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APPLICATION DES FORMULES DE QUADRATURE A
L’ETUDE DE CERTAINES FORMULES DE DERIVATION
NUMERIQUE ET DE LEURS RESTES

PAR
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L’académicien T. Popoviciu [3] a publié un important Mémoire sur les formules de
dérivation numérique et a donné de nombreux exemples de telles formules donl le
degré d’exactitude soit maximum.

Dans ce Lravail nous donnons des procédés généraux pour former des formules de
dérivation numérique avec leurs restes a I’aide des formules de quadrature el nous
retrouvons de cefte manitre, comme cas parliculiers des exemples donnés par
T. Popoviciu.

§ 1. APPLICATION DE LA FORMULE DE QUADRATURE DE GAUSS

1. Considérons la formule de quadrature de Gauss
b b

(1) S p(s)Q(s)ds = C,Qm + 0, Q (@) + ... +C,Q(x,) +S ¢ (5) Q" (s)ds

a a

pour une fonction Qe €**[a, b], avec le poids p(s). Nous Supposons que
P(s) soit un polyndéme de degré plus petit que n, et qui est positif sur
Vintervalle (a, b). Les neeuds correspondants @y, + .+, 2, sont distinets
et compris entre a et b et les coefficients ¢, 0y, ..., €, sont positifs. Nous
avons mis le reste de la formule de quadrature (1) sous la forme d’une
intégrale définie et nous avons démontré que la fonetion ¢ ne g’annule
pas sur lintervalle (a, b) [1].

A Taide de la formule de quadrature de Gauss nous déduisons, pour
obtenir une formule de dérivation numérique et son reste, le proecédé
suivant : .

L. 8i dans la formule de quadrature (1), oiv p(s) est un polynéme de
degré plus petit que n et ne s’annule pas sur Uintervalle (a, b), on remplace
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la fonction @ par f™, o fe C""* [a, b] et on applique d& Dintégrale du
premier membre la formule généralisée dintégration par parties, on obtient
une formule de dérivation numérique

(@) Cif(@m) + Cof(@y) + ... + O, f(@,) = [p(s) " (s) — p’(8) f*" 2 (s) +
b
Fe (=1 0 (s) f ()N —S ®(s) [ (s) ds
avee son veste mis sous la forme d'une intégrale définie, oi la fonetion © ne
s'annule pas sur Uintervalle (a, b), ce qui veut dirve que le degré dexactitude
de la formule (2) est n 4+ 2m — 1.

2. Nous pouvons appliquer le procédé I, en donnant des cas parti-
culiers, correspondant & m = 1, qui sont cités dans le Mémoire de T. Po-
poviciu, avec le »° de la formule qui figure dans ce Mémoire.

1°. Pour a= —h, b=h, p(s) =1, n =2, on obtient la formule (49).

2°. Pour a = — 2h, b = h,p(s) = s - 2 h, n = 2 on obtient la
formule (24).

Dans ce cas, lorsque fe ¢! [a, b], le reste de ces formules peut étre
mis sous la forme

b

(3) =\ o(s) /(s ds
ol la fonetion ¢ ne s’annule pas sur Dintervalle (a, D).

3°% Pour a = —2h, b="h, p(s) =s + 2h, n = 3, on obtient Ia
formule (51).

4°, Pour a = — 3h, b = h, p(s) = (8—4_2@» n = 3, on obtient la
formule (29). '
o : h? — g? : :
6% Pour a = — h, b =k, p(s) = — n = 3, on obtient la for-

mule (30).
Lorsque fe C5[a, b], les restes de ces formmles peuvent étre mis
sous la forme d’une intégrale définie
b

) B =\ 9(s)f%(s) ds
ou la fonetion ¢ ne s’annule pas sur Vintervalle (a, b).
6°. Pour a= —h, b=h, p(s) =" —s%, n=4 on obtient la for-
mule (57). ‘
3 3
7°. Pour a = — 4h, b = I, p(s) = M—GLM)J, # = 4, on obtient Ia

formule (39).

