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SUR QUELQUES FORMULES DE DERIVATION
NUMERIQUE

PAR

D. V. IONESCU (Cluj)

Considérons les fonctions

(1) Yo (2)y Y1 (2)y «o oy ¥, (@)

définies et dérivables sur l’intervalle [a, b], autant de fois qu’il sera
necessaire dans ce travail et telles que les déterminants de Wronski

(2) W oy %15 ---5 Y]

soient différents de zéro sur l'intervalle [a, ], pour r =0, 1, ..., .

Aux fonctions f et ¢ de la classe C"[a, b], associons I’opérateur
différentiel

(3) Ln [f] — W[yO? Y -« s Yury f] — f‘")-i-a;(x) f(n~1) _}_ . + a, (w)f
W Yoy Y1y -+ vy Yal

et Popérateur différentiel adjoint

(4) Ly [9] = (—=1)" [$" — (@) + ... + (=1)"a, {1
On sait qu’il existe l’identité

(5) b L,[f1 — fLE (9] = (H (f, ¥))

ou

(6) H(f,4) = ¢ "0 — [ — (a, )1 /" + ...

e H (D) — (@, O A L (1) (0 D1 S

Cela étant rappelé, prenons sur l’intervalle (a, b) les noeuds wx,,
Zy,..., &, multiples d’ordres ny n, ..., %, oU

(7) o +1+ ... +m,=mn+1

et attachons aux intervalles [xy, 2,1, [%y, ®5], ..., [%._1, ,] les fonctions
P19 Pay --.5 Px Solutions des équations différentielles

(8) L [e] =0, Li[9;]1=0, ..., Li[9.] = 0.
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Si dans l'identité (5), nous remplacons la fonction ¢ par ¢, et nous
intégrons les deux membres de x,_; & x, nous avons

() H(f,9)| = [ eLna

j—1 j—1
En prenant j =1, 2, ..., k et en faisant la somme des formules
obtenues membre & membre, nous aurons la formule

k 3
(10) Y H(f, 2) "o L[f]ds

[

z

=S,

ou la fonction ¢, coincide sur les intervalles [&y, =], ..., [®y, @]
avec les fonctions o;, ¢, ..., .

La formule (10) dépend de kn constantes quelconques.

On peut déterminer ces constantes, par des conditions aux limites
imposées aux fonctions ¢, o, ..., ©,, relativement aux noeuds w,,
&y, ..., ®, de maniére que dans la formule (10), ne figure que

T @)y f'(2o)y « vy F™7 (@0)
F(my), f(®), vy 70 (2))

X,
J
x

=1

f(=), f' (=), «.., ™D ()

Nous désignons ces conditions par (C). On démontre que I’intégration
des équations différentielles (8) avec les conditions aux limites (C) est
possible et conduit & la représentation de la différence divisée généralisée
de In fonetion f

(11) {‘/vl)?mO”",ﬁO’""‘Tk”"mk;f}

Ty 3

par une intégrale définie [1], par la formule

3
(12) {Zoy - .- oy ooty wk”"7wk;f}=s o L, [f]ds
n, ny. o

Mais si les fonctions ¢, ¢, ..., ¢, ne vérifient pas les conditions
aux limites (C), la formule (10) est différente de la formule (12). En in-
tégrant les équations différentielles (8), avec des conditions aux li-
mites convenablement choisies, nous mettrons en évidence dans ce tra-
vail, certaines classes de formules de dérivation numérique, que nous
désignerons par (P).

Lorsque la suite de fonction (1) est 1, x, ..., 2", parmi les for-
mules de dérivation numérique de la classe (P), on trouve certaines
formules que nous avons appelées formules fondamentales, qui ont été étu-
diées aussi par ’Acad. T. PoroviciU [4].

Dans le § 1 de ce travail nous faisons la théorie des formules de la
classe (P) et de leurs restes.

Dans le §2 nous faisons des applications de ces formules et nous
généralisons de cette maniére certaines formules qui ont été données par
I’Acad. T. Poroviciu [4].



3 SUR QUELQUES FORMULES DE DERIVATION NUMERIQUE 49

Les principaux résultats de ce travail ont été donnés dans deux
communications, au IVéme Congrés interbalkanique de mathématiciens de
Bucarest 1966 [2] et au Colloque sur les techniques de calcul de Bucarest
1967 [3].

§ 1. LES FORMULES DE DERIVATION NUMERIQUE DE LA CLASSE (P)

1. Les formules de dérivation numérique de la classe (P) sont ca-
ractérisées par un probléme aux limites relativement aux équations dif-
férentielles (8),avec des conditions aux limites que nous préciserons plusloin.

Y

Nous poserons x, = & et le noeud 2 appartiendra a Dintervalle
(a,2;), ou (zy, X3)y +.., OU (2,5, &), OU [@,4, b] selon que I =0, ou
l=1 .y,oul=%k—1, oul=kFk

Nous désignerons par (4,) les conditions aux limites imposées aux
fonctions ¢4, @,, . . ., ¢, relativement aux noeuds x,, ,, ..., ¥,,lenoeud z,
étant exclu, identiques aux conditions (C), relativement aux mémes neuds.

Les conditions A4, seront donc les suivantes :

Pa (@) =01 (1), @5(@)=01(2y)y - - -, Qb = (2)) = @f* " ()

(Ao) (Pk(wk-l) = @k—l(xh 1)’ (Plz(xk—l) = (Pl’;—l(wk—l)’ ey @L"_”k_l_l)(xl:—l) =
= @iy (@)

L (Pk(x;.-) = 07 CPk(xk) == 07 ey @Ln_"k_l)(wk) =0

si I = 0. Ensuite nous poserons

@1 (40) = 0, @1 (%) =0, ..., 77"V (2) =0

P3 (%) = cPz(‘"z %(‘”2 = <P (.%‘2) ceey (P(" n(pg) = @it -1)(%)

(4,) . n-n
! cpk('/'vk—l) = @11 ( (pk(wk—l) = <\°h— ( k—1)7 ceey tpkf k-1 D("”ls—l =

= @,’::"1. 1= 1)(‘171:—1)
(Pk(xk) = 07 (Pl:(x/c) = 07 ey (ng"—”k—n(xk) =0
si I = 1. Ensuite nous poserons
@1(Zg) =0 @1(2g) =0, ..., o' " V(%) =0
(PZ(ml) = ‘Pl(xl), P2 (9'/'1) = CPl(wl) . ?"-"1_1)(“’ ) = "™ (my)
(Pl(xl--l) = ¢4 (%), (Pl(xl—l) = @, 1(“’1—1)’ cony QT (g ) =
= (P;'l'l‘"l—x 1)(xl_1)
(4) Q140 (®111) = Gri1(@pi1)y Pl (®s1) = @1 (Ziga)s - - -y iz MY (
= ot 1" TV (@,4q)

xz+1)=

@ (&) = Ppy (Ls)s CP;v(xk'—l) = (Pl’t—1 (@) ooy cPLn—”k-l) (xb—l) =

Pr (xk) = 0, @ (2) =10, ..., cPﬁcn_nk—” () =0

4 — c. 5714
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sgil=2,0u l=3, ..., oul =Fk— 2. Ensuite nous poserons

P1(2o) = 0, ¢1(@e) = 0, ..., @~V (z,) = 0

gl | | R
T 0 (2h) = P (Bs)y iy (Tusy) = Qg (@pp)y - vy QL™ (2, ) =

— o (1)

e(2) =0, oi(x,) =0, ..., " " V(x,) = 0.

si I = k — 1. Ensuite nous poserons

e1(29) = 0, 91(®) =0, ..., @{" "V (zy) = 0.
P2 (#1) = @1 (@), @2(@1) = @1 (@), « oy @™V (7)) = QP ™" ()
cpk(wk—l) = CPIL—-I(xI:—l)i ‘P;(xkﬂ) = <pl’c——l (xlt—l)’ ceey cpi”—"k—l—l)(xk_l) =
— Q"3 (g, )
sil==k.
Nous désignerons par (4;) les conditions aux limites relativement
au noeud z, = . Ces conditions seront telles que dans la somme

H(f, ¢1)

L1
z
correspondant a ! = 0, ou dans la somme

H(f, o[ +H{, 910

b I5Y
z

correspondant 4 I =1, ou l=2, ..., ou Il =k — 1, ou dans la somme
x
H(f, )]

correspondant & I = k, les coefficients de f~-V (z), f*-2 (), ..., f™ Y (x)
dans la formule (10), soient égaux aux valeurs des fonctions données
2oy Ay +-+y Aaeg, au point x, supposées non toutes nulles.

