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SUE QUELQUES FORMULES DE DÉRIVATION

NUMÉRIQUE
PAR

D. Y. IONESCU (Cluj)

Considérons les fonctions

(1) Уо(®)> yi(®)> •••> У.(®)
définies et dérivables sur l'intervalle [a, ô], autant de fois qu'il sera
necessaire dans ce travail et telles que les déterminants de Wroński

(2) W [y0, yu уЛ

soient différents de zéro sur l'intervalle [a, &], pour r = 0, 1, . . . , n.
Aux fonctions / et ф de la classe Gn [a, b ], associons l'opérateur

différentiel

(3) Ln [/] = = fin) + Й1{x) fa^ + ___+ ^ (x) f
W[y0, yx,

et l'opérateur différentiel adjoint

(4) Ll [ф] = (-1)" [ф(п) - («хФ)1"-11 + --- + (-1Г a. ф].
On sait qu'il existe l'identité

(5) Ф Ln[f] - fLl [ф] = (ff (/, ф))'
où

(6) H (/, ф) = ф fn~v - [ф' - К ф)'] /<-» + . . .
... + (-1)я-1[ф(я-1) - («i Ф)(П-2) + --- + (-1)" («„-! Ф )]/

Cela étant rappelé, prenons sur l'intervalle (a, b) les noeuds x0,
хг , . . . , xk multiples d'ordres n0, пг, . . . , nk, où

(7) n0 % -1-. . . -1-nt = n + 1

et attachons aux intervalles [ж0, [xt, x2], . . xt] les fonctions
<pl} <p2,. . . , <p»solutions des équations différentielles

(8) Д: [<Pi] = o, L: [<p2] = 0, . . . , Ll [<pt] = 0.
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48 V. V. lONESCC 2

Si dans 1'ident-ité (5), nous remplaçons la fonction ф par 9. et nous
intégrons les deux membres de xs_x à xi nous avons

(!>) H(f,b)XJ =f ç, Ln [/] ds
Jxj-i

En prenant j - 1, 2, . . le et en faisant la somme des formules
obtenues membre à membre, nous aurons la formule

(10) è H(f, ъ)
:rj = C'' 9 L„ [/] ds

j = 1 Xj-1
où la fonction 9, coïncide sur les intervalles [x0J xx'9 . .., xk ]
avec les fonctions qx, <?2, . . . , 9fc.

La formule (10) dépend de kn constantes quelconques.
On peut déterminer ces constantes, par des conditions aux limites

imposées aux fonctions 9^ <p2J. . . , 9fc, relativement aux noeuds x0,
*r1?. . xkJde manière que dans la formule (10), ne figure que

/(®o)> /'0*o)> • • •» /("0_1>(«o)

/(*,), /'(*.), (®.)

Nous désignons ces conditions par (C). On démontre que l'intégration
des équations différentielles (8) avec les conditions aux limites (C) est
possible et conduit à la représentation de la différence divisée généralisée
de la fonction /
(11) {^0? ^0? ' ń' J ***7*^k? *** J/}

par une intégrale définie [1], par la formule
rxk

(12) {a?0, . . . ®0, . . x„ . . xtļ /} = ' <p [/] ds

«; «t

Mais si les fonctions 9^ 92, . . . , 9* ne vérifient pas les conditions
aux limites (C), la formule (10) est différente de la formule (12). En in-
tégrant les équations différentielles (8), avec des conditions aux li-
mites convenablement choisies, nous mettrons en évidence dans ce tra-
vail, certaines classes de formules de dérivation numérique, que nous
désignerons par (P).

Lorsque la suite de fonction (1) est 1, x, ..., xn , parmi les for-
mules de dérivation numérique de la classe (P), on trouve certaines
formules que nous avons appelées formules fondamentales,qui ont été étu-
diées aussi par l'Acad. T. Popoviciu [4].

Dans le § 1 de ce travail nous faisons la théorie des formules de la
classe (P) et de leurs restes.

Dans le §2 nous faisons des applications de ces formules et nous
généralisons de cette manière certaines formules qui ont été données par
l'Acad. T. Popoviciu [4].
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3 SUE QUELQUES FORMULES DE DÉRIVATION NUMÉRIQUE 49

Les principaux résultats de ce travail ont été donnés dans deux
communications, au IVéme Congrès interbalkanique de mathématiciens de
Bucarest 1966 [2] et au Colloque sur les techniques de calcul de Bucarest
1967 [3].

§ I. LES FORMULES DE DÉRIVATION NUMÉRIQUE DE LA CLASSE (P)

1. Les formules de dérivation numérique de la classe (P) sont ca-
ractérisées par un problème aux limites relativement aux équations dif-
férentielles (8), avec des conditions aux limites que nous préciserons plus loin.

Nous poserons x¡ = x et le noeud x appartiendra à l'intervalle
(a,Xj), ou (x0, x2), ..., ou (xt_2, xk), ou [xt_lf ò] selon que 1= 0, ou
l = 1, . . . , ou l = к - 1, ou l = ic.

Nous désignerons par (J^) les conditions aux limites imposées aux
fonctions ф 1; <p2, . . . , ер*relativement aux noeuds x0 , хг , . . . , xk , le noeud xt
étant exclu, identiques aux conditions (C), relativement aux mêmes neuds.

Les conditions A¡ seront donc les suivantes :

ņ2{x1) = ņ1{xļ), <p.>(«i) = 9ÍK), •••> cpif-"1-1' (a71) = <p(i"-rei-1)(£Ti)

<Л) < ф* (Xt-l) - 9i.-l ( Xk-1 )J9»(®l-l) = 9'.-l(®J.~1)> • • •> 9* k ' ~

. 9*K) = °> фП®») = 0, . • 9Ł"~"t~1>(*») = 0

si 1= 0. Ensuite nous poserons
'
«pj(x0) = 0, <pi(a?0) = 0, . . . , (®o) = 0

9з(®г) = 92(^2); Фз(ж2) = 9-Л^г), •••> 9з"~"г-1>(®2) = 92n""2_1) (®г)

9jt(aV-l) = (?k-l 9*(®A.-l) = 9l-l •••)?« к )
iXk-1) =

=
' 9*К-) = 0, <pí(ag = 0, . . ., = 0

si 1= 1. Ensuite nous poserons

9i (®o) = 0 9Í(®o) = °> • • •> 9Î"""0_1)(®o) = 0

92 (®i) = 9i(xi), <p'M = 9Í(®i), • • .,.9^- '-"(ai) = 9ГП1~1,(®1)

9 ~ 9¡(®;-i) = 9<-i(®<-i)> •••> 9< 11 1,(®г-1) =
=

■í-^г) 9í+2 (®ÍH-l) = 9i+1 (®l+l)> 9h-2 (•"í + l) = 9h-1 (Xl+ l)l • • •> 9Î+2 1+1 (Xl+l)
-[»-»IH-ll/r ļ- -[»-»IH-ll/r9j+i (xi+1/ļ

9«.(®*-i) = 9л,-1(Xk-i)i 9i (®i-i) = 9*-i(®i-ib • • • ! 9» k '
(®*-i)

9» Ю = 0, 9l. (*,) = 0, . . . , Ю = 0

4 - C.5714
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1967 [3].

§ I. LES FORMULES DE DÉRIVATION NUMÉRIQUE DE LA CLASSE (P)

1. Les formules de dérivation numérique de la classe (P) sont ca-
ractérisées par un problème aux limites relativement aux équations dif-
férentielles (8), avec des conditions aux limites que nous préciserons plus loin.

Nous poserons x¡ = x et le noeud x appartiendra à l'intervalle
(a,Xj), ou (x0, x2), ..., ou (xt_2, xk), ou [xt_lf ò] selon que 1= 0, ou
l = 1, . . . , ou l = к - 1, ou l = ic.

Nous désignerons par (J^) les conditions aux limites imposées aux
fonctions ф 1; <p2, . . . , ер*relativement aux noeuds x0 , хг , . . . , xk , le noeud xt
étant exclu, identiques aux conditions (C), relativement aux mêmes neuds.

