qui est impossible parceque le
 nombre maximum des zéros d e h'p(x) est N = n - p - 1. Il y a donc
 une contradiction et par suite nous avons (xk) =f= 0.

 2°. nt=p+ 1. En supposant (xt)=h[p) {xk) = 0, on est conduit
 à h'P (xk) = 0, ce qui est impossible, parce qu'on a démontré que le nombre
 maximum des zéros de h'p est N = n - p - 1 et que ces zéros sont tous à
 gauche de xk. Il y a donc une contradiction et par suite ~h["k-u (xk) ф 0.

 3°. nk = p -f 2. La dérivée h'p(x) a N = n - p - 1 zéros sur l'in-
 tervalle [®0, xk], xk étant un de ces zéros. En supposant ūļ"*-1' (xk) =
 h[v+1) (xk) - 0, nous pouvons passer encore de h'p (x) à hP+1 (x) en posant

 K(x) =W[y0, y,,..., K+1(x)
 W^Vo, yp-iì

 et nous aurons

 h'p+1 iX) - ai> + 1 Ур+1,Р+1 (X) + aP+2 Ур + 1,2>+2 (Ж) + • • • +an-l Ур+l, n-1 (X)

 où les fonctions

 Ур+1 0+1 (X) ? Ур+l, P+2 (Х)? • • * ? Ур+l, n-1 iX)

 forment un système Tchebycheff sur l'intervalle [a, 6].
 Le polynôme généralisé ЬрЬ1(х) ayant N = n - p - 1 zéros dis-

 tincts, sa dérivée h'v+1 {x) aura n - p - 2 zéros distincts à gauche de xk.
 Mais en supposant Ъ,[р+1] {œk) = 0, nous avons h'p+1(xk) = 0 et par suite
 la dérivée h'p+1(x) a n - p - 1 zéros sur l'intervalle [ x0 , xk~'. Mais cela
 est impossible puisqu'un polynôme généralisé formé avec les fonctions
 Ур+i. i (^) a au plus n - p - 2 zéros. On est arrivé à une contradiction
 d'où, il résulte que h [nk~l) (xk) ф 0.

 Ainsi nous avons démontré dans les trois cas que к{пъ-г) (xk) ф 0.
 Supposqons maintenant que nk = 1, ce qui veut dire que

 По + Пг + ... + пк = П.

 Dans ce cas considérons le polynôme généralisé d'interpolation A (x)
 déterminé par les conditions (50) relativement aux points œ0J x17. . ., av17

 . ģJ хк_г seulement. En remplaçant dans la formule (15) la fonction
 f par le polynôme généralisé h, nous avons

 St + A? h (xk) = 0

 où ф 0. Pour démontrer que 8гф 0 pour 1 = 1, 2,. . ., 1c , il nous
 reste à démontrer que h (xk) Ф 0.

 En faisant le changement (54), le polynôme ' (x) vérifie les condi-
 tions (57) relativement aux points x0 , %, ..., хк_г seulement.

 En procédant comme dans le cas nk > 1, désignons par p l'ordre
 le plus grand des dérivées qui figurent dans les formules (57) relativement
 aux points œ0, хк_г.
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 Désignons aussi par , m2 , . . . , mv le nombre des points de
 l'ensemble x„ , xlf. . хк.г qui sont des zéros de h[ (x), h" (x), . . . , h[p) (x).
 Nous avons

 к -ļ- Tīlļ -ļ- Wřg • • • ~ļ~ Hip ^ n0 flļ -ļ- . . • -f- = fb (öl)

 On démontre à l'aide du théorème de Eolle que la dérivée h[(x) a
 Te + щ - 2 zéros distincts sur l'intervalle [x0 , xk_{', que la dérivée
 h[{x) a к + % + тг - • 3 zéros sur l'intervalle [ж0 , íca-i] >• • •> que
 la dérivée h[v) (x) a

 Nļ = к -f mx + m2 + • • • + - (p + 1) = n - p - 1

 zéros sur l'intervalle [ x0 , a^-ļ].
 On démontre comme dans le cas nt > 1 , que

 Ķ(x) = а-1у1Л(ос) + a.2yh2(x) + ... + «„,1yln_1(x)
 et en posant

 к (x) = w [y°; Vii к ( x )
 yl

 nous avons

 ^2 iX) = &2У2,2(Х) + a3 2/2, 3 (Ж) + ••• + ам-1 У 2, n-1 {X)'