Ilrésulte que nous pouvons écrire
e (2) = — Ao (@)
?1(®) — (a; 91)z = A (@)
(4g) { @1'(®) — (a191): + (a3 91). = — Ay (@)
P (0) — (G @)™ L (1) (G P1)e =
= (—=1)"1 A, _,, (%)
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Ensuite pour I — 1, ou 2, ..., ou k¥ — 1, nous pouvons écrire

¢, (2) — @1 (@) = %o ()

[ (®) — (a1 @):] — [9111(2) — (@1 91a)] = — N (@)
(A7) [‘P (x) (aﬁPz) (%‘Pz) ] [‘Pt+1(x) —(419,101)7 + (@29,41)-] = 2e (@)
[<PE" ””(»’0) (al <P)"‘ T (=) (@, 90 ] —

— [oifa™ (@) — (ay @,41)" ™7 b —I— coe (1) (@an, @p41):] =
= (—=1)""™ Aa—ny (@)

Ensuite pour ! = k, nous pouvons écrire

o (2) = 2o (@)
<P; () — (a1 9,). = — M ()
(4;) (:v) (al ‘Pk)z (az ‘Pk) = 7\2 (w)

<p‘k" e (w) — (alcP )‘" e + +( 1)" @y Pu)s =
= (—1)"" "™ Au-nk(w)

Les conditions aux limites (4¢), ou (A4,), ou (A;) donnent les valeurs de

Py Ply ey QT O dE @ — Py O — Pihgy ey @8 — @1
ou de ¢x ¢y ..., @' " au point x. Nous pouvons done écrire les condi-
tions (4,), ou (A ), ou (A;) encore sous la forme
(4o) P1 (%) = o (2), @1(®) = (@), «.y Q77" (X) = puos, (2)
ou bien pour l=1,0u 2, ..., ou k —1
(41) 0, (2) — @i () \T) = tho (.’D), (Pz (%) — @iy (@) = Wy (), ..

coy O TM(7) — lT71™ (@) = pn- n ()

ou bien pour ! = k.

(4:) Qe (0) = o (@), @i (@) = py (), «.ty Q" (@) = pn—ny ()
Relativement & la formule générale (10) nous traiterons le
Probléme aux limites. Déterminer la solution des équations différen-

tielles (8) qut satisfait aux conditions aux limites (A,) et (A4]).

Nous démontrerons plus loin que ce probléme a une solution unique.

Alors en remplacant dans la formule (10) les fonctions ¢,, @, @3, - .-

...y ¢ par la solution de ce probléme, on est conduit & la formule de
dérivation numérique, de la classe (P), que nous avons en vue.

Lorsque ! = 0, cette formule a la forme suivante

(13,) T 0 (@) R0 (@) = S ay (@) £ (@) +
k=0 i=0
k ni-1

+Y Y_, A, (z) 9 (2) + Ry (2)

i=1 j=0
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ou
(140) @, (@) = (=17 [gf' '~ (2) — (ay @)~ 4.
e (=) @y 91):]
pour j=0,1, ..., ny —2 et
(15,) Ay (2) = (=1 {[oi" 'V (a) — (@ )"~ + ...
A (LT (@ @] — [TV (@) — (0 @) T A
. + (__l)n—j—l (an i— 1?t+1)z]}

pour j =0,1, ..., n,—1 et i=1,2, ..., k.
Dans la formule (13 ) le reste R0 (w) est donné par la formule

X,

(16,) mm=§%mwamm

ot la fonction ¢, (x, s) coincide pour le noeud x donné, avec les fonctions
D1y Pgy + ..y @ Surlesintervalles [, 2], [y, @2], ..y [®._1y @]

Lorsque ! =1, ou 2, ..., ou k — 1 la formule de dérivation nu-
mérique de la classe (P) a la forme

(13) T 0 () (@) = 5, o) () + %S, A (@1 2+ B )

ou

(14,) o(@)=(—=)""{[oi" 7 (@) —(ay )P+ .. +(=1)" " [@0_y_19):]—
— o3 (@) — (@ i) 772 4+ oot A+ (1) (@011 @ugr)a]}

pour j = 0, 1, ...,n—2 et '

(15,) Ay(@)=(-1)""{[¢i" 7 "P(@) = (ay @)~ 4. .. +(=1)"" @0y 1] —
— [V (0) — (@ 0 )8 772 4+ s + (=1 (@0 cpi-ﬁl)z]}
pour j = 0,1, . ,n‘—letw—Ol ey =1, 141, ...,k
La notation Z dans la formule (13, signifie que ¢ prend toutes

les valeurs de 0 & k, la valeur ! étant exclue.
Le reste R, (x) est donné par la formule

(16,)  R@={ a9 Lifls
ou la fonetion ¢, (#, s) coincide pour le noeud x donné, avec les fonctions
1y Pgy ...y @ sur les intervalles [z, 2], ..., [#_y, @], [®, 2,41, -
cooy [@e_q, 2]

Enfin lorsque ! =k, la formule de dérivation numérique de la
classe (P) a la forme

n—ng np—2 -1 n;—-1

(134) 2 A (x) frF () = 2 o, (z) fO(2) + Z Z A (2)f9(®) + R, (2)
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ol

(14,) e, (@) = (=1)"7 [efr~" V(@) —(ay @) P 4. .. +(=1)""" €0y 19,), ]

pour j=0,1, ..., n,—2, et

(15,) Ay(@)=(=1)""{[oi" "~ (@) —(a;0)¢ " +... +(=1)""@u_s19.)0] —
— (o770 (@) — (a3 @y )07+ ot (=) (@asyor @ipy)e]

pour j=0,1, ..., n,—1et ¢=0,1, ..., kb —1.

Le reste R, (x) est donné par la formule
(16,) Ey(@) =\ o.(x 9 L (1ds

ot la fonction o, (z, s) coincide pour le noeud x donné, avec les fonctions
Py P2y ...y @, SUr les intervalles [xy, 2], ..., [®i_gy Zq)y (@1, 7).