Les conditions A¡ seront donc les suivantes :

ņ2{x1) = ņ1{xļ), <p.>(«i) = 9ÍK), •••> cpif-"1-1' (a71) = <p(i"-rei-1)(£Ti)

<Л) < ф* (Xt-l) - 9i.-l ( Xk-1 )J9»(®l-l) = 9'.-l(®J.~1)> • • •> 9* k ' ~

. 9*K) = °> фП®») = 0, . • 9Ł"~"t~1>(*») = 0

si 1= 0. Ensuite nous poserons
'
«pj(x0) = 0, <pi(a?0) = 0, . . . , (®o) = 0

9з(®г) = 92(^2); Фз(ж2) = 9-Л^г), •••> 9з"~"г-1>(®2) = 92n""2_1) (®г)

9jt(aV-l) = (?k-l 9*(®A.-l) = 9l-l •••)?« к )
iXk-1) =

=
' 9*К-) = 0, <pí(ag = 0, . . ., = 0

si 1= 1. Ensuite nous poserons

9i (®o) = 0 9Í(®o) = °> • • •> 9Î"""0_1)(®o) = 0

92 (®i) = 9i(xi), <p'M = 9Í(®i), • • .,.9^- '-"(ai) = 9ГП1~1,(®1)

9 ~ 9¡(®;-i) = 9<-i(®<-i)> •••> 9< 11 1,(®г-1) =
=

■í-^г) 9í+2 (®ÍH-l) = 9i+1 (®l+l)> 9h-2 (•"í + l) = 9h-1 (Xl+ l)l • • •> 9Î+2 1+1 (Xl+l)
-[»-»IH-ll/r ļ- -[»-»IH-ll/r9j+i (xi+1/ļ

9«.(®*-i) = 9л,-1(Xk-i)i 9i (®i-i) = 9*-i(®i-ib • • • ! 9» k '
(®*-i)

9» Ю = 0, 9l. (*,) = 0, . . . , Ю = 0

4 - C.5714



50 D. V. IONESCU

si l = 2, ou l = 3, . . ou l = к - 2. Ensuite nous poserons

«Pií^o) = °> = °> • • •) ф1""°0_1,(жо) = 0

?z(«l) = <Pl(fcl)> q>2(®l) = •••» ?2"~°1_1>(®l) = <PÍ~°I_1)(^l)

(^i)! _■
Ф*-1 (Xk-i) = ф*-2 (^*-2)) ф»-1 (Xt-l) - фй-г (^*-2)) • • •> Ф»-1П'Г

2 11
2) -

=

Ф»(®») = °> ФП®*) = 0, . . ., = 0.

si ř= fc- 1. Ensuite nous poserons

Ф1Ю = 0, 9Î(aj0) = 0, . . = °-

<f>2(Xi) = <pl(x1), 92 (®i) = 9i(®i)j •••> = 9Ìn~"1_1)(a?i)

(¿,)j
фЛ^-х) = =

I = фГЛ-1"1'!^)
si I = fc.

Nous désignerons par (A[) les conditions aux limites relativement
au noeud x, = x. Ces conditions seront telles que dans la somme

Шь)* X

correspondant à 1 = 0, ou dans la somme

H(f, 9,)* +H{f,?l+1)X,+t
xi-1 »

correspondant à l = 1, ou l - 2, . . ou l = к - 1, ou dans la somme

H(f, 9»)
"

хк-г

correspondant à l = k, les coefficients de Z1"*11 (x), /("~2) (x), . . /(П,_1) (ж)
dans la formule (10), soient égaux aux valeurs des fonctions données.
X0, Xj, . . . , X«-«, au point x, supposées non toutes nulles.

II résulte que nous pouvons écrire

Ф1 (®) = - ' (x)
9Í (x) - (ax 9x)i = Хх(ж)

< Ф1 (®) (ai9i )z "H (az 9i)* = - ^2 (®)

9i-""(®) - '-1' + . . . + (-1)"- («.-..9i). =
l = (-1)- .-i X._.,.(®)
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Ensuite pour l - 1, ou 2, . . . , ou к - 1, nous pouvons écrire
'
<P.(®) - 9i+i (x) = xo И
[?í(®) - («i ?,)ź] - [<pí+i(tf) - («i 9,+iU = - ' (®)

[<р("(ж) - (axcp,): + (а2ф,)*] - [<Pi'+i (я?) - Кф,^ + (a2?,+i)*] = M®)
W

J

[фГ""^) - («1 + . . . + (-l)"-n'(«n-n,?,)J -
- [«PÍV" (®) - («1 <pi+ir_n,"I) + • • • + (-1)"-- («.-», ?1+i).] =

l = (-1)"-"' Х„_я,(ж)
Ensuite pour I = к, nous pouvons écrire

<P*(®) = xo (ж)

?[• (ж) - (% «pjx = -
Xl (а?)

(^) ! ф" (x) - («i <P*)Í + ( a2 <P*)*= *2 (x)

ФГ"*1 (®) - К + • • • + (-irn* <?k)x=
= (-1)-»* (ж)

Les conditions aux limites (Aó), ou {A[), ou (A'k) donnent les valeurs de

?i> ?i» ф(Г~"о) ou de ф, - 9,+1, 9! -
<p!+1, фГ""'' - n,)

ou de ф», ф[, . . фГ-"4' au point ж. Nous pouvons donc écrire les condi-
tions (.á¿), ou (A', ), ou (A'k) encore sous la forme

(¿¿) 9X ( x ) = ц0 (x), 9Í (x) = ¡лх(x), фу-"«' (x) = [л,,„„0(x)
ou bien pour l = 1, ou 2, . . ou к - 1

{A') ф,(а?) - ф|+1(а?) = ļio (x), <p¡(x) - <p,'+1(a?) = [чИ, . . .
>(*) - 9IV"(®) = y-n-nt(x)

ou bien pour l - k.

(■^■») ф* (®) = 1^0(X)i Ф* (®) = fl (®)» • • •> Ф* (®) = (®)

Relativement à la formule générale (10) nous traiterons le
Problème aux limites. Déterminer la solution des équations différen-

tielles (8) qui satisfait aux conditions aux limites (A, ) et {A',).
Nous démontrerons plus loin que ce problème a une solution unique.

Alors en remplaçant dans la formule (10) les fonctions фх, ф2, ф3, ...
. . . , ф* par la solution de ce problème, on est conduit à la formule de
dérivation numérique, de la classe (P), que nous avons en vue.

Lorsque l = 0, cette formule a la forme suivante
n-n0 n0-2

<130) E M®) /"-*-«(*)= s *,(x)f»(x) +
k=0 j = 0

+ s "ъ А*Лх) /(,)(*.) + B0(®)
i=l j«0
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tielles (8) qui satisfait aux conditions aux limites (A, ) et {A',).
Nous démontrerons plus loin que ce problème a une solution unique.
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. . . , ф* par la solution de ce problème, on est conduit à la formule de
dérivation numérique, de la classe (P), que nous avons en vue.

Lorsque l = 0, cette formule a la forme suivante
n-n0 n0-2

<130) E M®) /"-*-«(*)= s *,(x)f»(x) +
k=0 j = 0

+ s "ъ А*Лх) /(,)(*.) + B0(®)
i=l j«0
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<140) a, (®) = ( -l)-'-1 (X) - К ?!)<"- '-2> + . . .
••• + (- ?l)x]

pour j = 0, 1, . . . , n0 - 2 et

,(15„) A„ (X) = ( -1)-' {[«p«-'-1' (X) - К + -• •
. . . + 9ł),] - (®) - К ?í+1)i"-,-2) + --•
••• + (- l)"-'1-1 (an-í-l <P(+ l)x]}

pour j = 0, 1, - 1 et i = 1, 2, Je.
Dans la formule (130) le reste iž0 (®) est donné par la formule

Sxkж
?o (ж> [/] ds

ж

où la fonction <p0(x, s) coïncide pour le noeud x donné, avec les fonctions
<Pi, 92, 9» sur 13S intervalles [ж, a^], [жх, x2], [х,_г, хк].

Lorsque Í = 1, ou 2, . . ou fc- 1 la formule de dérivation nu-
mérique de la classo (P) a la forme

n-riļ n¡-2 к
(13,) £ '(x)f-*-»(x) = £ «,(*)/"'(*) + S' S Atj(x)f»(xt)+Rt (x)

k=0 ?'=0 i=0 j =0

OÙ

(14,) a>(a;) = (-r-í{[9Í»-í-1»(^)-(a19i)«"-í-2»+...+(-ir-,-1K-í-i?1)x]-
- - («i <P«+i)i-'-2) + • • • + (-l)'"'"1 <pł+1)„]}

pour j = 0, 1, 2, et

(15,) ^„(®) = (-l)"-'{[9Í"-,-1,(®)-(ei9«)í-,-2,+ • • • +(-l)"-'-1(a«-j-i9«).]-
- (x) - (ai + • • • + (- l)"-5-1 (an_i_1 9ÍT.i)x]}

pour j = 0, 1, . . . , w, - 1 et ¿ = 0, 1, . . . , ř - 1, l + 1, . . . ,
ki

La notation dans la formule (131) signifie que i prend toutes
г=0

les valeurs de 0 à k, la valeur l étant exclue.
Le reste Bt (x) est donné par la formule ,

(16,) Вг(х) =
Ç9m(x, s)Ln[fi&s

-
•**0 •

où la fonction ( x, s) coïncide pour le noeud x donné, avec les fonctions
<Pi??2? •••> 9* sur les intervalles [>0, xx' . .., [>,_1? я?], [x, xin], ...
• • a?*].