 On continue de la même manière jusqu'à

 (x) = W[y0, y y,_8] ^[y,> У'-1} К (x) w2[y0, ylt.. yP-2Ì
 et nous avons

 h'P(x) = a PyPtP(x) + a.p+1 yp ft+1 (x) + ... + ай_х yp, (x) (62)
 On remarque que la fonction h2 ( x) vérifie sur les noeuds x0, x1}. . .,хк_г

 des conditions, qu'on obtient du tableau (57), en suprimanfc la première
 ligne et en diminuant les ordres des dérivées d'une unite. Il résulte
 que le nombre des zéros de Ķ(x) sur l'intervalle [x0 , хк^{' est
 к + m1 + тг - 3 et on remarque que ce nombre est égal au nombre
 des zéros de h" (x) sur l'intervalle [x0, a^-ļ].

 La fonction hv(x) vérifie sur les noeuds x0, x17. . xk.x des condi-
 tions qu'on obtient du tableau (57) en supprimant les p - 1 premières
 lignes et en diminuant les ordres des dérivées de p - 1. Il résulte que le
 nombre des zéros de h'p(x) sur l'intervalle [ж0 , a?A._1] est

 fc + vtiļ + m2 + . . + mP - (p + 1) = JVj = n - p - 1 (63)

 ce qui veut dire qu'il est égal au nombre des zéros de h[v) (x) sur
 l'intervalle [ж0, xk. -,].

 Les fonctions yViP{x), yPtP+ i(x), . .., yp<n_ г{х) forment un système
 Tchebycheff sur l'intervalle [a, b] et par suite le nombre maximum des
 zéros de h'p (x), d'après la formule (62), est n -p - 1 c'est qui veut dire,
 qu'il est égal au nombre Nv
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 Cela étant, nous pouvons démontrer facilement que h (xk) =1= 0. Pour
 cela supposons le contraire c'est-à-dire h{xk) = 0. Nous avons aussi
 Äj (xk) = 0 et en appliquant successivement le théorème de Eolle, on
 démontre que chaque dérivée h¡(x), Ц(х), ..., JiĻ(x) a encore un zéro
 situé à droite des zéros déjà mis en évidence plus haut.

 On est ainsi conduit à affirmer que h'p(x) a n - p - 1 + 1 =n - p
 zéros, ce qui est impossible puisqu'on a démontré que le nombre maxi-
 mum des zéros de h'p+1 este n-p- 1. Il y a donc une contradiction et par
 suite Ji(xk) ф 0.

 Le théorème 3 est ainsi complètement démontré et nous avons
 (xk) Ф 0, pour nk > 1.

 Il résulte alors, d'après les formules (52) que St =f= 0, pour
 1 = 1, 2, ..., Te et d'après les formules (47) il résulte que les opérateurs

 Ai-ICTI]? -^*-i[?2]? •••?

 ne s'annulent pas sur les intervalles ( x0 , (хг, x2 ), . . . , {xk_17 xk) ce qui
 démontre le théorème 2.

 9. Désignons par n - ni - 1 le plus petit nombre de la suite
 n - n± - 1, n - n2 - 1, . . . , n - - 1. (64)

 La fonction 9 est continue sur l'intervalle [>0, xk] ainsi que ses
 dérivées successives jusqu'à l'ordre n - щ - 1. Ses dérivées d'ordre plus
 grand que n - пч - 1 sont encore continues sur certains sous intervalles
 de Oo, %].

 En particulier la fonction 9 est continue avec ses dérivées jusqu'au
 nème ordre sur chaque intervalle [ x0 , хг], [x17 x2], . .., [хк_г, хк].

 Il est très important pour la suite, de préciser le nombre des zéros
 de L*n_n._1 [9], sur l'intervalle (x0, xk). Il est donné par le

 Théorème 4. Le nombre N des zéros de L*fl_n._1 [9] sur Vinter-
 valle ( x0 , xk) est

 N = n + Щ - n0 - nk + 1 si n - n0 - 1 et n - nk - 1 < n - n{ - 1
 N = n - n0 si n - n0 - 1 < n - пг - 1 <; n - nk - 1
 N = n - nk si n - nk - 1 < n - щ - 1 <; n - n0 - 1 (65)
 N = n - щ - 1 si n - n0 - 1 ^ n - nt - 1 et n - nk- 1 >- n - п{-1.