Lorsque les fonctions 24 (), A, (), ..., Au_n(x) sont données par
1 si h=p—1
(17) M@ ={ 7 7P
0 si hsFp —1
la formule de dérivation numérique (13,), ou (13,), ou (13,) devient

np—1

(18) [ (@)=Y a(a) ¥ (a) + )3 )3 A,(2) 9 () + R, (a)

i=o

et nous dirons que c’est une formule fondamentale de la classe (P), parce
qu’on peut remontrer a la formule (13,), ou (13,), ou (13,), a l’aide des
formules (18) correspondant & p =1, 2, ..., (n —[(n, — 1)). ‘

2. Dans le cas particulier lorsque la suite des fonctions (1) est
la suite

(19) 1, z, % ..., ="

nous avons

(20) L, [f1=71" Ly[¢]=(—1)" ¢

et

@) H( 9= = ¢ L (S e S

Dans ce cas les conditions aux limites (4;), ou (4;) pour I=1, 2,...
, k —1, ou (4;) sont

(229) 91(@)=—2o (@), @1(%) =N (&), ..., Q" " () = (—1)*" """V A, _,, (2)
ou bien

(22)) () — @41 (®) = (@), 91 () — @141 (@) = —2i(®@), ..
o Q"M (@) — @t 1™ (€)= (—1)"" Anen; (@)
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pour l=1,o0u 2, ..., ou k — 1, ou bien

(22) . (@) = 2 (@), @i (@) =— M (@), ..oy @7 (@) = (—1)" 7" %, (w)
Le probléme aux limites se pose sur les équations différentielles
(23) " =0, ¢ =.0, ..., " =0

avec les conditions (4;) et (A4/).

On démontre que le probléme aux limites a une solution unique
qui conduit & la formule de dérivation numérique de la forme (13,), ou
(13;,) pour I =1,0u 2, ..., ou k¥ —1, ou (13, avec le reste de la
forme

(24,) R, (2) = S‘ @ (a, 8) [(s) ds
ou bien

(24,) R, () =5 o (2, ) f (5) ds
pour l=1,2, ..., k—1, ou t:ien

(24,) R, (v) = S o, (@, 8) [ (5) ds

Les formules fondamentales de la classe (P), formules (18), corres-
pondant a la suite (19), coincident avec certaines formules de dérivation
numérique, etudiées par ’Acad. T. Poroviciu [4].

3. Nous avons donné la méthode d’intégration du systéme d’équa-
tions différentielles (8) avec les conditions aux limites (C), dans notre
travail [1], ce qui nous & conduit & la représentation de la différence
divisée généralisée d’une fonction sur des noeuds multiples par une in-
tégrale définie. La méthode d’intégration du systéme d’équations dif-
férentielles (8) avec les conditions aux limites (4,) et (4;) est analogue,
et nous allons ’expliquer d’abord pour ! = k.

La solution du systéme (8) qui satisfait aux conditions (4,) est
donnée par les formules

no—1
e (8) = % (—1)» 7t CFY 81y, (s)
J1=0
ny—1 n -1 .
125)  @p(8) = & (—1) O By (s) + Y (1) O 0,5, (8)
J1=0 =0
ny—1 n—1
(25) @ (8) = & (=10 0y 5, (s)+ Y ()P0 025, (8) + -
J1=0 Jg=0
11

.+ 2 (_1)"-11:—10(%) O, 5,(8).

ig=0
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quelques soient les constantes C{’, C{?, ..., C/*, dont le nombre est
Nog+M + ... +Mpr=n—mn, 4 1.

__Dans les équations (25), 0. (s) est une solution de 1’équation
adjointe L;[2] = 0, qui vérifie les conditions

(26) 6i (1) =0, 0], (2i—1) =0, ..., 00" (2is1) =0, 07"V (2,_,) =1
et nous avons

yo () ¥y (xy) o g (2y)
yo(S) Y1(8) e Yua(8)

Yo(8) y1(8) y,’,_l(S)

(_l)n—h—l

W Yoy Y1y ++ oy Yal

(27) 6;,a(s) =

Yo D) gD s) ey () |

On peut encore écrire la fonction ¢, (s), sous la forme

Cy 0 R G
28 1 Yo (3), ?/1(3), sty f'/n—l(s)
(8 @) = T T T e, e, gias)
Yo (s), yUR(S)y ey WSV ()
ou
Cq —_—nz civy g ( 2 CUz)y(f )( D EE "kzl ! C(’“ y(m (:_1)
J1=0 J3=0 k=0
2p—1 n,—1 171
(29) C; =Y Oyt (m) + Y Oyl (w)+...+ ) Ciio, yP (20_4)
31=0 J3=0 Jk=0
np—1 . n—1 T L .
Civ=S C¥ g (@) + ¥ Oy (@) + .+ % Oy, (2 4)
i1=0 Jg==0 G50
La formule (28) montre que
(30) ec (8) = Cozo(s) + Cia(8) + - + Chlp2,1(8)
oll 2y, 2, -.-y %,_; sont des solutions de 1’équation adjointe L [2] =0,

qui forment un systéme fondamentale.
En écrivant que les conditions (4;), sont satisfaites, nous avons le
sytéme d’équations en Cg, Ci, ..., C,_,
CGZO(w)‘i‘C;zl(w)—'_ +Cf,llz"1( )ZE’-O(x)
Cozo(x)+01zl(w)+ —I—C,. lz,, 1(-7/')—#1(@
(31) . e e e e
Co z‘" " (w) + 0’ 2‘” " (w) + -+ 0.._1 zﬁ."_l""’ (w) = pn-m (7).
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En remplacant les Cg, €5, ..., C._; parles formules (29), ce systéme
devient

"5 [ () 20 (@) -+« <98 () 20_g (2)] 5 +

J1=0
+ % W @)e@) ey (@) 2 (D] O
Ja=0
Np_1—1 .
+ Y WP (@o1) 20 () + oo YR () 200 (2)] OFF; = p, (@)
ix=0

no—1
(32) Y[98 () 26 (@) + -« -+ (@) 21 (2)] CF¥ +

J1=0

n-1

+ Y, [y§ (@) zo(@)+ . . . + YV (2y) 20y (£)]CFP + ... +
32=0
”l' 1

+ B W (0) 3 (@) 4 s (@) 2 (@) O = 1 (2)

................................

5 (20) A (@) s g () A (2)] OO+

J1=0

+ E [Y§? (2y) 2™ (2) + oo + Y98 (2,) 273" (2)] O + ... +

Ja=2
np—1
+ 5 [ () (@) Y (20 S (2)] = g (2)
k=0
La détermination des fonction ¢,, ¢, ..., ¢, est ainsi liée au systéme
d’équations (32). La matrice du systéme (32) est le produit des matrices

Yo (%) Y1 (%) <o Yuoa ()

Yo (%) Y1 () o Ya_y (7)

Y& (mo) YV (@) yor® (@)
(33) L

yo(mk—l) yl (xk—-l) L yn-—l ('/I"k—l)

Yo (2,_1) Y1 (@_q) oo Y1 (Tpoq)

YR (5,) g (@) - YA (20)

zo(2) 2 (x)y, ...y 2™ (@)
(o) 2(x)y, ..., 207" (a)

201 (3) 2y (@), - oy 205 (2)
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dont la premiere matrice a m = n — n, + 1 lignes et n colonnes, et la
seconde a n lignes et m colonnes. On peut écrire encore ces matrices sous
la forme

an alz « o al“ bll b21 ) bm. 1
(33') a21 azz DY a2n ; blz b22 e bm. 2
Apyy Qg 3 oo A bianban ... bna

Le déterminant A du systéme (32) est, avec ces nouvelles notations,

10, @1, 0p « - ay, am b], o, bg, o e bm, o

A = A2, 0, B2, 0, «++ A2 ap b], a, b;:. oy e bm_ o,
(Hpe Oge .onlm) | o o o o o o o o e e s s e e e e

am_ o, a'm. [- A am' oam bl, oam bg' 7RI bm, am

Mais
b], oy b2_ oy e bm. ay

bl.a, b2,a. .« bm.a, — }V [zal , zaz,, ...’Zam]

br.ambe.am «++ Dm.am

et on connait la formule

n(n-1) m—m—1) (n—m)