— 3h)2(s42h
8°. Pour ¢ = — 2h, b = 34, p(s) = L oL .

6

n =4, on

obfient la formule (40).
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e 2 » =4, on obtient

9°. Pour a = — 3h, b =1, p(s) =" .

=

la formule (56).

Lorsque fe 0% [a, b], les restes de ces formules peuvent, étre mis
sous la forme d’une intégrale définie

b

(5) R::j (5) 19 (s) ds

a

ot la fonction ¢ ne s’annule pas sur intervalle [a, D).

La détermination de la fonction o, dans les formules (3), (4), ou (b)
se réduit & la détermination de la fonction v du reste d’une formule de
quadrature de Gauss avec le poids p(s). Ces fonctions ne s’annulent pas
sur lintervalle (a, b).

§ 2. APPLICATION DE LA FORMULE DE QUADRATURE DE TYPE GAUSS

3. Considérons la formule de quadrature de type Gauss

b

jpwmwmzmwm+A@mH-n+iqw“w+

a

(6) + B,@(b) + B, Q'(b) + ... + B, Q* -V (b) +

+ C1Q(x,) + C, Q)+ ... +C, Q=) +

b

| o) @ rmi(s) as

a

pour une fonction e O**+*" [a, b], avec le poids p(s). Nous Suppogons
comme dans le § 1, que p(s) soit un polynéme de degré plus petit que n,
positif sur I'intervalle (a, b). Comme dans le cas de la formule de quadra-
ture de Gauss, les neuds @, @,, ..., 2, sont distinets et compris entre
act b et les coefficients €, C,, ..., €, sont positifs. Le reste de cette
formule a été mis sous la forme d’une intégrale définie et nous avons dé-
montré que la fonction ¢ ne s’annule pas sur Pintervalle (a, b) [2].

A Daide de la formule de quadrature (6) de type Gauss nous déduisons,
pour obtenir des formules de dérivation numérique et leurs restes, le pro-
cédé snivant :

IL. Si dans la formule de quadrature (6), ot p(s) est un polyndme de
degré plus petit que n et ne s’annule pas swr Uintervalle (a, b), on remplace la
Jonction Q par f, o fe Qntitetzp a, b], el on appligue & Uintégrale du
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premier membre la formule généralisée dintégration par parties, on obtient
la formule de dérivation nwumérigue

G @) + Cof (@) + ... + C, f"(w,) =
=[P ") —p' () (8) + .o+ (= 1) P (s) f(8) ] —
— [Ao " (@) + A f™* 0 (a) + ... 4 A, f"H Y (a)] —
— [Bof™ () + By f**0(b) + ... + B,_, f"+*(p)] —

b

. S (P(S)j(uﬁ t k+2m)(s) ds

avee son resie mis sous la forme d’une intégrale définie ot la fonction o ne
s'annule pas sur Uintervalle (a, b) ce qui veut dire que le degré d’ezxactitude
de la formule (7) est m + i + Lk + 2m — 1.

4. Comme application du procédé I1 nous donnons des cas particu-
liers correspondant & m = 1 et nous retrouvons de cette maniére certains
exemples de formules de dérivation numérique qui se trouvent dans le
Mémoire de T. Popoviciu.

1° Pour @ = —2h, b=h, i=0, k=0, p(s) =1, n =1 on ob-
tient la formule (23). Lorsque fe ("[a, b], le reste de cette formule
peut étre mis sous la forme (3).

2°Pour a = —1hy b=1h, i=1, k=0, p(s) =h—3s, n=2 on
obtient la formule (27).

3° Powr a = —3h, b = h, i =2, k=0, p(s) =1, n = 1 on obtient
la formule (25).

4° Pour @ = — by b =h, i =1, k=1, p(s) =1, = = 1 on obtient
la formule (26).

5 Pour @ = — 24, b = h, i =1, & = 0, p(s) = 1, n = 2 on obtient

Ia formule (50).
Lorsque fe C°[a, b], les restes des formules citées (27), (25), (26),
(50) peuvent étre mis sous la forme (4).