Enfin lorsque l = Je,la formule de dérivation numérique de la
classe (P) a la forme

n~nk nk~2 к- 1 «г-1
(13*) S M®) /"-*-"(*) = S ^(X)f^(x)+ £ р„(г)/^(г() + 1г,(г)

fc=0 j=0 ï=0 j-ü
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OÙ

(14t) a, (x) = (-1)-' [*£-'-»(*)-К 9»)i"-'-2,+ . • PJx]

pour j = 0, 1, . . nk-2, et

(16.) ^(^) = (-l),,-J'í[<PÍ"-í-1)(^)-(«i9<r-,-2,+...+(-l)"-í-1(a„-í-i(piy-
- (®) - К 9„i)Ì-,-2) + . . . +(-l)°-j-1 (а._,_х 9ł+1),]

pour j = 0, 1, . . . , те,- 1 et ¿ = 0, 1, . . к - 1.

Le reste Bt {x) est donné par la formule

(16J R, (®) = ( фЛ X, s) Ln [/] ds
Jx0

où la fonction <pk(x, s) coïncide pour le noeud x donné, avec les fonctions
9l, <p2,. .., <pfcsur les intervalles |>0, a^], [xk_2, [^_х, ж].

Lorsque les fonctions X0(x), '(x),..., l„-„t(x) sont données par
, , ч Í 1 si h = p - 1

(17)
,
M*)=

, ч
л .

h
, , 1

.
[0л si

.
h
,
ф
,
p - 1

.

la formule de dérivation numérique (130), ou (13,), ou (13J devient

(18) = Л[£ 0L,(x)fM(x) + £'УлЛ*)/<;)(я,) + Rt(x)
j =0 1=0 j=0

et nous dirons que c'est une formule fondamentale de la classe (P), parce
qu'on peut remontrer à la formule (130), ou (13,), ou (13J, à l'aide des:
formules (18) correspondant à p = 1, 2, . . ., (n -[(n, - 1)).

2. Dans le cas particulier lorsque la suite des fonctions (1) est
la suite

(19) 1, x, x2, xn

nous avons

(20) Ln[f]=fn), ¿:[ф] = (-1)пф(в)
et

(21) Я (/, ф) = ф/«-1' _ ф' /<-*> + ...+ ( -1 )-> фс-н /
Dans ce cas les conditions aux limites (J.¿), ou (A', ) pour ř=l, 2,. . .

. . . , Je- 1, ou (A'„ ) sont

(220) <р1(ж)= - Х0(ж), <p¡(x) = '(x), . . ., ^"-"»'(a?) = (-i)«»-»»-1) x.,,, (x)

ou bien

(22,) <p,(ж) - Ф,+1(ж) = Л0(ж),<р,'(ж) - Ф,'+1(ж) = - Xï(iP), ...
. . ., 9ГП|,(я) - Ф{;Тп" (®)= (-1)-' Хп-», (в)
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pour I = 1, ou 2, . . ou h - 1, ou bien

(22,) <P.(a?) = Xo(®)| ?Í(®) =- *i («)>•••» 9Ł"~"ł) (a?) = (- I)"-"* X,(a>)

Le problème aux limites se pose sur les équations différentielles

<23) 9Í"> = 0, «pi-»=.0, ç'"i=0
avec les conditions (A,) et (A¡).

On démontre que le problème aux limites a une solution unique
qui conduit à la formule de dérivation numérique de la forme (130), ou
(13,) pour l = 1, ou 2, . . ou к - 1, ou (13J avec le reste de la
forme

(240) B0 ( x ) = ( 90 (x, s) fn)(s) dsjX
ou bien

(24,) (x) = ( 9, (x, s)fni (s) ds

pour l = 1, 2, . . к - 1, ou bien

(24J Bt (x) = ( 9t ( x, s) /<"» (s) d¿
•^o

Les formules fondamentales de la classe (P), formules (18), corres-
pondant à la suite (19), coïncident avec certaines formules de dérivation
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9 SUR QUELQUES FORMULES DE DÉRIVATION NUMÉRIQUE 55

quelques soient les constantes Ctfl), C[i2' G(kjï' dont le nombre est

no ~t~ni * ~Ь w-k-i = n - n>k-1-1.

Dans les équations (25), 0¿,/t(s) est une solution de l'équation
adjointe L* [z] = 0, qui vérifie les conditions

(26) e,.»(®,_i) = o, e;., (»,_!) = o, e!y*-2)(*i-i) = o, oî%"-1)(^-i) = i

et nous avons

Уо](г,- 1) Vi'iz'i-i) ■■■y'n-i (xi-i)

(_!)«-»-! y0(s) 2/1(s) •••?/«_!(«)
<27) Kh{')= w >><;'[ _ »!<"_

(s) y<"-2) (s), . . . ,yi"^ (s)
On peut encore écrire la fonction <pL(s), sous la forme

/с '/ч' rf/Со ' l . . . tn-l

J Уо(*)» žMs)> •••» ?/»-i(s)
(28) ?*(«)= w [yw

y'i(s), y'n-As)

2/(>""2i(s), ?/i""2)(«), •••> ?/»n-l2)(s)

OÙ

n0-l nj-1 nfc-i_1
c¿ =

n0-l
£ Со1)у<!1) (®o) +

nj-1

¿ cv2,^í2)(^i )+•••+ ¿
i1=0 =0 ^ =0

«0-1 «1- 1 nfc-l~'l

<29) Ci -
«0-1
¿ С(0н)у[н)ы +

«1
s амУ^Ш+---+ Ъ Ck-1 y'ik)

.?!=0 i, =0 *fc=0

c:_., = V c¿'" y»i»i (®o) + у-'-М + • • • + "S cï-i ti- 1 (ж*-1)
i,-o J,«0

La formule (28) montre que

(30) cp»(s) = CÓ ~o (s) + C^i~i (s) + • • • + ^'»-i ^»-i (®)

où z0, zlt . . . , 2„_! sont des solutions de l'équation adjointe L* [г] = 0,
qui forment un système fondamentale.

En écrivant que les conditions (A't), sont satisfaites, nous avons le
syfceniG d'équations en Со y Ci, ..., CU

Со Z0 ( X ) ~b zl (®) + • • • "b Cń-l ^»1 (®) = t^o( x )

Со Zo (x) 4" Ci Z[ (x) -(- ... -j- C„_ļ 2„_i (ж) = (Xi(x)
<31)

C'04n-nt) (x ) + Ci z[n~"k1 («)+...+ ou zWk) (ж) = P-» (»)•
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En remplaçant les Сó,C[, . . . , С'п_г par les formules (29), ce système
devient

V íy(oh) (xo) z0{x)+... +yl!^ (x0) гл_г (ж)] +

+ S W2) (xi)z0{x) + • • • + Уп-I (®i) Zn-1 («)] 0{h) + ... +
i,=o

+ "f *o (*) + . . . + yti' (ą_i) *„-i (®)] C& = fx0{x)
ifc=o

(32) "g' [#> (x0) z'0(x)+... +y^ (xQ) z:_x (X)] C<"> +
H-0

+ S* Ù/№iKH + . . . +^ì,1(*iK-i(tf)] Ci'" + . . - +
*,=0
n^-l

+ S № *o (®) + • • • + 2Ä K-i) «Í-1 (ж)] C& = (Zi (x)
h=o

"S W'K) 4n-nfc,(^) + • . . + Уп-Л^о) «¡."-Г'Ч®)] c<">+
h-0

+ S f^o2' (®i) 4" ~nt) (Ж) + ... + Ю zinJink) (a?)] C[M + ... +
i,=2

+ "S' [<10(^-1) 4n-"ł,(®)+. . . +<ì)1(^_1)4'LìBL)(^)] = e»-«* И
j'jfc=0

La détermination des fonction <p1?<p2,. . . , <pAest ainsi liée au système
d'équations (32). La matrice du système (32) est le produit des matrices.