W[zal’zaﬂ ccey zam] =(—1) 2 2

RN 70 R 1

mW[ya(,’ :'/a; PRTENC :._,,._1]

ol les indices aj, «f, ..., % _n_, S’Obtiennent en suprimant dans la suite
0,1,2, ..., n —1 les indices oy, a5 ..., 2,. On a done

ai, al...al' oam
n(n —-1) _ (n—m—1)(n-m)

A= Vv (—1) ® 2

(Ay o -0 Am)

+oyte-etam v Qs
A2, ayee A2, am WYapreesle!_, ;]

Gm, 0+ Om, am
et cette formule montre que
(34) A =D (@gye Loy Lyy == oy Lyyee oy Ty_gy ovvy Lpqy Ty oo ey D)o
— amm— e et e — —
o ™ Ny ne—1
11 résulte des hypothéses faites sur les fonctions de la suite (1) que

(35) D (g, ..., Ty iy eovy Byy oony Bpopy oooy Tiopy By - ooy z) 0

o n L 1

et par suite
(36) As£0.

Le systéme (32) a donc une solution unique et par suite les fonctions
Py P2y ---y P, Sont parfaitement déterminées.
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Ainsi pour ! = k, nous avons résolu le probléme aux limites ‘et
de cette maniére nous avons démontré D’existence de la formule de déri-
vation numérique (13,) de la classe (P) et nous avons donné les moyens
de calculer les coefficients et le reste de cette formule.

Nous remarquons encore qu’il n’est pas possible que la solution du
systéme d’équations, linéaire (32) soit (f¥ =0, C{? = 0, ..., (%, =0 pour
toutes les valeurs des indices j;, jgy ..., j,. On devralt avmr dans ce
cas o (x) =0, wy () =0, ... @nn, () =0, ou bien d’aprés les con-
ditions (A7), Ay () =0, A () =0, ...y, Aa—n, (®) =0, ce qui est im-
possible parce qu’on a supposé que les valeurs des functieons 24 24, ...,

-+y Aa_n, au point r ne sont pas toutes nulles.

Il nous reste encore & traiter le probléme aux limites pour I = 0,
l=1, ..., l=Fk — 1.

4. Considérons le cas | = 0, ce qui veut dire qu’on doit intégrer
les équations différentielles (8), avec les conditions aux limites (4,) et
(o)

La solution du systéeme (8), qui satisfait aux conditions (4,) est
donnée par les formules

’nk—l .
Pr (8) = — z (—1)""51»‘*1(,’;;’“)(‘.’,% (s)
ir=0
"1 -1
(B7) o1 (8) =— % (= —Jk- VOO g, 5, (8) - % (=1 H=L Q0L i (8).
jk=0 f1—0

Dans ces équations la fonction %; , (s) est une solution de I’équa-
tion adjointe L;[z] = 0 qui satisfait aux conditions

(38) Lin(®m) =0, X p(®) =0, ..., L0 * 3 (2) =0, X" V(z) =1
et nous avons

y&' (x) i (@), ooy (@)
‘ 0(8) Y1(8), cevy Yua(8)
() Jl() B €)

(n 2) (3) y(n 2) ) . ~,'.'!/L"~A12) (8)

(_1)11..11 -1
WlYos U1y o3 ¥n-1]

(39) Xia(s) =

Nous pouvons encore écrire
(40) Lia()=(—1)""""" [y () 20 (8) +yi" (@) 21 (8) + - . . + Y1 (2)2u1(8)]-

Il reste & determiner les coefficients Cy?, C§?,..., C{» par les
conditions aux limites (A). Nous pouvons écrire ¢,(s) sous la forme

C, C; . Cr g
1 Yo(8)  y.(8) cee Y1 (8)
(41) ¢,(8) = W Yor Y1s - -y Yos] ?/o( ) y, (s) e y,':_l.(s)

Yo (8) y"“z’ (8) . Yo (s)
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o
np—1 . . Np_q1—1 . . n;—1
’ 3 3
—Co =Y, OPye(x) + Y, Oy (e, )+...+ Y, CPyd (ny)
Je=0 Iy =0 J1=0
np—1 —1—1 n—1
(42) —(] =Y, Odpyie( + 2, O yd= (2, ) 4. ..+ Y, OV yy(y)
Jg=0 Ik_1=0 i1=0
np—1 np_q1-1 ny—1
1
O 1= 2 C;:Uy;fnl( x,)+ 2 ('n l)q/m_ﬂ( O+ + Z CYvyivy(x,)-
=0 Jjey=0 i1=0

En écrivant que les conditions (A;) sont satisfaites, nous avons
les équations

Cozg(x) + Oz (@) + ... + Ch_12,5 (@) = po(@)
(43) '(; “‘(I)('r) + (’z (x + C’n l‘n l(x) - p']_(m)
C'z"' o) (fL) 6""‘” ""’(w) + + Cn 1”2” 1’“”(%) M —no ()
qui déterminent avec les équations (4") les coefficients Cfo, CPk0, ...

, C{Y. On démontre comme dans ’alinéa 3 que le systéme d’ equatlon%
en C“U yoory CYY qui est analoque au systéme (32), a une solution
unique parce que son déterminant est égal a

D, ... & @y oo Xy onee Ty «n. I,)
: ny—1 ny n
qui d’aprés les hypothéses sur les fonctions de la suite (1), est différent
de zero.

Ainsi le probleme aux limites sur les équations différentielles (8)
avec les conditions aux limites (A,) et (Ag) est résolu. De cette maniére
nous avons démontré ’existence de la formule de dérivation numérique
(13,) de la classe (P) et nous avons donné les moyens de calculer ses coef-
ficients et son reste.

5. Considérons maintenat le cas du noeud z = x;,, o ! est un
des nombres 1, 2, 3,..., k — 1. On peut déterminer les fonctions ¢, ,
Pay @35 ..., ¢, €n intégrant les premiéres équations différentielles(8),
avee les conditions aux limites des points x,, *;, %,,..., #,_;. En pro-
cédant comme dans D’alinéa 3, nous avons

n—1

@uls) = X (1A (0, (5)
J1=0
n,—1 ny -1

(44) o (s) = Y (1)1 005, (s) + ) (—1)n 71 O 62,5, (5)

J1=0 Js=0
Mo 1 ny 1

9 (8) = ¥ (=17 1098 () + X (— 1) O 0s., (5) + -
Jo=1 Jp=0
nl—1

.+ Z (—1)"-3- 10(:,) 9(;,) (s).

=0
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De méme on peut déterminer les fonctions ¢,, ¢, 3, ..., @ 1»
en intégrant les derniéres k¥ — ! équations différentielles (8) avec les con-
ditions aux limites des points »,, ®,_, ..., #;;;. En procédant comme
dans l’alinéa 4, nous avons

np—1 .
e (8) = — ¥ (—1)" %1 CR Xy 5, (8)
=0
np—1 . .
(45) @1 (8) = — Y (1) R Xy, (8) —
k-0
np_1—1
120'(——1)” -1 C(:g LA g L, (s)
k—1=
...... ”.k.l........ e e s e e s a
Pur (8) = — & (=15t (90 % (s) —
Fk=0
np—1—1 . 3
—_ 2 (—1)”"’1:—1"1 C;’qu’xk_l,,-k_l(s)——-. e —
Jgey =0
npy—1 .
—_ Z (——1)””’l+1-1C;Jj';l)xl-#l.hﬂ(s)'
Jpr=0

Nous avons

C, Cq . Chy
1 Yo(8)  91(8) ... Yur(8)
Yo(8)  yi(s) ... y,’.-l (8).