 La démonstration de ce théorème résultera de plusieurs proposi-
 tions auxiliaires.

 10. Considérons un intervalle [>?, x]+1 ), avec j =f= 0 et attachons
 à ses extrémités les nombres n - n¡ - 1 et n - njJrl - 1. Nous avons la
 Première proposition: Le nombre des zéros de L*n_n._1 [9]
 et L*n-n.+ļ-i [9] sur Vintervalle [x,n #m] est m = nrj et m' = nH1 .

 En effet, soit m le nombre des zéros de L*n_n._ ^9] sur l'intervalle
 [Xj , xj+1). En appliquant successivement le théorème généralisé de
 Eolle, nous déduisons que L*n_ni [9] a m - n¡ zéros sur l'intervalle
 (xn xj+1). Mais d'après le théorème 2, L*n_1 [9] ne s'annule pas sur l'in-
 tervalle (X.J, xj+1). Nous avons donc m = njt
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 On démontre de la même manière que le nombre des zéros de
 L'n_u. [<p] sur l'intervalle [x¡, xj+1) est m' - nj+1.

 2°. Considérons un groupe de noeuds x[, x'¿, ... , x'r consécutives de
 l'ensemble хг, x2, ... , xk avec leurs ordres de multiplicité n[ , n'2, . . ., n'r .
 Désignons par n - n' - 1 le plus petit des nombres

 n - n!z - 1, n - n'3 - 1, - %r_i- 1.
 Nous avons la

 Seconde proposition. Le nombre des zéros de L*n_n>_t [9]
 sur l'intervalle [x[, x'r) est

 m - n[ + nļ + . . . + К- 1 si n-n'ļ- 1 < n-n'- 1 et n-n'r- 1 ^Cn-n'-l
 (66)

 De même le nombre des zéros de L*n_n> -1 [<p ] sur Vintervalle (x[, x'r) est

 m' = »2 + n's -f- • • • + n'r si n-n[-l^.n-n'-letn-n'r-l^.n - n' - 1
 (67)

 Nous démontrerons cette proposition par la méthode de l'induction
 complète et nous commençons par l'établir pour r - 3.

 Supposons que n - n[ - 1 w - nļ - 1 et désignons par m le
 nombre des zéros de L*_n' x [<p] sur l'intervalle [x[, x'3). Nous pouvons

 appliquer le théorème de Eolle généralisé à l'opérateur L*^_l [cp] et nous
 déduisons que Lļ_n> [9] a m - 1 zéros sur l'intervalle [xļ , x'3), . . . , et
 que [<p] a m - n{ + «4 zéros sur l'intervalle [x[ , x'3). Mais d'après

 la première proposition L*_n^_ļ [cp] a n'2 zéros sur l'intervalle [J'i , x!¿) et 'n',
 zéros sur l'intervalle [xļ , x3). Nous avons donc m - n[ nļ = 2 n'2 ,
 d'où il résulte que m = n[ ri.z . La formule (66) est donc démontrée
 pour r - 3.

 On démontre de la même manière que si n - n3 - 1 те - rí2 - 1,
 le nombre m' des zéros de L*n_ni_x [9] sur l'intervalle '_x[ , x3) est m' =
 = «2 + n's par suite la formule (67) est démontrée pour r = 3.

 Supposons que la seconde proposition est vraie pour r = 3, 4, ...
 . . . , l - l et démontrons la pour r = I.

 Désignons pour cela par n - n'¡ - 1 le plus petit des nombres

 n - nó - 1, n - n'3 - 1, . . . , n - - 1

 et par x'j l'un des points xĻ x3, . . ., x¡_1 qui correspond a n - « ■ - 1.
 Nous pouvons appliquer la seconde proposition aux groupes de points
 (x[, . . . , x'j ) et (x'j, , x'i ) dont le nombre des points est plus petit
 que l.