УоШ УЛщ) • • • Уп-1 (®o)

(®o) Vi (жо) • • • У'п-х (®o)

^ó"0_1) (®o) ž/x"'"1' (®o) • • • Уп-Г" (жо)

(зз) : : : : ; ; : : .ě : : : : : : : : : : :

Уо У1 • • • Уп-i (®*-i)
У'о yí • • • 2/»-i

yT-,_1,(®.-i) • • • У^-1](хк. i)

z0(x) zó(x), . . ., z{on-"k) (x)
z1(x) zi(x), ..., z^(x)

<-Ля), • • -, «¡.-"i"*' («)
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dont la première matrice a m = n -
nk + 1 lignes et n colonnes, et la

seconde a n lignes et m colonnes. On peut écrire encore ces matrices sous
la forme

^11 ^12 *• • ^1» ^11 ^21 *** 1

(33') #21fl&22• • * ^2Я • ^12 ^22 **• 2

#ml>#n»2?• • * Ятп b't n ^2, «••• 6m,n

Le déterminant Д du système (32) est, avec ces nouvelles notations,

dl, ax#1,a2 ... #1.am Ь'%ttl̂ 2, ax • «• Ьт%ai

Д ^ #2,aj #2.«a *** ^2' a?» ^1. «г ^2, aa • «« Ьщ,a,
(«î. a2 am)

axMm,a8 • »• am &1,aw &2,ccm• • • am

Mais

6l, ax&2,otļ••• 6w»,ax
bi.«. h,at ... bã.a, =w ^ #_ ^am]

bl, am̂2. am. . . Ът, am
et on connaît la formule

n(n-1) 'w-m- 1)(n-m)-̂ ■-ļ-OCļ"ļ*•••
^ [^«1» •••> =( 1) 2 1

W[ya>a} Уа[ >•••> У ń_m_l3

où les indices a¿, aj, . . aí_m_i s'obtiennent en suprimant dans la suite
0, 1, 2, . . n - 1 les indices ax, <x2,. . a„. On a donc

#1,a!«*.#!, ajj»71(я-1) (n-Wł-D(n-Wl)

д= 2 (-1) 8 2 1 "
1]

(«i . •••. <*т)
Q>m, am

et cette formule montre que

(34) Д = D (oOqj . . . Xqj #i, ,. . . , %t-ļļ • • ■?%k-ij Œj • • •? ^)*
n0 Ях "fc-1 nfc-1

Il résulte des hypothèses faites sur les fonctions de la suite (1) que

(35) D (Œq) • • •> #0* • • M ^1? • • • 9 œ*-11 • • • ? -1? . . . ) x) =f=0

»0 »I "k-i "fc-1

et par suite

(36) A ф 0 .

Le système (32) a donc une solution unique et par suite les fonctions
9!, ç2, . . . , <ptsont parfaitement déterminées.
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Ainsi pour I = к, nous avons résolu le problème aux limites et
■decette manière nous avons démontré l'existence de la formule de déri-
vation numérique (13J de la classe (P) et nous avons donné les moyens
de calculer les coefficients et le reste de cette formule.

Nous remarquons encore qu'il n'est pas possible que la solution du
système d'équations, linéaire (32) soit 0¡/l) =0, C'{/2>= 0, . . . , =0 pour
toutes les valeurs des indices jv j2, . . . , jk. On devrait avoir dans ce
cas [л„(x) = 0, ¡Aj(x) = 0, ... [in-nk (x) = 0, ou bien d'après les con-
ditions (A'k), X0'x) - 0, (x) = 0, . . ., (x) = 0, ce qui est im-
possible parce qu'on a supposé que les valeurs des functieons X0, Xl5 . . . ,
. . ., Xn-nj. au point x ne sont pas toutes nulles.

Il nous reste encore à traiter le problème aux limites pour l = 0,
1= 1, 1= к -1.

4. Considérons le cas 1 = 0, ce qui veut dire qu'on doit intégrer
les équations différentielles (8), avec les conditions aux limites (J.0) et
(AÓ).

La solution du système (8), qui satisfait aux conditions (J.0) est
donnée par les formules

"i-i
?*(«) = -

s (-1 r-Sk^c^xkJk(s)
h =o

nk.~~1 пг- 1
(37) 9i (s) = -

Y, Y=0 il=,-o
Dans ces équations la fonction ь (s) est une solution de l'équa-

tion adjointe Ll[z] - 0 qui satisfait aux conditions

(38) X,.» (x,) = 0, Z/.»(®,) = 0, . . = 0, = 1

et nous avons
УоЧх,) , y«-i (®<)

i Уо(8) 2/i(*)> •••> 2/n-i(s)
(39) y!>{s)

y[{sļ' /;-[yrAs)

Уо"2) (s) y'i~2) (S), ■■■ î"1(s)
Nous pouvons encore écrire

(40) Xi,h(s) = (- l)"-»-1 [^'(a?,) z0 (s) -'-yìh) (xi) г1 (s) + • • • +yi-i(tfi)-».-i(*)]-
Il reste à determiner les coefficients C[h), С«г), . . . , C{ļk) par les

conditions aux limites (^4¿). Nous pouvons écrire «p^s) sous la forme

Ci Ci ... CLt
i y0(s) уЛ8) ••• У'-1(«)

<41) ł,W =
^b.,ft y.-,]

Уо~2) (s) y{i~2) (s) • • • у!.--!2' («)
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OÙ
4- 1 «fc-i-1 «î-l

-cu= Y>c^yik)^+ S • • + Yi c"l)y*l)(xi)
h =o J'fc_i=o Í!=O
nfc-l «fc-i-l WÏ-1

(42) -Ci - S + S (^-i)+. • -+ Sifc=0 Jfc_!=0 ii =0

-с:.! = 1c'tv^,(®»-i)+ • • • + eVväK)-jfc=0 J'A--I=0 ¿1=0

En écrivant que les conditions (AÓ) sont satisfaites, nous avons
les équations

Co ^o(^) + ^lZl(X) + • • • + @n-lZn-l(X) = M Я)
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De même on peut déterminer les fonctions <pt, rpt_1, . . <p1+1>
en intégrant les dernières к - l équations différentielles (8) avec les con-
ditions aux limites des points xk, xlc_1, xt+l. En procédant comme
dans l'alinéa 4, nous avons

«4-1
?.(•) = -

EH:= 0
«fc-l

(45) <?»_! (s) = -
E (-1 )-'*-* CSf» Хъ,к(8) -
ik-0

- s (-i)-w1
3k-1=0|

?,+!(«) = -"*£ (-I)-*-1 C^Xk,jk(s) -
h =o

-"'E
1

_,(«)-• • • --'ir-1=®

- "'%( -D-h+г-1 C^Xl+uj¡+l(s) ■
ЦYl-o

Nous avons
čí c[ ... (?:_x

1 Уо(») fl(») ---y-iM
,46, rt(g)

Уо~2) (s) 2/i°-2)(s) • . . 2/£Ti2,(S)
ou bien
(47) ф, (s) - <pl+1 (s) = C¡> z0 (s) + C'1z1 («) + ••• + <?»_ i »,_! (s).
OU

c'o = Y уГ (®o) + • • • + "'s' (®,_x) +
¿1=0
r?i+1-l nfc_1

+ s ^<'+1^т)+--- + s C™y™{xk)
31+1=0 ifc=o

(48) C[ = "g' Ci"> yļ"> <x0) + . . . + "'s' ¡tf* +
Ji-0 jļ =о
И/+1-1 nfc-1

+ E ^tìi>y",+,,(®i+i)+---+ E c¿»y^(xt)
3ļ+i и0 Jfc=0

«o-l nj-î -1
<%_! = E W yì'i'i (®0) + . . . + E ^i Ä (*«-i) +

ii-0 ij="0

+ "'E
1
Wtfïï'fo+iH- • • + sV'tf,'» (®.).

ij+1-O ¿*=0
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15 SUR QUELQUES FORMULES DE DÉRIVATION NUMÉRIQUE 61

En écrivant que les conditions (A',) sont satisfaites, nous avons
le système d'équations linéaires

C'o z0 (x) + Ci z1 [x) + . . . + C'„_1 «„_! (a?) = 1*0[x)

(49) C'0 Z'0(X) + C[ z[ (X) + . . . + C'n_ i Z'n_! (X) = [X!(x)

CÓ aP-w (x) + C[ zf~ni{x) + . . . + C'n_i ¿Zzpix) = ¡x (x )

qui déterminent les constantes Cl'0, . . . , C'''' , C['i'i), . . . , C!{k).

On démontre comme dans l'alinéa 3, que le système d'équations en

C'o¡), . .., CļJ-i> Cfkì qui est analogue au système (32), a
une solution unique, parce que son déterminant est égal à

D {Xqj . . . Xqj . . . , Xi_u ... Xļ_u X, ... Xj + ... X¡+11 ... xk . . . , xk)> ^ ' * < * 4 » '
7l0 nř_x ГЦ-1 Щл-ļ «fc

qui d'après les hypothèses faites sur les fonctions de la suite (1), est
différent de zéro.