(46) @,(8) —d,, 4(s) =
e Y s s -1 Uoa]
5 (6 12 9) . )
ou bien
(47) @ (8) — @11(8) = Coz(s) + C12,(8) 4+ ... + Cri_12,_4 (8).
ou

n,—1 ma-1 .
=V C Y (m) + ... + Y O y¥0 () +

J1=o J1=0

npy—1 n—1

+ 1‘2 C(Ju.; y(:l+1 (wl+2)+ .+ Z C(jk) y(Jk) (w )
J1+h1=0
fo—1 . .

48) =" Oy @) + . Y Oy (miy) +

i1=0 ;=0
np41—1 n—1

+y CPrp Yy (,,9) + . . . + ,Z Cw yin (,)
Jj41=0 k=0

n——1 .
= O Y (20) e Y O, g (3,_) +

51=0 ij=0

".H—l nrp—1

+ Z C“Hl)y(’“'l) ($l+1) + .+ Z C(’k) y("‘)l (w,) .

J+1=0 Jk=0
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En écrivant que les conditions (4;) sont satisfaites, nous avons
le systéme d’équations linéaires

o2 (@) + Ci 2 (@) + «v o + Coy 20y () = 129 (@)
(19)  Cia (@) + Ciat (@) + .. + Ciy 2y (3) = o ()

Co 2™ (x) + Cr2pP™(x) + ... + C;y 200 (@) = ponny ()

qui déterminent les constantes C{, ..., Cyo, Cirp, ..., Ci».

On démontre comme dans 1’alinéa 3, que le systeme d’équations en
cyv, ..., OPP, O, L., C% qui est analogue au systéme (32), a
une solution unique, parce que son déterminant est égal a

D (Zgy oo @y oo vy By_qy evoe Xy_qy @y eve Ty Tyigy ooe Tpagy ooe Tpponny &)
N, it N, ] \———] e e, e e, o
Ny ny—y n;~1 iy g

qui d’apreés les hypotheéses faites sur les fonctions de la suite (1), est
différent de zéro.

Ainsi le probléme aux limites sur les équations différentielles (8)
avec les conditions aux limites (A,) et (A}) est résolu. De cette maniere
nous avons démontré l’existence de la formule de dérivation numérique
(13,) de la classe (P), et nous avons donné les moyens de calculer ses
coefficients et son reste.

Le probléme aux limites posé dans l’alinéa 1 étant résolu pour
l=0,0oul=1,..., oul =k, lexistence de la formule de dérivation
numérique de la classe (P) est démontrée dans tous les cas et nous avons
donné les moyens de calculer les coefficients et le reste de cette formule.

Dans le paragraphe suivant nous donnons un exemple correspon-
dent au cas ou la suite des fonctions (1) est la suite (19).

§ 2. DISCUSSION DU RESTE D'UNE FORMULE Di DERIVATION NUMERIQUE

6. Nous allons étudier la formule de dérivation numérique de
la classe (P), de la forme

(50) f*~2(x) = fiAﬂ o, (@) fO (@) +Ay(x) fa)) - Ay (@) f'(21) + Bo(@) f(5) + R(®)

avec le noeud x, double et x, simple. Nous distinguerons conformément
4 la théorie générale trois cas, selon que x<< @ ou x >z, ou
x, < x < 2,. Nous supposerons que # > 4.

Nous examinons d’abord le cas & < x;. Nous attachons aux in-
tervalles [y, ;], [#,, @] les polyndmes ¢, et ¢, solutions des équations
différentielles

(51) @ =0, o =0
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et nous aurons les formules

@ f — ot 4 () T e SN = (—1)"‘18 o f" ds

(52) ]
(00 = @§ ™ f o (1) g f) = (1) (o s,
Si nous introduisons les conditions aux limites
Pi(z) =0 e1 () = (—1)** o1 () =0

(53)  @1(@1) = o) o1 (2) = @3 (@), ... 97"V (7)) = o8~ (2)
Po(22) = 0 @: (@) = 0, coe @8 T (1) = 0.

et si nous ajoutons membre & membre les formules (52), nous obtenons
une formule de dérivation numérique de la forme (50) dans laquelle

(54) o, (@) = (—1) "'~V (x)
pour j=0,1,..., n — 4 et
Ao (@) = — [¢""V (2)) — o4~ (2)]
(55) A (@) = [o7 " (1) — o™ (21)]
By(2) = — oi" " (@,).

L’intégration des équations différentielles (51) avec les conditions
aux limites (53) se fait de la maniére suivante :
Nous remarquons que les polynomes

(8 — @p)" !
) .
o6) P (8 ’—"—'( Y
I G i (8 — ay)"! (8 — @)™
L T IS TY R -y

vérifient les équations différentielles (51) et les conditions aux limites
des points z, et x,, quels que soient les constantes 2, p, v.

En écrivant que les conditions aux limites, du point x, sont égale-
ment vérifiées, nous avons le systéme d’équations

R N U N SN CEr A
(mn— 1)! (n —2)! (n —1)!
(57) A (.’1? - '/I/'])"_‘2 w ((17 _ "B])"—3 v (x _ x2)n_2 ¢ _1y-1
(n —2)! (n — 3)! (n —2)!
(# — ay)"° tu (2 — o) * +y (x — a)"® —0

(n — 3)! (n — 4)! (n —3)!
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dont la solution est

= (=1)" (n—2)! (n—3) (2—,)2 — (n—1) (£—,)?
(2p—2y)? (0 —y) (# — ay)"?
. n (n—2)! (2, — @) [(2 — @) + (2 — a3)]
58) = (—1) .
) L ( (m2—$1)2 (x—a,) (@ — xl),,

(n—2)! S 2(x — x)?

— ( 1)1l - =
(Ty— &) (x—my) (@ — @,)"

Les polyndmes ¢, , @, sont ainsi complétement déterminés.

Les formules (54) et (35) montrent, que dans la formule de déri-
vation numérique (50), nous avons

(59) o () = A+ v
() = (<17 [ B 4 e R
J! G—"n! J!
pour j=1,2,..., n —4, et
(60) Ag(x) = — A, A)(2) = p, By(x) = —

La reste de la formule de dérivation numérique (50) pour <z, est.

(61) Ry (x) = (—1)*"" S Bol, 8) f™ (3) ds

&

ol le noyau o, s), coincide pour le point x considéré, sur les inter-
valles [z, x;], [@1, ®.], avec les polyndmes o,(s) et @u(s).

Pour D’étude du reste Ry(x), sont trés utiles les théorémes 1 et 2,
que nous donnons dans l’alinéa suivant.

7. Théoréme 1. Dans la formule de dérivation numérique
(50) le coefficient oy (x) de f(x) est positif.
En effet, d’aprés les formules (59) et (58), nous avons

e =)l [(=3) (e—2y? — (=) (@—a)*
“(@) = (1) (@ —y)? (£ — 1) [ (z—xy)"? "
o lemar ]
(x—ay)" 2
ou bien

(2—ay)? — (@—a)
(x — a;)"?

w (@) = (—1)® — "= 2)! [(n—l)

(23— 2y)* (2 —y)

—9 (x—axp)" ™ — (w_wl)”—l]

(x—amy)" 3 (x—ay)" 2
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ol encore
(n—2)!