 Soit m le nombre des zéros de L*n_n,_1 [9] sur l'intervalle [x[, xļ).
 En appliquant le théorème de Eolle généralisé, il résultera que L*_rr_1 [cp]
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 aura m - n[ + ni zéros sur l'intervalle [a?i , x¡ ). Mais en appliquant
 la seconde proposition à l'opérateur L*_n> [<p] et à l'intervalle [a?i, x'f )
 et ensuite à l'intervalle x' ), nous déduisons que le nombre des zéros
 de sur l'intervalle [x[, x[ ) est

 (ri2 + ... -(- rij ) + (rij + • • • + riļ- 1)
 Nous avons donc

 m - n[ + ri, =(nļ + ... + ri,) + (rij + ... + Щ-i)

 d'où il résulte que
 fil = - ļ- П% "ļ- ... - 1

 Ainsi nous avons démontré la formule (66).
 On démontre de la même manière que le nombre des zéros de
 [<p] sur l'intervalle [x[ , x¡) est

 m' = ri2 + n's + . . . + п'г

 et par suite la formule (67) est démontrée.
 3° Désignons par xh le noeud qui correspond à n - rib - 1 et suppo-

 sons que les nombres
 il - Щ - 1, n - n2 - 1, . . . , n - nh - 1

 sont plus grands que n - nh - 1. Nous avons la
 Troisième proposition. Le nombre des zéros de Ln ~»Ä-i [9]

 sur V intervalle (x0, xh) est

 m - % + n% + ... + nh si n - n„ - 1 < n - nh - 1 (68)
 m = n0 - 1 + % + n2 + • • • + 1 si n - n0 - 1 >• n - nh - 1. (69)

 Nous démontrerons cette proposition par la méthode de l'induction
 complète et nous commençons par établir les formules (68) et (69) pour
 h = 1.

 Supposons que n - n0 - 1 <n - nx - 1 et désignons par m le nombre
 des zéros de Х*_П1_![ф] sur l'intervalle (x0, хг). On peut appliquer succes-
 sivement le théorème de Eolle généralisé et nous déduisons que [<p]
 a n - % zéros sur l'intervalle (x0, хг). Mais d'après le théorème 2, £*_,[ф]
 ne s'annule pas sur l'intervalle (x„, хг). Il résulte que m - щ et la
 formule (68) est démontrée.

 Il en est autrement si n - n0 - 1 !> n - nx - 1. Il faudra tenir
 compte dans les raisonnements précédents que d'après les conditions aux
 limites (43) du point x„ К-П1-г [<p], L*n_ni [9], . . . , Lļ_n(l_1 [<p] s'annulent
 en x0. En appliquant successivement le théorème de Eolle généralisé nous
 déduisons que [9] s'annule en x„ et en m points de l'intervalle
 (x0, хг). On continue de le même manière et on arrive à la conclusion
 que Х*_Яо_г [9] s'annule en x0 et en m points de l'intervalle (x0, хг), que

 [9] s'annule en m points de l'intervalle (x0, хг), que £*_гео+1 [ф] s'an-
 nule en m - 1 points de l'intervalle (x0, Xj),. . . , et que L*n_ 1 [9] s'annule

 4 - c. 3477
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 en m - «0 + 1 points de l'intervalle {x0, хг). Mais d'après le théorème 2,
 _D*_i [<p] ne s'annule pas sur l'intervaÙe (x0, хг). Donc m = n0 - 1 et
 la formule (69) est démontrée.
 Supposons maintenant que la troisième proposition a été démontrée

 pour h < j et démontrons la encore pour h = j.
 Le nombre n - n} - 1 étant plus petit que п-щ - 1, n - n2 - 1, . . .

 . . ., « - 1, désignons par п - щ - l le plus petit des nombres
 n - щ - 1, . . . , n - - 1 et par x¡ le noeud le plus approché de x0
 qui correspond a n - щ - 1.

 D'après les conditions aux limites (14), la fonction <p ( x ) est conti-
 nue sur l'intervalle [a?0, ж,-], ainsi que ses dérivées successives jusqu'à
 l'ordre n - щ - 1. Désignons par m le nombre des zéros de
 sur l'intervalle (x0, x¡).