Ainsi le probléme aux limites sur les équations différentielles (8)
avec les conditions aux limites (A,) et (Ai) est résolu. De cette manière
nous avons démontré l'existence de la formule de dérivation numérique
(13ř) de la classe (P), et nous avons donné les moyens de calculer ses
coefficients et son reste.

Le problème aux limites posé dans l'alinéa 1 étant résolu pour
1 = 0, ou l = 1, š . ou l = fc,l'existence de la formule de dérivation
numérique de la classe (P) est démontrée dans tous les cas et nous avons
donné les moyens de calculer les coefficients et le reste de cette formule.

Dans le paragraphe suivant nous donnons un exemple correspon-
dent au cas où la suite des fonctions (1) est la suite (19).

§2. DISCUSSION DU RESTE D'UNE FORMULE DE DÉRIVATION NUMÉRIQUE

6. Nous allons étudier la formule de dérivation numérique de
la classe (P), de la forme

(50) fn~-)(x)= ¿ a.j(x)P(x)+A0(x)f(xí)~,rAl(x)f'(x1) + B0(x)f(x2) + R{x)
3=0

avec le noeud xx double et x2 simple. Nous distinguerons conformément
à la théorie générale trois cas, selon que x < хг ou x > x2 , ou

< x < x2 . Nous supposerons que n >- 4.
Nous examinons d'abord le cas œ < xx . Nous attachons aux in-

tervalles [x0, ¿rj, [хг , x2] les polynômes <ргet <?2solutions des équations
différentielles

(51) срГ - 0, 92° - 0
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7l0 nř_x ГЦ-1 Щл-ļ «fc

qui d'après les hypothèses faites sur les fonctions de la suite (1), est
différent de zéro.

Ainsi le probléme aux limites sur les équations différentielles (8)
avec les conditions aux limites (A,) et (Ai) est résolu. De cette manière
nous avons démontré l'existence de la formule de dérivation numérique
(13ř) de la classe (P), et nous avons donné les moyens de calculer ses
coefficients et son reste.

Le problème aux limites posé dans l'alinéa 1 étant résolu pour
1 = 0, ou l = 1, š . ou l = fc,l'existence de la formule de dérivation
numérique de la classe (P) est démontrée dans tous les cas et nous avons
donné les moyens de calculer les coefficients et le reste de cette formule.

Dans le paragraphe suivant nous donnons un exemple correspon-
dent au cas où la suite des fonctions (1) est la suite (19).

§2. DISCUSSION DU RESTE D'UNE FORMULE DE DÉRIVATION NUMÉRIQUE

6. Nous allons étudier la formule de dérivation numérique de
la classe (P), de la forme

(50) fn~-)(x)= ¿ a.j(x)P(x)+A0(x)f(xí)~,rAl(x)f'(x1) + B0(x)f(x2) + R{x)
3=0

avec le noeud xx double et x2 simple. Nous distinguerons conformément
à la théorie générale trois cas, selon que x < хг ou x > x2 , ou

< x < x2 . Nous supposerons que n >- 4.
Nous examinons d'abord le cas œ < xx . Nous attachons aux in-

tervalles [x0, ¿rj, [хг , x2] les polynômes <ргet <?2solutions des équations
différentielles

(51) срГ - 0, 92° - 0
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et nous aurons les formules

(«Pi-"/ - <PÌ"-2)/' + ---+ (-l)"-1<Pi/(n-1))îl = (-1)"-1 Г 9ifín) dsjX
(52>

(фГ11/- ч>Г27' + • • • + = (-1)"-1 ' ,ф2/(") de.

Si nous introduisons les conditions aux limites

9l0z) = 0 <pí(x) = (-1)"-1 9Í' (x) = 0

(53) 91(a?1) = 92(ж1) 9Í (a^) = 9Ś (хг), . . . 9Ì"~3) (жх) = 9i"-3' (a^)
92(ж2) = 0 ф-Н^г) = • • • фа"-21 (®2) = 0.

et si nous ajoutons membre à membre les formules (52), nous obtenons
une formule de dérivation numérique de la forme (50) dans laquelle
(54) oc,(x) = (-l)j 9Ì"-,-1)(tf)

pour j - 0, 1,. . n - 4 et

Л(®) = - [9l"_1)(®i) - Фа""1' (*i)]
(55) Ax (x) = [9?-« (^) - (*i)]

S0(x) = - 9l"-u (x2).

L'intégration des équations différentielles (51) avec les conditions
aux limites (53) se fait de la manière suivante :

Nous remarquons que les polynômes

. . (s - Xo)"-1

<06)

Tl (,) д V <5 - *■>"' + X " - ^»•~1 + E
" -

(n - 1) ! (n - 1) ! (/г
- 2) !

vérifient les équations différentielles (51) et les conditions aux limites
des points xx et œ2 , quels que soient les constantes X, jx, v.

En écrivant que les conditions aux limites, du point œ, sont égale-
ment vérifiées, nous avons le système d'équations

x (ж - I „ (ж ~ ^i)"-2 I v (x
- ^)""1 = 0

(»- 1) ! (n - 2) ! (» - 1) !

(57) (x - x1)-> v (x - s,)-'
(n - 2) ! (n - 3) ! (» - 2) !

, (ж - a?!)-3 , (ж - ^)"-4 , (ж - ж2)"~3Л j-tx ■-j- V - (J
(n - 3) ! (и - 4) ! (» - 3) !
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dont la solution est

x = /
1)И

(n- 2) ! ^ (»- 3) (л?-л?2)2 - (n- 1) (a?-.Tļ)2
(ж2- x^^x- хг) (X - хг)п-*

(58) ^ = (-1)" (n~2) ! . (x2 - xi) [(ж - xi) + (x - жг)]^ = (-1)"
(x2 - x^ix - Xi)

.
(ж - OJj)"-4

( 1)Я
(n- 2) ! _ 2 (ж - xtf

(x2-xíY{x-x1) (x - x2)n~3

Les polynômes o, , <p2sont ainsi complètement déterminés.
Les formules (54) et (55) montrent, que dans la formule de déri-

vation numérique (50), nous avons

(59) a<) (x) = ^ + v

L 3 ! 0 - 1) ! 3 ! j

pour j = 1, 2,. . . , n - 4, et

(60) Л0(ж)= -
X, ^х(ж) = [л, B0(x) = - v.

La reste de la formule de dérivation numérique (50) pour x <хг est

(61) B0(x) = (-!)"-' Г 9o(x, s) /<">(«) <1*

où le noyau <р0(ж, s), coïncide pour le point x considéré, sur les inter-
valles [ж, «J, [X, ж2], avec les polynômes ç^e) et <p2(s).

Pour l'étude du reste B0{x), sont très utiles les théorèmes 1 et 2,
que nous donnons dans l'alinéa suivant.

7. Théorème 1. Dans la formule de dérivation numérique
(50) le coefficient a0 (x) de f (x) est positif.

En effet, d'après les formules (59) et (58), nous avons

(n - 2)1 Г (n- 3) (x-x2 )2 - (n-1) (x-x J2
*o(X) ( )

(xi-xj'ix-xj) [ (x - x,)"-3

, 2 (ж-^)2 1

(x-x2r~* J

ou bien

/ v_ / -i'n (n - 2) ! Г/«_1 ì (х
- хг)2 - (#- ^i)2

a°
/ v_ / -i'n

(Ж2 -
(n
X^

-

(X

2)
- Xj) [

Г/«_1 ì
(ж - ^i)°~3

(х-хц)"-1 - (ж- ^)"-1!
(ж- arļ)"-8^»- х2)"~3 '
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où encore

<62) а0(ж) = (- 1)"+1 {П~1У: , t м*ь
(ж2-Xj) (x-x-l)"~''(x-x2y-i, i-2

où nous avons posé

<63) р4(ж) = (ж - x2)"-3 [(ж - ж2) 4- (ж - жх)] - 2(ж - ж2)"-*(ж - жх)*-*

Nous remarquons que

р8<ж) + рз(ж) = 2(x - х2)я~3 [(x - x2) + (x - жх)] - 2(x - x2)"-2 -
- 2(x - ж2)"~3 (x - жх) = 0

de sorte que la formule (62) devient

<62') a0 (x) = ( -1)«+1 ("я~2)-
!