(2—my) (B—2y)" % (2 —2p)" 2

(62) % (@) = (—1)"+ Z B (2)»

oll nous avons posé
(63) B.(#) = (2 — x)"* [( — @) + (z — 2y)] — 2(2 — x)" M@ — 2)*?
Nous remarquons que
Ba(®) + Ba(2) = 2(x — @)"* [(® — @) + (2 — @)] — 2(2 — @,)"™* —
—2(2 — @) (@ — @) = 0
de sorte que la formule (62) devient
(n—2)!

(62’ = (—1)+
G = e —

nszmw

Mais d’aprés la formule (63), nous avons

(62") Ba(a) = — (xa—m) {(2—2,)"~* [(2—,) + (—xy)] +
+ (2 — z)" (2 — )}
et
(62"") B(@) = — (wy—ay) {(x—m)" [0 — ) ° + (7 — @) (@ —2))+. ...
A (@—m) ) (@) T () [(2—@,) 7t
+(@—m) (=) + .o+ (@ — 2y) ]}

pour k =5, 6,..., n.

Les coefficients B, (x), B;(2),..., B,(xr) ont le signe de (—1)""2

parceque x << x; << x,. Il résulte alors d’aprés la formule (62) que
o, () >0 et par suite le théoréme 1 est démontré.

Théoréme 2. Le noyau ooz, s), pour le point x donné, ow
x < x < x, considéré comme fonction de s, et qui coincide sur les inter-
valles [x, x,], [y, x;], avec les polynémes ¢, et ¢,, ne s’anule pas sur
Dintervalle (x, x,) et a la signe de (—1)"~! sur cet intervalle.

En effet d’aprés les conditions aux limites (53), la fonction de s,
oo(, 8) est continue sur ’intervalle [z, x,], avec ses dérivées succesives
jusqu’a la dérivée d’ordre » — 3. La fonction ¢q(z, s) ne s’annule pas
sur Dintervalle [x;, #,]. Supposons alors qu’elle s’annule en un point z’
de l'intervalle (x, ;). En tenant compte des conditions aux limites (53)
des points « et x, on peut appliquer le théoréme de Rolle successivement
et déduire de cette maniére que ¢; s’annule en deux points de l’inter-
valle (x, wx,), ensuite que ¢, s’annule en deux points de lintervalle
(w, @), et aussi que ¢q’’, o ,..., o™ g’annulent en trois points de
Pintervalle (x, mz) Mais "= ( ) ne s’annule pas sur l'intervalle [z, x,).
Donc les trois zéros de ¢f*~* doivent étre des zéros de ¢{"~*(s). En appli-
quant & ¢{"~® (s) le théoréeme de Rolle, on déduit que la dérivée oi*~%(s)
doit s’annuler en deux points de lintervalle (xz, ;) et que la dérivée
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"~V (s) doit s’annuler en un point de l’intervalle (x, x,). Mais cela est
Impossible parceque, d’apreés le théoréme 1, nous avons

"V (8) = A+ v = oy(x) >0.

Nous sommes donc arrivé 4 unc contradiction, d’ou il résulte que
la’ fonction ¢,(x, s) ne s’annule pas sur l'intervalle (x, x,). D’apreés la
derni¢re formule (58), le coefficient v est positif et la premiére formule
(56) montre que ¢,(s) a le signe de (—1)"~' sur lintervalle [z, ;).
Donc la fonction ¢u(x, s) a le signe de (—1)"~' sur lintervalle (z, ).

11 résulte du théoréme 2, que la formule de dérivation numérique
(50) a la degré d’exactitude égal a n—1, lorsque x < x; < ¥, et on peut
mettre alors le reste Ry(z), aussi sous la forme

(64) By(@) = (=17 [ oo, 9) ds
ou {e(x, x,).
On démontre facilement & 1’aide de la formule (50) que

(_I)MS% oo(@,8) ds = (2 — o) [2(x — %) + (2 — 7]
= n(n — 1)

et la formule (64) devient

(65) Ro((lf‘) — (d/‘ - wl) [2(:1" - ‘1’2) + (.’l}' _ wl)] f(”)(é_.)
n(n — 1)

d’olu résulte I’évaluation

(66) | Ro(a)| < Z= @@ =2 (@ = 2] 3 o gy gup | fes)|
n(n — 1)

8. Considérons le cas © > x, et attachons aux intervalles [z, , @,],
[2,, ], les polyndmes o,, @, solutions des équations différentielles

(67) o™ =0, o = 0.

Nous aurons les formules

(e Vf — o 2f + ... + (=1t fo )2 = (—1)"“‘8 “o f™ ds

Ly

(68) :
(@ Vf— o2 f + ... + (=1 e fOk = (—1)"“S pof™ ds.
Si nous introduisons les conditions aux limites
oy(@) = 0, o1 (%) = 0,..., o ¥ (1) = 0

(69) @1(%2) = @a(@), 1 (T2) = @1 (T3)y. -+, O~ (@) = o™ (@)
ey(x) = 0, e (2) = (—1)"% ¢ (2) =0

b — ¢. 6714
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et si nous ajoutons membre & membre les formules (68) nous aurons la
formule de dérivation numérique de la forme (50), dans laquelle

(70) @ () = (__1)J'+1 (Pén—l—l) ()
pour j =0, 1,..., n — 4, et

Ay(x) = ¢i"~V ()
() A4(0) = = ¢ (ay)

By(®) = "7 (@) — oi" " ().

La solution du systéme d’équations (67) qui satisfait aux conditions
(69) est donnée par les formules

. (3 — -%'1)"—1 - (8 — J)l)"_z
(72) == (n —1)! (n—2)!
P . S Cll VA Gl S il

En écrivant que les conditions aux limites du point x sont vérifiées,
nous aurons les équations (57), avec la différence que x > x,, qui dé-
terminent 2, @, v et nous aurons les formules (58).

Les formules (70) et (71) deviennent alors

(@) = A+ v
{1V (x — 2) (z — o) v(w”“wz)j
(1) o) = ([ B 7
pour j =1,2, ..., n — 4 et
(74) Ag(@) = — 2, A(@ =y, By(x) = —

Le reste de la formule de dérivation numérique (50) pour z > w,, est

(75) Ry() = (—1>"-lsz 02(, 5) f (s) ds

1

ou le noyau ¢,(, s) coincide pour le point x considéré, sur les inter-
valles [z,, x,], [@,, «], avec les polynémes ¢, , @, donnés par les for-
mules (72). ‘

Pour D’étude du reste R,(x), nous utiliserons des théorémes 1’
et 2’ que nous donnons dans I’alinéa suivant.

9. Théoréme 1'. Dans la formule de dérivation numérique (50)
le coefficient ay(x) de f(x) est différent de zéro et a le signe de (—1).

Le coefficient Ay(x) est également différent de zéro et a le signe de
(—1)™

En effet comme dans le cas du théoréme 1, on a la formule (62')
et les formules (62’') et (62'”) montrent que pour x >z, > x,, les
B. (x) sont négatifs pour & = 4, 5,..., n. Il résulte que ay(z)==0 et a
le signe de (—1)".
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En ce qui concerne A, (x), d’aprés les formules (74) et (58) nous
avons

(n—2)! (n—3)(2—5)* — (n—1) (x—=)®
(23—2y)* (v—2y) (x—azy) 2

Ay(@) = —h= (1)

et nous pouvons écrire

(n=2)!  (n=1)(2y—ay) [(2—,) + (2—a1) ] + 2(2—a,)?
(0y—21)? (0—1,) (—ay)"°
d’ou il résulte que Ay(z) = 0 et a le signe de (—1)".