 Supposons n - n„ - 1 < n - »j - 1. En appliquant successive-
 ment le théorème de Eolle généralisé, on déduit que L*n_nļ^l [9] a
 m - nf + n, zéros sur l'intervalle (x0, œf).

 Mais nous avons n - n0 - 1 < n - nf - 1 < n - щ - 1 et le nombre
 des points x0, xlf . . . , x, étant plus petit que j, nous pouvons appliquer
 à l'intervaUe (a?0, x,) la troisième proposition; le nombre ses zéros de

 [<p] sur l'intervalle (x0, xt) est nx + n% + ... + nt. D'autre part
 le nombre des zéros de _L*_nļ_i [9] sur l'intervalle [a?,, x}) est donné par la
 seconde proposition ; il est égal a n, + ... + .

 Nous avons donc

 m - nf -1- nt = (% + ... + nt) + (w, + ... + x),
 d'où il résulte que

 m = щ + n2 + ... -1- Hj

 ce qui démontre la formule (68) en général.
 Supposons n - n„ - 1 - n - n¡ - 1, c'est-à-dire n0 = n¡ . Le

 nombre des zéros de L*_n._ i[<p] sur l'intervalle [ж„, x}) est m + 1, parce
 que nous avons -£*_„„_![¥ ]Хо = 0. En appliquant successivement le théorème
 de Eolle généralisé nous déduisons que _Ł*_ ni[<p] a m zéros sur l'intervalle
 ( x0 , x,), X*_„.+i[<p] a m - 1 zéros sur l'intervalle (x0, x¡),. . . , £*_„г1 [cp]
 a m + 1 - n¡ + щ zéros sur l'intervalle (x„, x,).

 D'autre part, ayant n - n0 - 1 < n - n¡ - 1 nous pouvons appli-
 quer la formule (68) relativement à l'intervalle (ж0, x,) et ensuite nous
 pouvons appliquer la seconde proposition à l'intervalle [.г;, ж,). Le
 nombre des zéros de [<p] sur l'intervalle (x0, x¿) sera égal à
 (% + n2 + ... + %) + (n, -f nl+1 + ... + %-i)> Nous aurons donc

 m + 1 - щ + щ = (% + ... щ) + (n,+ ... + n,_!)
 et par suite

 m = n0 - 1 + пг + ... +

 parceque n¡ = n0 . La formule (69) est donc démontrée pour n - n0 - 1 =
 = n - n¡ - 1.
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 Supposons n - n0 - 1 > n - n¡ - 1 Nous avons trois cas à exa-
 miner selon que n - n0 - 1 < n - щ - 1 ou « - n0 - 1 >- w - щ - 1.

 Dans le premier cas, nous avons L*_n._x [<pļ,o= 0, £*_„ [9]^ =
 = 0, . . ., n0-i[<p]Xo = 0.

 En appliquant successivement le théorème de Eolle généralisé, nous
 déduisons que [9] a m 1 zéros sur l'intervalle [ж0, x¡), -Ł*_„,+1[<p]
 a m + 1 zéros sur l'intervalle [ x0 , ж,), . . . , £*_„ [<p] a m + 1 zéros
 sur l'intervalle [x0, x¡). Ensuite £*_„ [9] a m zéros sur l'intervalle
 (x„, Xj), . . . , 2/*-„(_i[9] a m + 1 - n0 + n, zéros sur l'intervalle (x0, xj.

 Mais nous pouvons appliquer à l'intervalle (x0, xt) la formule
 (68) et ensuite la seconde proposition à l'intervalle [xn x¡). Il résultera
 que le nombre des zéros de 1 [9] sur l'intervalle (x0, a?,) est
 (% + щ + ... + щ) + (щ 4- ... + w,-i). Nous aurons donc

 Ш - 1- 1 - Щ = (п-у - |- ... - 1- П[) -ļ- (щ -ļ- . . . -f-
 et par suite

 m = n0 - 1 + щ + ... + .

 La formule (69) est donc démontrée dans ce cas.
 Dans les autres cas, nous avons n - щ - 1 < n - n„ - 1 et

 n - n0 - 1 >• n - щ - 1.
 Nous avons K_n._x [9]^ = 0, 9]^ = 0, . . ., i:_Bļ_1[9]Xo = 0.