, t P. (*) *
(ж2 - жх)"

-
(ж2 - ж2)"-3

, ¿ti

Mais d'après la formule (63), nous avons
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. . . + (ж - ж^1'-3] -г (ж - ж2)"-' (ж - жх) [(ж - Ж2)*-4 +
+ (ж ж2)*-5 (ж жх) + . . . + (ж - Ж1)1'"4]}

pour h = 5, 6,. . . , w.

Les coefficients ß4(a?), ß5 (#), ß„ (о?) ont le signe de (- l)n"2
parceque x < хг < x2 . Il résulte alors d'après la formule (62) que
v0(x) > 0 et par suite le théorème 1 est démontré.

Théorème 2. Le noyau ф0(#? s), pour le point x donné, où
x < x± < x2 considéré comme fonction de s , ei дш coïncide sur les inter-
valles [x, £K?ļ], , #2], Zes polynômes фх ф2 ? stanule pas sur
Vintervalle ( x, #2) a Ia signe de (- I)"-1 sw intervalle.

En effet d'après les conditions aux limites (53), la fonction de s,
<?0(x, s) est continue sur l'intervalle [#, x2], avec ses dérivées succesives
jusqu'à la dérivée d'ordre n - 3. La fonction ф0(#, s) ne s'annule pas
sur l'intervalle [>1? x2'. Supposons alors qu'elle s'annule en un point x'
de l'intervalle (x, xx). En tenant compte des conditions aux limites (53)
des points x et x2 on peut appliquer le théorème de Eolle successivement
et déduire de cette manière que ф0 s'annule en deux points de l'inter-
valle (¿c, x2)9 ensuite que cpo s'annule en deux points de l'intervalle
( x, x2), et aussi que <pó", фí>4) фоп_3) s'annulent en trois points de
l'intervalle ( x, x2). Mais ф^п-3) (s) ne s'annule pas sur l'intervalle [хг, x2).
Donc les trois zéros de (р(0п-3)doivent être des zéros de ф1п_3)($). En appli-
quant à ф1п_3) (s) le théorème de Rolle, on déduit que la dérivée ф1п~2)(я)
doit s'annuler en deux points de l'intervalle ( x, хг) et que la dérivée
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(s) doit s'annuler en un point de l'intervalle ( x, хг). Mais cela est
Impossible parceque, d'après le théorème 1, nous avons

9Ì"-1' (s) = X + v = a0 (x) > 0.

Nous sommes donc arrivé à une contradiction, d'où il résulte que
la' fonction ср0(ж, s) ne s'annule pas sur l'intervalle (x, x2). D'après la
dernière formule (58), le coefficient v est positif et la première formule
(56) montre que cp2(s) a le signe de (- l)"'1 sur l'intervalle [жх, x2).
Donc la fonction <p0(x, s) a le signe de ( - 1)"

1 sur l'intervalle (x, x2).
Il résulte du théorème 2, que la formule de dérivation numérique

(50) a la degré d'exactitude égal à n- 1, lorsque .r < et on peut
mettre alors le reste R0(x), aussi sous la forme

(64) B0(x) = (-1)'-1 <Po(*,') ds
Jjc

où £e(#, x2).
On démontre facilement à l'aide de la formule (50) que

, ,f*' , v! (ж - ®x) [2(ж - ж2) + (ж - a?i)]
(-1)
, ,f*'

4 ?0®»«)d, v! 8 =
J* n (n - 1)

et la formule (64) devient

«es»
+

(а!-^гче)
n(n - 1)

d'où résulte l'évaluation

(66) IB0 {x) |<
{X ~ Xl) [2{X ~ X*] + {X~ ^l)] мп ; M, = sup I/<">(«) I

n(n - 1)

8. Considérons le cas x > x2 et attachons aux intervalles '_хг , ж2],
[x2 , x ], les polynômes <px, <p2 solutions des équations différentielles

(67) <рГ>= 0, фГ1 = 0.

Nous aurons les formules

(<PÌ"^7 - <PÌ"-27' + • • • + (-I)""1 ф!/1"-1')?! = (-1)"-1 Г 9i/*"' ds

(68)
(<pi"-l7 - <P-r2) (-1)"-1 = (-1)""1 ' Ф2/(,) de.

Jxt

Si nous introduisons les conditions aux limites

<PiW = o, 9Í (Xj) = 0, . . . , 9i"~3) (a?i) = 0

(69) 9l(x2) = <p2(x2), <pi(x2) = <p2(x2),. cpi"-2' (®î) = <pi"~2) (®»)

9i(®) = 0, 9Í {x) = ( -I)«"2, 92' («) = 0
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et si nous ajoutons membre à membre les formules (68) nous aurons la
formule de dérivation numérique de la forme (50), dans laquelle

(70) «,(®) = (-l )'+1 (a>)

pour j = 0, 1,. . n - 4, et

A0(x) = «pi"-» (xx)

(71) At(x) = - 9Í"-2» (Xj)
B0(x) = 9Í"-1) (x2) - 9Ì"-1' (ж2).

La solution du système d'équations (67) qui satisfait aux conditions
(69) est donnée par les formules

л w = - X (* -
- p

<' - Ж1)я"

(» - 1) ! (»- 2) !
(72)

ф2(в) = _ X (* - ^ - ц
{S - *&-* - v

(n- 1) ! (n - 2) ! (n - J) !

En écrivant que les conditions aux limites du point x sont vérifiées,
nous aurons les équations (57), avec la différence que x > x2 , qui dé-
terminent X, ¡л, v et nous aurons les formules (58).

Les formules (70) et (71) deviennent alors

a0(®) = X + v

(73) «,(») = + y.
<* - *>"Ш *'>']

L j ! (j -1)1 ji J
pour j = 1,2, . . . , n - 4 et

(74) A0(x) = -
X, A(x) = y., B0(x) = - v.

Le reste de la formule de dérivation numérique (50) pour x > хг, est

(75) B2(x) = (-1)"-1 Г <p2(x, ,9)/"" (s) ds

où le noyau ç2(.»', s) coïncide pour le point x considéré, sur les inter-
valles [xt , ®2], [ж2 , x ], avec les polynômes <pt, 92 donnés par les for-
mules (72).

Pour l'étude du reste B2(x), nous utiliserons des théorèmes 1'
et 2' que nous donnons dans l'alinéa suivant.

9. Théor ème l'. Dans la formule de dérivation numérique (50)
le coefficient <x.0(x) de f(x) est différent de zéro et a le signe de ( - l)w.

Le coefficient AQ(x) est également différent de zéro et a le siane de
(~1)'

En effet comme dans le cas du théorème 1, on a la formule (62')
et les formules (62") et (62///) montrent que pour x > x2 > хг , les
ß* (x) sont négatifs pour Te= 4, 5,. . . , n. Il résulte que olq(x) ф 0 et a
le signe de (- l)n.
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En ce qui concerne A0(x ), d'après les formules (74) et (58) nous
avons

Ao(x) = _x = (_1)«+1
(w~2) ! (?г-3) (x-x2)2 - (n-1 ) (х-хг)2

(X2-X1)2(X-X1) (X - Xj)"'3
et nous pouvons écrire

^о(ж) = (_] )» (n-2) ! (»-!) (x2-хг) [(x-x2) + (x-x1)] + 2(x-x2)2
(x2-хг)2(х-xj (x-x^"-3

d'où il résulte que A0{x) =f=0 et a le signe de (-1)".
Théorème 2'. Le noyau cp2(x, s) pour le point x donné, où

.i'i < x2 < x, considéré comme fonction de s, et qui coïncide sur les inter-
valles [хг , ,r2], | ,rg, ж] avec les polynômes et o2 ne s ''ami и le pas sur
Vintervalle {хг, x) et a le signe de (- 1)"_1 sur cet intervalle.

Supposons le contraire, que la fonction <p2{x, s) s'annule en un
point s = x' de l'intervalle (j' , x). Alors en apliquant successivement
le théorème de Eolle, on déduit que la dérivée 9.' s'annule en deux
points de l'intervalle (хг , x), ensuite que la dérivée «p.»'s'annule en deux
points de l'intervalle (xu x) et que les dérivées <p.¿", <pí¡4),
s'annulent, chaqu'une, en trois points de l'intervalle (xlf x). Désignons.
Par » Š2 1 ?з les zéros de <pļ."21 sur l'intervalle (хг, x). Sur chaque
intervalle (x¡ , .r2], (x., , x) on ne peut placer qu'un point de la suite

Ç,, Ç8.
En effet supposons que ^ et '2 {хл, х2]. Alors, en appliquant

de nouveau le théorème de Rolle on en déduit que <pļ"~11(s) doit s'annuler-
sur l'intervalle (хг , x2). Mais on a

<P'n-v(s) = - X = A0(x)
et d'après le théorème l', A0(x) ф 0. Cela montre que sur l'intervalle
(xi j xî' ne peut se trouver qu'un seul point Ķ disons Ег .