6° Pour a = — 4h, b = h,i =3,k =0, p(s) =1, n =1 on obtient

la formule (33).
. 7% Powra= —3hb=2hi=2k=1,p(s)=1,n=1 on.obtient

la formule (34).

8° Pour a = — 3L, b=2h, i =2, k=0, p(s) =2h =g, no=12
on obtient la formule (35).

9° Pour a = —3h, b =h, i =2, k=0, p(s) =1, n =2 on obtient
la formule (52).

10° Pow a = — b, b=h,i =1,k =1, p(s) =1, n =2 on obtient
la formule (53).

1° Pour a = — 0, b=1h, i =1, k=0, p(s) =N —8, n =23 on
obtient la formule (54).

g mle o (s — 3h)®

12° Pour a = — 24, b =3h, i =1, k = 0, p(s) = —— B~ 3

on obtient la formule (37),
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Lorsque fe C%a, b] les restes des formules citées (33), (34), (35),
(b2), (53), (54), (37) peuvent étre mis sous la forme (5).

Les fonctions ¢ correspondant & toutes ces formules ne s’annulent
pas sur l'intervalle (a, ), parce qu’elles sont identiques aux fonetions qui
tigurent dans les restes des formules de quadrature (6) de type Gauss.

§ 3. EXTENSIONS DEsS PROCEDES 1 ET 1I

b. Nous avons donné les procédés I et IT pour former les formules
de dérivation numérique et leurs restes pour montrer la source naturelle
des formules citées dans les alinéas 2 et 4. On peut étendre ces procédés
en considérant une formule de quadrature quelconque

b

P Qs ds = ¥ A, Q9(s,) +{ 60 @(s) o

i=1 j=0 a

b

®) ﬂ

pour une fonction @& C"[a, b] avec le poids p(s) polyndéme de degré
plus petit que # et avee les neeuds @, @,, ..., z, multiples d’ordres
kyy Koy ..., k,. Cette formule conduit au procédé suivant pour obtenir
une tormule de dérivation numérique et son reste.

III. 8% dans la formule de quadrature (8), ot p(s) est un polynéme
de degré plus petit que n, on remplace la fonction @ par f' o fe C"+"[a, b],
et on applique & Uintégrale du premier membre la formule généralisée d'inté-
gration par parties, on obtient la formule de dérivation numérique

O % A @) = () [0 s) — p () [ + ..+

i=1 j=0

b

+ (—1) P =1 (s) f(8)1: —5 o (s) ™ (s) ds

a

avec son reste mis sous la forme d’une intégrale définie.
Le degré d’exactitude de la formule (9) est moins égal & n 4+ m — 1.
Cousidérons comme exemple, la formule de quadrature pour la
fonction au

| 0w ar =L@ lr0w —aq(“ 1)+ 100)|
(o)~ ;
+{ o) 0w @as

avec le poids

4
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La fonction ¢ du reste de la forme (10) coincide sur les intervalles
[a,a' - bJ. [a’ ;b, b] avec les polyndmes

2
H(s—a.)ﬁ_ o s=a)t
91(s) = T (b — a) T +
+3(b— a)? (_s_:a,_)a_ 7(b — a)® (8§ — a)?
16 16 480 2
(12)
_(s—bp e Y
Po(8) = = + (b — a) o 4
(b—af (s =B (b—a)f (s — b)?
+8 16 16 b 480 2

Hr

Si nous remplagons dans la formule (10) la fonetion ¢ par f',
o fe (7[a,b], on obtient la formule de dérivation numérique

Li(b—l_(i_ﬂia[f”(b) —f"(@)] — (b — a) [f'(b) — f'(@)] +2[f(b) — f(a)] =
(13)
a-+b

SO [rrr@ —ap (C5) 4 1w 4 e s ar

avec son reste mis sous la forme d’une intégrale définie.

a

Regu le ¥ mai 1968 Universilé Babes-Bolyail
Cluj
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