 Le nombre m des zéros de 1 [9] sur l'intervalle (x0, x¡) coïncide
 avec le nombre des zéros de 2£_n¡_ 1 [9] sur l'intervalle (x„, x}).

 D'autre part, pour déterminer le nombre des zéros de L*n_nļ_l[^''
 sur l'intervalle (x„, х}), nous pouvons appliquer à l'intervalle (x0, x¡) la
 formule (69), parceque n - n0 - 1 >> » - n¡ - let nous avons supposé
 que cette formule est vraie pour l < j. Ensuite nous pouvons appliquer
 à l'intervalle [ж(, xf), la seconde proposition. Nous aurons

 m = n0 - 1+%+ ... + Щ- 1 4~ ni + • • • + ni-v
 La formule (69) est ainsi démontrée en général.
 Remarque. Le nombre n - ni - 1 étant le plus petit des nombres

 П - щ - 1, n - n2 - 1, . . . , n - пк_г - 1

 désignons par xtí, xÍ2 , . . . , xip les points qui correspondent à n - щ - 1,
 le point x-H étant le plus rapproché de x„.

 Le nombre des zéros de L*_n._ x [9] sur Г intervalle {x„, x,r ) est donné
 par

 mr = % + n2 + n3 + ... + nif si n - щ - 1 < n - щ - 1 (70)
 ou

 mr = nB - 1 + пг + . . . + w»,.- 1 si n -n0 - l^- n -nt -1. (71)

 En effet si n- n0- 1< n - щ- 1, le nombre des zéros de Ll_n._x [9],
 sur l'intervalle ( x„ , xir) est égal à la somme des zéros de L*n_n._1 [9] sur
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 les intervalles (x0, xfl), [ xti , xi% ), xir) qui sont donnés par la
 formule (68) et la seconde proposition. Nous aurons donc

 mr = (щ + . . . 4~ пн ) + (%! +1+ • • • 4" nh ) • • • 4" {w>ir_x+ 1 + . . . 4* ni,)

 ce qui démontre la formule (70).
 Si n - n„ - 1 >- n - ni - 1, nous aurons

 mT=(n0 - 1 +№1-K • • + Wi,-i) 4~ (^»,+1 + • • • + w«2)~f~ • • • 4-- • • + niT)

 et nous pouvons écrire cette formule sous la forme

 mr = n0 - 1 4" ni 4~ • • • 4" w»r- 1>
 puisque nit = n¡r. La formule (71) est donc démontrée.

 4°. Désignons par xh le noeud qui correspond à n - nh - 1 et sup-
 posons que les nombres

 n - nh+1 - 1 , n - nh+z - 1, n - w,£_x - 1

 sont plus grands que n - % - 1. Nous avons la
 Quatrième proposition. Le nombre m' des zéros de L*.^^ p]

 sur l'intervalle [x,n xk) est donné par la formule

 m' = nh 4- nh+1 4- ... 4- si n - nk - 1 < n - nh - 1 (72)
 m' = nh+1 + %+ 2 4- • • • 4- Km- 1 si n - nk - 1 > » - nh - 1 (73)

 La démonstration est analogue à la démonstration de la troisième
 proposition.

 On peut ajouter une remarque analogue à celle faite à propos de la
 troisième proposition.

 La demonstration du théorème 4 résulte immédiatement. Désignons
 comme plus haut par n - щ -1 le plus petit des nombres

 n - % - 1, n - n2 - 1, . . n - %_x - 1

 et par xt un des points qui correspond à n - щ - 1. D'après les
 troisième et quatrième propositions, le nombre N des zéros de x[<p]
 est la somme m + m' des zéros de X-*_„i_1[cp] sur les intervalles (x0, xt)
 et j>¡, xk). Il résulte que
 N=(nx + . . . + п() + (nt+. . . + %_ļ) si n-n0- 1 et n - nk- 1 < п - щ-1
 ou bien

 N =(ni + . . . + nj + (ni+1+ . . . + nk-l) sin- n0- 1<п- щ- l<n- %- 1
 ou bien

 N = ( - 1 + n0 4- • • • + î) 4- (щ + • • • 4" %- 1)
 si n - nk - 1 < n - щ - 1 < те - n0 - 1

 ou bien

 N - { - 1 + n0 4- • • • + %-i) 4" (^»+1 4" • • • 4 ' Щ - 1)
 si n - na - 1 - ni - 1 et n - nh - 1 >> w - щ- 1.
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 Tenant compte de la relation

 « + 1 = + % + ... + + % ,

 les formules précédentes se réduisent aux formule (65) et le quatrième
 théorème est par suite démontré.