Supposons que les points c2 et Ķ3e (x2 , x). Alors, en appliquant
le théorème de Rolle on en déduit que la dérivée ф5Г-1)(«) doit s'annuler
en un point de l'intervalle (x2 , x). Mais

??-"(*) = - (X + v) = - oc0(x)

et d'après le théorème l', a0(x) ф 0. Cela montre que sur l'intervalle
(x2 , x) йе peut se trouver qu'un seul point de Ķ2 et Ķ3.

Ainsi nous sommes arrivé à une contradiction, d'où résulte quela fonction ф2(ж, s) ne s'annule pas sur l'intervalle (x1} x).
On a :

<Pi(a>2) = (- l)""1 -- ^ - - [(»-3) (x- x2)2+(n - 1) (x-x,) (x-x2)J

ce qui montre que <р2(ж, s) a le signe de (- 1)- 1 sur l'intervalle (x1} x).Il résulte du théorème 2' que la formule de dérivation numérique
(50), a le degré d'exactitude égal à n - 1, lorsque хг < хг <
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On peut mettre alors le reste, donné par la formule (75), sous la
forme

B2(x) = (-1Г7,П,(ЫХ ф2 (a?, s) ás
Jx1

où x).
Il est facile de voir que

(-1)-1 Г »,(«,»)dS = (*-^>[2(*-*.) + (»-*.)].,
J», n (и - 1 )

Nous pouvons donc écrire

(76) B,(*)= rHl)
n(n- 1)

où £e(#1? X ) est de cette formule il résulte l'évaluation

z_- ' ^ , ч, . (x - хЛ [2 (x - x2) + (x - хг)] __ -, .,(n)/ 41(77)z_- '
|Я2(®)|<-
^ , ч, .

-Mn-,
__

Mn
-, = sup |/<"»

.,(n)/(x)41|.
n(n - 1) (-»1.»)

10. Considérons enfin le cas xx < x < x2. Comme dans les cas pré-
cédents, attachons aux intervalles [хг , x ], [x , x2~] les polynômes <рх,
<p2solutions des équations différentielles

(78) <pin)- 0, cpi/0- 0.

Nous aurons les formules

/7Л. (9Ì"-17-4>ì"-27'+ ... + (-1 r19if-1X=(-ir1 Г 9ifn)ás/7Л.(79) JXl

(9Í"-»/- фГ87'+. • • +(-irl?2f"11)? = (-1)"-1 r?2/(n,ds •
J®

Introduisons les conditions aux limites

9i(*i) = 0 9Í(#j) = 0, . . . Ю = 0.

<80) 9г(ж) = 92(ж), <pí(ж) - <pž(ж) = ( - I)"-2» 9Í'(®) = <р>'(ж)

92(^2) = 0) 9г (жг) = 0,. . 9^_3,(Ж2) = °> 92я-2' (жг) = 0

et ajoutons membre à membre les formules (79). Nous aurons la formule
•de dérivation numérique (50), avec

<(81) «,(x) = (-l)4-i jy«-'-i)(a.) - 9Ł-'-1>(»)]

pour j = 0, 1, - 4 et

A0(x) = 9i--"(®i)
(82) Аг(х) = - 9Ín_2)(®i).

B0 - - <рГ11(*,)•
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10. Considérons enfin le cas xx < x < x2. Comme dans les cas pré-
cédents, attachons aux intervalles [хг , x ], [x , x2~] les polynômes <рх,
<p2solutions des équations différentielles

(78) <pin)- 0, cpi/0- 0.
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B0 - - <рГ11(*,)•
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23 SUR QUELQUES FORMULES DE DÉRIVATION NUMÉRIQUE

La solution des équations différentielles (78) qui vérifient les con-
ditions aux limites (80) des points xx et x2 est

Vi(s) = _x(£_z^_,(!_ZL^r2
(n - 1) ! (n - 2) !

(83)
(s - x2)n~lła(e) =
/
-

!tt'!/(n - 1) !

En écrivant que les conditions aux limites du point x sont vérifiées,
nous avons les équations (57) pour déterminer X, v, avec la différence
que Xļ < x < x2. Les valeurs de X, ¡i, v sont données par les formules (58).

Les formules (81) et (82) montrent que

oc0(x) = X + v

l Я 0-1)! Я J
et que

(84') A0{x) = -X, Аг{х) = (л, B0{x) = - v.

Le reste de la formule de dérivation numérique (50) pour xx <
< x < x2 est

(85) Вг(х) = (-1)"-1(
'
<pAx, s)fn)(s) ds

où le noyau 9x(#, s) coïncide pour le point x considéré, sur les intervalles
[xlyx], [x, x2], avec les polynômes <р1уcp2donnés par les formules (83).

Le polynôme ф2 ne s'annule pas sur l'intervalle [x, x2 ] et nous
avons

(86) T,w = (~i
(n - 1) •(X2 - X±)2

ce qui prouve que <p2(s) a le signe de (- l)w stir Vintervalle [x, #2].

Dans l'alinéa suivant nous allons étudier le signe du polynôme
9i(s)? pour toutes les valeurs de se(#1? x ).

11. Nous pouvons écrire

<?!.(«) = -
, [X(e - ®Ł)+ (»- 1)|1]

(n - 1) ,!

ou bien
/leо /p'w-2

(87) <*(«) = - le/о
ļvr+i(*)
/p

!(» - 1) !

en posant

(88) <K(s) = X(s - xx) + (n - l)(x.
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Nous avons

aí,- i±£iļ
m =■(-ir

[«.J-,
'■

D'après les conditions aux limites (80) du point x, yx(x) = <р2(ж)
et la formule (86), on a

(x - хг)п-* /лЛ _ , ^„2 (х- xl) (x - x2)2- . Vi Vх)
_- ' ~ l) - 7. - . "

(n - 1)
.
! (w - 1) (#2 - Xl)

.

«d'où il résulte que

ф1 (x) = ( Ot-2)!
(ж2 - «J2 (a? - ^)" 3

■etpar suite

(90) (-1)"-1 ^(®) >0.

я?'T I xLes formule (89) et (90) montrent que pour К 'T
a, ФМ) et

2
^(x) ont le même signe et par suite (s) et <px(s) ne s'annulent pas
sur l'intervalle (x1 , x]. Le signe de cp^s) est dans ce cas le signe de
(-1)".

X ļ ocPour x- - -, nous avons, d'après les formules (58)
2

(( n-' ("~2);
' 'B = o !

(( n-'
2

1%

- ' B' = o
2

et par suite, d'après les formules (83),

<р£С;(n ~ 1) •2 I 2 1 ' (n ~ 1) •
l 2 J

«PV2 (S) = V( -1)" (П -2)' _(ж2
- а)" 1

_«PV2 (S) = (V-1)"
о

aij-8

_
(»-1)!

Les fonctions 9x(s) et <p2(s) ne s'annulent pas sur l'intervalle
(#!, ж2) et ont le signe de (-1)".

/ QQ ļ Qß"1
Donc, pour x e 'xļ ,

QQ1 -Qß- , řa fonction de s, <px(ж, s), ne s'annule

pas sur V intervalle (xly x2) et a la signe de (- l)n.
La formule de dérivation numérique a dans ce cas le degré d'exactitude

égal à n - 1.
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25 SUR QUELQUES FORMULES DE DÉRIVATION NUMÉRIQUE 71

(OC

1 I '̂ 2
, хЛ

'1 '̂ 2
, хЛ , les formules (89) et (90) montrent que

(-1)»<M®) >0, ( -1)" Ф1 {x) < 0.

Le polynôme <px(«) s'annule donc en un point ж' e (xlf x) et a
le signe de (- l)n_1 sur l'intervalle (.t' , ж'] et le signe de (-1)" sur
l'intervalle (x', x).

fX I '
Donc pour жеГ'

J"2 , xA le noyau 91 (x, s), considéré comme

fonction de s , s'annule en un point x' de l'intervalle (xx , x2) et a le
signe de (- l)""1 sur l'intervalle (xXJ x') et le signe de (- l)w sur l'in-
tervalle (xfj x2).

Le reste Rx(x) de la formule de dérivation numérique, donné
par la formule (85), montre que le degré d'exactitude de la formule, dé-
pend de l'intégrale

CXtV (pļ(x, s) ds.

JSTous avons

, 3 (x - Xļ) (x - X*)
(-1), M <Pi(», «)d«=-*

J», n(n - 1)
où

(91) *• = -*
3

Il résulte que pour les points de V intervalle 1 1
^
- -, x2' différents

de x* , le degré d'exactitude de la formule de dérivation numérique (50)
est n - 1. Si x = x*, le degré d'exactitude de la formule (50) est plus
grand que n - 1.