Théoréme 2. Le noyau o,(x,s) pour le point x domné, ou
v < @y < X, considéré comme fonction de s, et qui coincide sur les inter-
valles [x,, x,], [%5, ] avec les polyndmes o, et o, ne s’annule pas sur
Dintervalle (x,, x) et a le signe de (—1)"~* sur cet intervalle.

Supposons le contraire, que la fonction ¢, (z, s) s’annule en un
point 8 = 2’ de l’intervalle («,, ). Alors en apliquant successivement
le théoréme de Rolle, on déduit que la dérivée ¢, s’annule en deux
points de l'intervalle (x, , z), ensuite que la dérivée ¢, s’annule en deux
points de Dl’intervalle (x,, x) et que les dérivées o), o, ..., @&~
s’annulent, chaqu’une, en trois points de lintervalle (z,, x). Désignons
par &, &, & les zéros de ¢y sur lintervalle (z;, ). Sur chaque
igltervalle (#,, @3], (,, ) on ne peut placer qu’un point de la suite.

19 2 3

En effet supposons que &, et £, (x,, x,]. Alors, en appliquant
de nouveau le théoréme de Rolle on en déduit que ¢{"~V(s) doit s’annuler
sur lintervalle (xz,, x,). Mais on a

eIV (s) = — A = Ay(2)
et d’aprés le théoréme 1, Ay (x) = 0. Cela montre que sur lintervalle
(x1, ®,] ne peut se trouver qu’un seul point £ disons &, .

Supposons que les points £, et £;e(w,, «). Alors, en appliquant
le théoréme de Rolle on en déduit que la dérivée "~ (s) doit s’annuler
en un point de lintervalle (xz,, z). Mais

PF TV (8) = — (A +v) = — ()

et d’aprés le théoréme 1’, «o(x) 5~ 0. Cela montre que sur l’intervalle
(z2, #) he peut se trouver qu’un seul point de £, et £, .

Ainsi nous sommes arrivé 4 une contradiction, d’ou résulte que:
la fonction ¢,(x, ) ne s’annule pas sur lintervalle (z,, z).

On a:

Ao(w) =(—1)"

(Ta—my)" 2
(n—1) (x—a,)"*

1 (@) = (—1)"" [(n—=3) (#—2,)*+(n—1) (2 —2,) (1 —a,)]

ce qui montre que ¢, (x, s) a le signe de (—1)"! sur Dintervalle (z,, ).
Il résulte du théoréme 2’ que la formule de dérivation numérique
(50), a le degré d’exactitude égal 4 n — 1, lorsque =, < x, < x.
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On peut mettre alors le reste, donné par la formule (75), sous la
forme

By(2) = (=17~ {7 (©)] eax,s) ds
ou £e(wry, ).
Il est facile de voir que

1 — (x—xl)[2(w_wz)+(a7“m1)]_'
(—1) S 92 (x, 8)ds Pyt

1

Nous pouvons donc écrire

ou te(x, z) est de cette formule il résulte I’évaluation

(76)

(17) | Ry(o)| < Z=2) =) F @20} gy o gy sup |0 ().
n(n—l) (&, )

10. Considérons enfin le cas », < ¢ < &,. Comme dans les cas pré-
cédents, attachons aux intervalles [#,, z], [#, «,] les polynémes ¢, ,
¢, solutions des équations différentielles

(18) o) =0, of =0.

Nous aurons les formules

X

T e A

(967 f = o 2 f (=1 Touf 2 = (=1 | af s
Introduisons les conditions aux limites
oi(xy) =0  oi(x) = 0,.. oY () = 0.
180) 0 (%) = @o(®), o1 (¥)—@3(x) = (—1)"% o'(®) = ¢:i'(®)
@2 (L) =0, @3(@5) = 0,..., "™ V(x,) = 0, ¢&" ¥ (z,) =0

et ajoutons membre & membre les formules (79). Nous aurons la formule
de dérivation numérique (50), avec

(81) a (@) = (—1)* [of" 7"V (2) — @'~V (@)]
pour j =0, 1,..., n — 4 et

Ao (®) = o'V (@)
(82) C A4,(@) = — oY (ay).

By = — oi" ™V (wy).
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La solution des équations différentielles (78) qui vérifient les con-
ditions aux limites (80) des points x, et x, est

L ma)t (s— )
(53) P(8) = m—11! " m—2
op(s) = v E =T
2 (n —1)!

En écrivant que les conditions aux limites du point x sont vérifiées,
nous avons les équations (57) pour déterminer A, p, v, avec la différence
que z; < & < ¥,. Les valeurs de 2, u, vsont données par les formules (58).

Les formules (81) et (82) montrent que

g (@) = A+ v

(84) . (2 —ay) (x — @)1 (x — a,)
oo = (1 G T e

et que

(84) Ay(@) = =2 A, (2) = uy By(2) = — v.

Le reste de la formule de dérivation numérique (50) pour z; <
< x < &, est ‘

(85) Ry () = (—1) S o1 (2, 8) f (3) ds

Ty

ot le noyau ¢, (x, s) coincide pour le point x considéré, sur les intervalles

[2, 2], [®, x5], avec les polynomes ¢,, ¢, donnés par les formules (83).
Le polyndéme ¢, ne s’annule pas sur lintervalle [z, x,] et nous

avons

2z — &)@ — @)

(n — 1) (g — 2)?

ce qui prouve que ¢,(s) a le signe de (—1)" sur Uintervalle [x, z,].

(86) e (2) = (—1)"

Dans D’alinéa suivant nous allons étudier le signe du polynéme
¢,(s), pour toutes les valeurs de se(x,, ).

11. Nous pouvons écrire

n—g

(s— )

P (8) = — NTEETIE [Ms —ay) + (n—1)p]
ou bien
_ (8= @y)""?
(87) #(5)= = o )
en posant

(88) i (8) = Ms — @) + (n — L
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NOHS avons
2 (17 al I l/'1:2)

(wg—ay) (¢ — 2)"?

(89) ¥ () = (—1)"

D’apres les conditions aux limites (80) du point x, ¢(x) = ¢@.(x)

et la formule (86), on a
T — 2,)" 2 22 (2 —2) (2 — x,)2

_(___L)____ 4"1 (w) — (_1) ( l)( 2

(n —1)! (n—1) (2 —2,)*

d’ou il résulte que
n—2)! 2(x — m,)?
(s — @) (2 — 2y)" 78

d (@)= (—1)"

et par suite
(90) (—=1)" ¢y (x) >0.

Les formule (89) et (90) montrent que pour z < %w_z’ y(x;) et

Y, () ont le méme signe et par suite ¢, (s) et ¢,(s) ne s’annulent pas
sur lintervalle (2, , «]. Le signe de ¢,(s) est dans ce cas le signe de
(=1)"

Pour xz= %, nous avons, d’aprés les formules (58)
n — 2)1 _ 92!
p= (AR g e D
2 Po — Ty 7 Y e T U
2 ( 2
et par suite, d’aprés les formules (83),
,, n —2)! § —ay)" 1
() =(—1y— 2L G o)
9 [ %2 1 (n — 1)!
2
(n—2)! (2, — )"
8) =(—1)" . .
Pals) = (=1) 2(932—3’1)"“ (n —1)!
2

Les fonctions ¢,(s) et ¢,(s) ne s’annulent pas sur Dintervalle
(2, x;) et ont le signe de (—1)".
2 + @y
2
pas sur Uintervalle (xy, x;) et a la signe de (—1).
La formule de dérivation numérique a dans ce cas le degré d’exactitude
égal & n — 1.