 10. Théorème 5 .La fonction о de la formule {15) ne s'annule pas
 sur V intervalle (x0, xk).

 Pour démontrer ce théorème reprenons le nombre n - ni - 1, qui e.¡t
 le plus petit dès nombres de la suite

 n - % - 1, n - «2 - 1, . . . , n - - 1.

 La fonction 9 est continue sur l'intervalle [a?0, xk' avec ses dérivées
 successives jusqu'à l'ordre « - «■, - 1. Elle satisfait aux conditions
 aux limites (14), que nous avons écrit aussi sous la forme (43).

 Si la fonction s'annulerait au moins une fois sur l'intervalle (x0, xk),
 on pourrait calculer le nombre N' des zéros de L*_„._ iE 9] S1ir l'intervalle
 (x0, xk) en appliquant successivement le théorème de Eolle généralisé à
 Lļ [9], L' [9], ..., -Ь*_„._1[ф]. En comparant ce nombre avec le
 nombre N donné par le théorème 4, nous verrons qu'il y a une contradiction,
 d'où résultera que la fonction 9 ne s'annule pas sur l'intervalle (x0) xk).

 Pour calculer le nombre N' nous devons tenir compte des condi-
 tions aux limites (43) relativement aux points x0 et xk et aussi des relations
 qui existent entre les nombres n - n„ - 1, n - ni - 1 et n - nk - 1.

 Io. Supposons que n - n0 - 1< n - щ- 1, n - %- 1 < n - n{ - 1
 et, pour préciser, que n - n0 - 1 < n - nk - 1.

 Le théorème de Eolle généralisé montre que si la fonction <p s'annule
 en un point de l'intervalle (x„, xk), alors L* [9] s'annule en deux points
 de l'intervalle (x„, xk), ... , -Ł*-« ^ 1 [ 9 ] s'annule en n - n„ points de
 l'intervalle (x0, xk).

 Ensuite en appliquant toujours le même théorème nous déduisons
 que L*_n [9] s'anulle en n - n0 + 1 points de l'intervalle (,r0, xk), . . .
 ..., Ll-„k- 1 [9] s'annule en n - n„ + 1 points de l'intervale (x0, xk).

 Nous continuons par le même raisonnement et nous déduisons que
 £*^[9] s'annule en n - n0 + 1 points de l'intervalle (a?0, xk), . . . , et
 que [9], s'annule en

 N' = n - n0 + n% - nk + 2 (74)

 points de l'intervalle (x0, xk).
 On arrive à la même conclusion siw - n0 - n - nk - 1.
 2°. Supposons que n - n0 - 1 < n - щ - 1 -< n - nk - 1. On

 démontre de la même manière que

 N' = n - n0 + 1. (74')

 3°. Supposons que n - ?ь. - 1 < n - ni - 1 n - n0 - 1. On dé-
 montre de la même manière que

 N' = n - nk 1. (74")
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 4°. Supposons que n - n„- 1 >•» - nť- 1 et n - nk- 1>% - nt- 1.
 On démontre de la même manière que

 N' = n - nt. (74"')

 Le nombre N' des zéros de [<p] sur l'intervalle (x0, xk) calculé
 en supposant que la fonction <p s'annule au moins une fois sur l'intervalle
 (®0, xk) et qui est donné par les formules (74), (74'), (74"), (74'") dé-
 passe d'une unité le nombre N donné par le théorème 4.

 Il y a donc une contradiction, d'où il résulte que la fonction
 <p ne s'annule pas sur l'intervalle (x0, xk) et par suite le théorème 5 est
 démontré.

 11. Désignons par В le second membre de la formule (15) c'est-à-
 -dire

 Гхк

 Я = ' ?-Ł.C/]d®- (75)

 D 'après le théorème 5, la fonction <p ne s'annule pas sur l'intervalle
 (x0, Xîc). Nous pouvons alors appliquer le théorème de la moyenne et
 nous aurons

 Il = Ln[f]s Ç* <pdx (76)
 où Ķe(x0, xk).