Nous dirons que le noeud x* est un noeud exceptionnel et que la
formule de dérivation numérique (50), correspondante est une formule
exceptionnelle.

12. Cas du noeud exceptionnel. Nous avons vu dans l'alinéa pré-
cédent que la formule de dérivation numérique (50), exceptionnelle, a
le degré d'exactitude au moins égal à n, ce qu'on peut d'ailleurs vérifier
directement.

Mais c'est dans l'exprit de notre travail de déduire ce résultat
de l'expression du reste В de la formule (50) exceptionnelle que nous
obtiendrons par un problème aux limites, en supposant que/e Сп+1[х1у х2].

A cet effet, attachons aux intervalles [хг , я?], [a?, #2] les poly-
nômes фх , ф2 solutions des équations différentielles

<92) 9i»+u = 0, 9!>n,1)=0.
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3

Il résulte que pour les points de V intervalle 1 1
^
- -, x2' différents
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72 ТУ.V. 10NESCÜ 26

Nous avons les formules

(<pi"7 - ?i-1)/'+ • • • +(-1)пфЛ=(-1)" Г às
Jxx

(93>
(<рГУ-фГТ+- • • +( -1Г?2/(п))х'= ( -1)" ' 'î(s)fin+1) (S) ds.

Relativement à ces formules posons nous le
Problème aux limites. Déterminer la solution des équations diffé-

rentielles (92), qui satisfait aux conditions aux limites

<Pi(^i) = 0 <pi(a^) = 0,. . <pi"~2)(«i) = 0

(94) 91(®) = 9>(®), <pí(*) = 9í(*), 9Í'(®) - ?2'(®)=(- l)""2, <PÍ"(«)=?2"(a")
92(^2) = 0, *PÎ(®г) = Oj. • .j фа" =

Le noeud x sera déterminé de manière que ce problème soit pos-
sible et nous verrons que x est précisément le noeud exceptionnel.

En effet, la solution des équations différentielles (92) qui satisfait
aux conditions aux limites des noeuds xx et x2 est

, s (s - -ixl)n (* -
9l(s), s = - X -i ¡X- i-

ni (n - 1) !
(95)

(s-x2)nV
<p2(s) = v (s-x2)nV

n !

En écrivant que les conditions du point x sont également satis-
faites, nous avons les équations

.(ж-a-J" (x - agļ)""1 v (s -a?,)' = 0
n' (w - 1) ! n !

x (ж- a?!)"-1
14
(w - %)"~2 , v (ж

- а^)""1 = Q

(те - 1 ! 14
(» - 2) !

v
(и - 1) !

(96) x (ж - gļ)"-» (д -а^)"'3 v (ж - ж2)"~2 = _1ч,-1
(п - 2) ! (» - 3) ! (п -2)1

х (ж - a?ļ)"~3
14
(а; - .гг)"~4 ^ (а; - а?2)"~3 = Q

(n - 3) !
14

(n - 4) !
^

(n - 3) !

pour déterminer X, a, v et x.

Les trois dernières équations (96) sont identiques aux équations
(57) dont la solution est donnée par les formules (58). En écrivant que
la première équation (96) est aussi vérifiée, nous avons l'équation

(97) За; - хг - 2хг = 0

pour déterminer le noeud x, ce qui montre que x est le noeud exceptionnel
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27 SUR QUELQUES FORMULES DE DÉRIVATION NUMÉRIQUE 73-

En remplaçant dans les formules (93) les polynômes cpxet ç2>
par la solution du problème aux limites et en ajoutant membre à membre
ces formules, on trouve la formule de dérivation numérique

(98) /<-2>(®*) = £ a + + B
}= 0

OÙ

(99) oy = (-1)J + 1 [«pi*-" (я?*) - <pi"_,,(®*)]

pour j = 0, 1,. . n - 4, est

(100) A0 = фГ (*i), лг = - 9i""1)(®i), Bo= - ?{Лъ).
D'après les formules (95) nous avons

(101) a0 - X -f-v

l Л Ч - 1)! j ! J

pour j = 1, 2, . . . , n - 4, et

(102) Л = - X, = ļJL,B0 = - v

ce qui prouve que la formule (98) coïncide avec la formule excep-
tionnelle (50).

Le reste de la formule exceptionnelle est

(103) В = С" 9i (s)f{n]1) (s) ãs
Jx1

où la function 9 coïncide avec les polynômes ^ et cp2sur les inter-
valles [Xļ , #], [¿p, x2]j et il nous reste à étudier la fonction 9.

Théorème 3. Dans Vexpression (103) du reste de la formule
exceptionnelle (98), la fonction 9 ne s'*annule pas sur Vintervalle (хг , x2)
et a le signe de (- l)w_1.

En effet, d'après les formules (95), la fonction 92(s), ne s'annule
pas sur l'intervalle (x*, x2) et a le signe de (- l)n-1.

D'autre part, nous pouvons écrire

<Pi(*) = -
ny^=-! tMs - «1) + ПИ-]= - -

~

!̂
-

Ф1 (S)n ! n !

où

Фх($) = X(s - xx) + П11.

Nous remarquons d'après les formules (58) que ф^Жх) = пц et
a le signe de (-1)", et que de l'égalité <?ļ(x*) = <р2(ж*)> U résulte que
фх(а;*) a aussi le signe de (-!)". Donc y, (s) ne s'annule pas sur l'inter-
valle (#1 , x*) et par suite le polynôme ^(s) a le signe de (- l)"-1 sur
l'intervalle (хг, x*).
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(101) a0 - X -f-v

l Л Ч - 1)! j ! J

pour j = 1, 2, . . . , n - 4, et

(102) Л = - X, = ļJL,B0 = - v

ce qui prouve que la formule (98) coïncide avec la formule excep-
tionnelle (50).

Le reste de la formule exceptionnelle est

(103) В = С" 9i (s)f{n]1) (s) ãs
Jx1

où la function 9 coïncide avec les polynômes ^ et cp2sur les inter-
valles [Xļ , #], [¿p, x2]j et il nous reste à étudier la fonction 9.

Théorème 3. Dans Vexpression (103) du reste de la formule
exceptionnelle (98), la fonction 9 ne s'*annule pas sur Vintervalle (хг , x2)
et a le signe de (- l)w_1.

En effet, d'après les formules (95), la fonction 92(s), ne s'annule
pas sur l'intervalle (x*, x2) et a le signe de (- l)n-1.

D'autre part, nous pouvons écrire

<Pi(*) = -
ny^=-! tMs - «1) + ПИ-]= - -

~

!̂
-

Ф1 (S)n ! n !

où

Фх($) = X(s - xx) + П11.

Nous remarquons d'après les formules (58) que ф^Жх) = пц et
a le signe de (-1)", et que de l'égalité <?ļ(x*) = <р2(ж*)> U résulte que
фх(а;*) a aussi le signe de (-!)". Donc y, (s) ne s'annule pas sur l'inter-
valle (#1 , x*) et par suite le polynôme ^(s) a le signe de (- l)"-1 sur
l'intervalle (хг, x*).
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Le théorème 3 est ainsi démontré et il résulte que la formule de
dérivation numérique exceptionnelle (98) a le degré d'exactitude égal à n.

Nous pouvons alors écrire

в =(-i)»r+1,(Çjf<p(«) ds

•où č e ( ,r,, x2), et il est facile de voir que

/ 1« (X' , чJ MX2 -
X1 )3

(-1)"
/ 1«

' <p(s)
, чdsJ = -

X,
<p

27 (n - l)n(n + 1)
de sortie que la formule précédente devient

(104) E = 4(ж2 - ж1>3 f+1)(Ķ)
27(» - 1)(» + l)n

et il résulte l'évaluation

,(105) |Д|<
27

4(ж'
1

~
Х;]' ~Мп+1, Ж„+1 = SUp|/<"+1) (s) |.27 (n - 1 )n(n + 1) (xltxt)

En général les formules de dérivation numérique de la forme (50)
ont le degré d'exactitude égal à n - 1. La formule exceptionnelle (98)
apparaît comme une formule spéciale de la forme (50), dont le degré
d'exactitude est égal à n.

Des cas particuliers de la formule (98), n = 4 et n = 5, sont
donnés comme exemples dans le Mémoire de T. Popoviciu [4] où sont
données aussi les évaluations (105), correspondant à n = 4 et n = 5.

(formules (31) et (32) p. 106 et 107).
Reçu le 15.VI.1968
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