Donge, pour x (wl , , la fonction de s, ¢, (x, s), ne s’annule
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Lorsque z e (% , xz) , les formules (89) et (90) montrent que

(=1)"$1(2) >0, (—1)"¢y(x) < 0.

Le polynéme ¢,(s) s’annule donc en un point z'e (x,, x) et a
le signe de (—1)"! sur lintervalle (x;, '] et le signe de (—1)" sur
Yintervalle (o', x).

Donc pour x e(ﬂ%, wz) le noyau ¢, (x, s), considéré comme

fonction de s, s’annule en un point 2’ de Dintervalle (x,, x,) et a le
signe de (—1)""! sur lintervalle (x,, ') et le signe de (—1)" sur l’in-
tervalle (2, x,).

Le reste R,(x) de la formule de dérivation numérique, donné
par la formule (85), montre que le degré d’exactitude de la formule, dé-
pend de l’intégrale

| ol as

£

Nous avons

_1y (™ __:3(“'_‘1’1)(97—41?*)
(—1) &%mwm TR

ou

(91) xr* = fﬂ .
3

Il résulte que pour les points de Dintervalle (xl—;wi. wz) différents

de z*, le degré d’exactitude de la formule de dérivation numérique (50)
est n — 1. Si # = z*, le degré d’exactitude de la formule (50) est plus
grand que n — 1.

Nous dirons que le noeud z* est un nmoeud exceptionnel et que la
formule de dérivation numérique (50), correspondante est une formule
exceptionnelle.

12. Cas du noeud exceptionnel. Nous avons vu dans l’alinéa pré-
cédent que la formule de dérivation numérique (50), exceptionnelle, a
le degré d’exactitude au moins égal 4 n, ce qu’on peut d’ailleurs vérifier
directement.

Mais c’est dans D’exprit de notre travail de déduire ce résultat
de Dexpression du reste R de la formule (50) exceptionnelle que nous
obtiendrons par un probléme aux limites, en supposant que fe C"+![x,, x,].

A cet effet, attachons aux intervalles [x;, x], [x, z,] les poly-
noémes ¢,, ¢, solutions des équations différentielles

(92) (P(ln+l) — 0’ ;:n [ Y — 0.
¢
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Nous avons les formules

(@ f — oV f +. . H (=1 e f”)e=(—1)" Sz eu(8)f" ) (s) ds

(93) )
(98— g5 f 4. (= 1) eaf ) =(=1)" | "ea(s) S (5) ds.

Relativement & ces formules posons nous le

Probléeme aux limites. Déterminer la solution des équations diffé-
rentielles (92), qui satisfait aux conditions aux limites

o) =0 @i (m) = 0,..., " () = 0
(94) ou(@)=0o(2), oi(2)=0s(2), @1 (8)—2 (2)=(—1)""2 91" (@)= 02" (x)
o (Z3) = 0, 5 (2,) = 0,..., @& V(x,) = 0.

Le noeud z sera déterminé de maniére que ce probléme soit pos-
sible et nous verrons que x est précisément le noeud exceptionnel.

En effet, la solution des équations différentielles (92) qui satisfait
aux conditions aux limites des noeuds x; et z, est

L —a)" (s — ey
5) Bl == (n—1)!
(Pz(s) = Vv w’f.
n!

En écrivant que les conditions du point x sont également satis-
faites, nous avons les équations

7\(5”—%)" (2 — ay)" 1 + v (z—x,)" —0.
n! (m — 1)! n!
(r—a)" 1 (n — @)™ 2 (x —a)"!
m_1t ot T ot
@) e—wlt @ow @ —a

(n —2)! (n — 3)! (n —2)!
(x —x)"3 (x — o))" (@ —x)" "% 0
3t T gr T m s

pour déterminer A, p, v et .

Les trois derniéres équations (96) sont identiques aux équations
(57) dont la solution est donnée par les formules (58). En écrivant que
la premiére équation (96) est aussi vérifiée, nous avons I’équation

(97) 3 —x; — 22, =0

pour déterminer le noeud x, ce qui montre que x est le noeud exceptionne-}
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En remplagant dans les formules (93) les polynémes ¢, et o,
par la solution du probléme aux limites et en ajoutant membre & membre
ces formules, on trouve la formule de dérivation numérique

(98) fo9(xt) = §4 g fO(2*) + Aof(ar) + AL f (21) + Bof(xs) + R

ou

(99) 2y = (—1P* [~ (a*) — o7 (a*)]

pour j =0, 1,..., n — 4, est

(100) A= ¢ (@), A= — o"" " (x1), By = — o{"(my).

D’aprés les formules (95) nous avons
(101) g = A+ v

w:pnwxwfjﬁy+uwtww* V(W—wJJ
j!

G—n! J!
pour j=1,2, ..., n — 4, et
(102) Ag=— 7 A=y, By= —v

ce qui prouve que la formule (98) coincide avec la formule excep-
tionnelle (50).

Le reste de la formule exceptionnelle est

(103) B ={"a (s () ds

1

ou la function ¢ coincide avec les polynémes ¢, et ¢, sur les inter-

valles [, , «], [x, «,], et il nous reste & étudier la fonction ¢.

Théoréme 3. Dans Pexpression (103) du reste de la formule
exceptionnelle (98), la fonction ¢ ne s’annule pas sur Uintervalle (z,, x,)
et a le signe de (—1)"7L

En effet, d’aprés les formules (95), la fonction ¢,(s), ne s’annule
pas sur lintervalle (x*, x,) et a le signe de (—1)*"L.

D’autre part, nous pouvons décrire

(s — )2 (s — @yt

o(s) = — P [Ms — @) + np] = — = T w1 (8)
n . [

$1(8) = M8 — &) + np.

Nous remarquons d’aprés les formules (58) que ¢,(x;) = nu et
a le signe de (—1)", et que de légalité ¢, (#*) = ¢,(x*), il résulte que
¢, (%) a aussi le signe de (—1)". Donc ¢,(s) ne s’annule pas sur ’inter-
valle (z;,, x*) et par suite le polynéme ¢,(s) a le signe de (—1)""! sur
DP’intervalle (x;, «*).



74 D. V. IONESCU 28

_ Le théoréme 3 est ainsi démontré et il résulte que la formule de
.dérivation numérique exceptionnelle (98) a le degré d’exactitude égal & n.
Nous pouvons alors écrire

B =(=17 ") "o (s) as

&y

ol e (%, ), et il est facile de voir que

n T 4(‘/1/'2 - wl)a
1 ds — — -
(=1 le?(s) 5 2T(n — Lyn(n + 1)

.de sortie que la formule précédente devient

4(xy — x,)3
(104 R = — 2 1 (n+1)
( ) 27(n —1)(n 4+ 1)n f (%)

et il résulte l’evaluation

42y — 2,)3
M, M = (n+1) )
27(n— a1 1) M SRRSO

(105) IR|<

En général les formules de dérivation numérique de la forme (50)
ont le degré d’exactitude égal 4 n — 1. La formule exceptionnelle (98)
apparait comme une formule spéciale de la forme (50), dont le degré
d’exactitude est égal a .

Des cas particuliers de la formule (98), n =4 et n =5, sont
donnés comme exemples dans le Mémoire de T. PorovicIiu [4] ou sont
.données aussi les évaluations (105), correspondant & n = 4 et n = 5.
(formules (31) et (32) p. 106 et 107).

Regu le 15.VI.1968
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