 Pour calculer l'intégrale du second membre de la formule (76), trai-
 tons le problème suivant.

 Trouver la solution 0 de V équation différentiellle

 L [0] = 1 (77)

 qui satisfait aux conditions

 0 (x0) =0 0 (Xj) - 0. . . 0 («¿-i) = 0 0 ( xk ) - 0

 0'(жо) = 0 e'íasj) = 0. . . 0'(^_!) = 0 6'(а?4) = 0 (78)

 О«"»"1' (®0) = 0 б'".-1' (%) = 0. . . (хк_х) = 0 0<"*-2> {хк) = 0.

 Cette solution est de la forme

 Q(x)=K0y0(x)+K1y1(x)+ ... +Kn_1yn_1(x) + [ О (x, s) ds (79)
 *xk

 où G ( x , s) est la fonction de Cauchy donnée par la formule (17) et où
 K„, Kļ,..., sont des constantes à déterminer par les conditions
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 (78). On trouve sans difficulté que la fonction 0 est donnée par
 l'équation

 çxic
 Уо(х о) ... Уп- l(tfo) V G(x0,s)ds

 Jx0

 CXk dO
 yó(x o) ... y'n-i(x o) ' - (®«> «) ds

 J», dx

 rxjc Qn0- 1 Q
 yfr-v (x0) ... yiïiî^ (X o) ' rxjc

 Jx, dx"»-1

 cx* - 0 (80)
 y.(®t-i) ••• y»-i(®t-i) ' ©(a?»-!, e) d«

 i?

 V, dx"*-*-1
 Уо(хк) ... yn- i(®t) o

 2/ó"fc_2) (%) • • - 3/Ä~2) (®t) 0

 У О (Ж) • • . У,-1 (ж) ' в (a?, s) às + e (ж)
 Jx

 En remplaçant dans la formule (15) la fonction /par 0, nous aurons

 SXJc
 <p (ж) díC = ¿g*-11 0«"*-1) (xk) (81)

 #9

 OÙ

 D(X о , . . . , #0 ? •*!*•••* J • • • ? *^Л-1 ? * * . ? J . . * ?
 4 -s/' ' * '"'/ ^ N 'N/1 ' " "S/" /

 jUfc-D * =

 * D(x0,..., X0J Xļ j . . . J Xļ , . . . ? Xk^i, . . . i Xk_i J Xk ) ... у хк)
 * V v 4 v V

 n0 n, Vb-i "к

 La dérivée б'4"1' se déduit de la formule (80). Nous aurons finalement

 fXlc

 ' Ф (Ж) d® = Pfc (83)
 •'«в
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 OÙ

 -РЛ=Х^ 3 (ОС о • i #0 i ē ' ч %k ? • • • ? *^fc) *

 n0 nfc

 SZJc ®o
 G [%o j s) ds

 ®o

 rafc 00
 »i (®o) • . . 2/ń-i (®o) ' - (®° ? s) d*

 J®0 9®

 S«fc - Я«о-1 Зж"»-1 - Q
 - - (a?„, *) ds

 «о Зж"»-1

 1/o{Xk-l) ••• Vn-lfak-l) ' (? s) d$
 •Wi

 r®fc ßnk~i~ 1 (j-

 y(»k^-D (x^) . . . î/Sr*r*_1 (%-i) ' _Ł (®fc-l, s)ds

 Уо (®fc) • • • У»-1 (®fc) 0

 žtf*"1' (®*) • • . Ž/n-Г1' (®fc) 0

 Tenant compte du théorème 5 et de la formule (83) il résulte que
 le signe de la fonction <p sur V intervalle (x0, xk) est le signe du nombre
 Pk donné par la formule (84).

 En revenant à la formule (76) nous pouvons écrire

 B = PkLn [f' (85)

 où Pk est donné par le formule (84) et Ķe(x„, xk).
 Il résulte alors que

 I _B|< Pk Mn, Mn = sup 'Ln [/] I (86)
 («o >xk)

 Prochainement nous donnerons des applications importantes de la
 représentation de la différence divisée généralisée par une intégrale définie.

 Reçu le 2 mai 1965
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